FlexPDE 6

Version 6.50
1/31/2017

Copyright © 2017 PDE Solutions Inc.

FlexPDE 6

Copyright © 2017 PDE Solutions Inc.

Complying with all copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, or otherwise) without the
express written permission of PDE Solutions Inc.

PDE Solutions Inc. may have patents, patent applications, trademarks, and copyrights or other intellectual
property rights covering subject matter in this document. Except as provided in any written license
agreement from PDE Solutions Inc., the furnishing of this document does not give you any license to these
patents, trademarks, copyrights or other intellectual property.

PDE Solutions, and FlexPDE are either registered trademarks or trademarks of PDE Solutions Inc. in the
United States of America and/or other countries.

Products that are referred to in this document may be either trademarks and/or registered trademarks of
the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author
assume no responsibility for errors or omissions, or for damages resulting from the use of information
contained in this document or from the use of programs and source code that may accompany it. In no
event shall the publisher and the author be liable for any loss of profit or any other commercial damage
caused or alleged to have been caused directly or indirectly by this document.

Note:

This version of this manual is current as of the indicated release date. Electronic versions of this manual together
with subsequent release notices in the FlexPDE documentation are available online at www.pdesolutions.com.
Electronic versions are updated more frequently than printed versions, and may reflect recent developments in
FlexPDE more accurately.

Table of Contents |

Table of Contents

Part I

AW N R

O 03 O G

10
11
12

Part II

Getting Started 2
TIISTALLATIONYL --eeeevveeervveeerreerereersrreesseerarseeseseessseeseseessseessseessseessssesssseesessasssnsesssseesessessssesssseesensasssnees 2
Starting FLEXPDIE -+eeccveeeeterertereiteeeteeesteeestteseuteeessteesseeseseaessstesssaeseseasssssesssseessnsaessssesssseesssseessnsases 2
FIEXPDE WOTKINE FES v verererersenressererssnesssmsessesesssneessssesassesssssesseses s s v v v 3
TRE IMAIIL MEIIUL BAT +evvevreeererreereeseeeseessesssessesssessesssesesssesessssessssssessessssssessmessesssessessssssssssssssssssesens 4
THE FIlE MBI «-veverueecveminieniiereesentestestestesseetessestessessestessesntessesseessesseensessesneessessessesseseessennes 6
The CONTIOLS MBI 1+ vveveretentenenieniertesientesteseestessestessessesssessesssessesssessessesssessessssssassesssensesssensens 7
TheE STOP MENU vcveviirrieieiiiieie it bbbt 8
The TOOL BAT -+ iveeveeeeiininiinieiiiiiitirectct ettt sb s et be b s ens 10
Editing Descriptor TFILES +vveeerrrerrrrinrtreinieeesreeeseeseteeesreessteessaeeesaaesssaessssaessaessssaeenssasensaesnssaeens 10
DOMAIN REVIEW ieerverriiiitiiiiiiiie e a s s s 12
WHhILE 1he PrODIEIm RIS -eeceeereerrrerereemrtersuersrersreeestesssesssessseesssesssesssessseesssesssessssssseesssesssesssassseens 14
When the Problemm FINISHES - --eeceeeeeerterrernerreretenrtenrtesstersreestesstessseseseessesssesssessseesssesssesssesne 18
Viewing Saved Graphic TFILES cveevveereeerrenieerie et et e e e e te et e e e e steeste e baesaeebe e ba e saeeaa e se e saenraanneas 19
Example PTODIEITIS cveeeveervvererereeemsuerseersrerntenstesseesseeseseestesseesssessseestesseesssesssessseesseesssasssessseeseesees 20
Registering FLEXPIDE veeeeeerveeetesrruneerssiueessssrueeeesssseessssssseesssssssessssssssesessssssesssssssssssssssassssssssssssssnns 21
The RegiSter DIalog .. vovoeereieriiieieiniisieieies et 22
Internet Key RegIStration «...c.ceoeeeeieueeininieiiiteee s 23
Dongle REZISTIation ...o.ovoeueveiieiiiieieiictete e 24
Network Dongle ReGiStrationccoceeeeeeueueiiicieieiicete e 25
Software Key RegISTIationc.oceueuiieieiiiiieeietett e 26
User Guide 30
OVEIVIEW ceerveerereteretetaitesaitteseteeeiutesesttesesteseastesastesesteeeastesaatesesseesastesanstesensesestesanstesensesenseesasaesen 30
WAL IS FIEXPDE? covtetieititiienteientetesrestessesesssessessessessssssessesssessessssssessesssessassssssessasssessasses 30
What Can FIEXPDE DO? ceveeveeieecieeeeeeeeeteeeteeeteeeveeveeeseeeseesssessseessaeessesssesssesssessssesssesssesssesnns 31
HOW DOES TE DO TE? 1ttt eee e e enete e s seee e s s et e e s e nne e s s s mseee s s snseaeesennenanes 31
WHhO Can USE FIEXPDIE? ..coouvieiietieeeeeeeeteeiteeeeeeeeereesseesseeeaeeseesssesssesssesseesssesssesssesssessseennes 32
What Does A Script LOOK LiKe? uoucuoviieieieiiiiiiitt e 33
What About Boundary Conditions?ccceeeeueeeuriemeiriesnicieieeseeseeese s ssaens 34
Basic USAZE v oeveveuremsensiiiiniiii s 34
How Do I Set Up My Problem?cooeiiinioiiiiiics e 34
Problem Setup GUIAElINESceveveeeurueieieiiiicieiei 35

INOTATIOT -+eeveeenrerrrerrrtentensterrteretteetee e et eettee st ee b e s bt sse e st esssessse s saesstesssesasesstesstesssesnsesssaesssassens 36

FlexPDE 6

Variables and EQUALIONScceveirireieieiiicieiit et e 36
Mapping the DOMAIN ...ceuevieieieiiieetet e 37

An EXample ProbIem ...coiiii e 38
Generating A MESh .. s 39
Defining Material Parameters «.....cocoueeeeeieiniisisieiniinsieieiste s 40
Setting the Boundary CONditions «.....cocoeueveeieieeieiiieiiiciieieisie et 41
Requesting Graphical OULPUL «...c.cuviimimiiiiiicrciciicscs s ssssnes 41
Putting It All TOZETRET «.cvvvvervieiniciiictcttct s saes 42
INTErPreting @ SCIIPT wevevrrrieeiciiiictci s 45

3 S0ME COMIMNOTY VATIATIOTILS ++-vvveeeeeerveeereerrreeeeserrereeessssseessessseeesssssseeessesseressssssseessesssesessssssesessessens 45
CONLTOIING ACCUTACY «-vvvvrvririrriirintcisisict st 45
ComPULING INTEZTALS +v-vvcvvreveeriietircteicte ettt 46
Reporting Numerical RESULLS ...cevvreeieiiiiiiiciic e 47
Summarizing Numerical RESUILS -...ccocoeueuiiiiiiiiie 47
Parameter Studies Using STAGESccoooieiiiiiii s 48
Cylindrical GEOMELTYcevevieiueieiiiiictctct e 49
Integrals In Cylindrical GEOMELTY......c.coerrueriereerenierieniertereetese et et st eee e et sre st seesmeens 50

A Cylindrical EXAMPIE......c.cecververerrtenienieinienierntesensesiessesssesesssessessssssessesssessasssessessasssessassas 50

Time DEPENAENCE . ovevevereveteieieieieieieteiet s 52

Bad Things To Do In Time Dependent Problems............cceceeveeverrirsieninneesennensenenseecennenne 54
Eigenvalues and Modal ANalySiscooeeeueieieiinieieiiieeieie e 55

The Eigenvalue SUMMATY........ccoiivecerirrenietereetesestetese et sreseeseesreeeesseseesses e seessesneas 58

4 Addressing MOTE DiffiCUlt PrODIEITIS «o-eecveeeerrerrerreemerrernreriessiesessuessesseessessesssessessaessessasssessanss 58
Nonlinear Coefficients and EQUAIONS «....ccoveveruerriniiinieiiieiiieee s 58
Complications Associated with Nonlinear Problems...........ccccecceververnenvenneenennensenenneennen. 60

Natural Boundary Conditionscccceeeeeeieieiniinieieiecis s 61

SOME TYPICAL CASES....eeverrrrrererrerieritenieneesieseessessessessessssssessasssessessaessessasssessesssessesssessassaens 62

An Example of a Flux Boundary Condition.........cecceeereereererreenennieseneeseesenneeseeseeseesneenes 63
DiSCONTINUOUS VATIADIES veeeveeeeiiieeieeeieeeeiteeeteeertee et eeeteeessseeessseeseseesesesessseesessesessssesssaesnes 64
CONTACT RESISTAIICE.uvieeetieeeiieeetieccieeeiee et e eeteeesteeesteeeseeeeseeessseessaeesssasessssesssesnsseennsees 65

DECOUPLING ...eeuveverrerieriteniertenieneeteseetestestessessaessessesssessasssessessesssessasssessessasssessassensesssessanss 66

Using JUMP in problems with many variables..........ccecceveeeriierenninnenineceneeseneeeeeeenens 67

5 Using FlexPDE in One-Dimensional PTODIEITLS - eeceeereeereerrerrersreesreesseesseessresseesseesseesnes 68
6 Using FlexPDE in Three-Dimensional Problems - 69
The Concept Of EXIIUSION vvveveiiiiiieieieiicetete et 69
Extrusion Notation IN FIEXPDE .ccccueeeiiieteeeiieeciteeteeetteeeteeesreeeeree e svee s saeesseeesssaessssesnnns 70
LAYETIIIE wevvvevereeretireteinete ettt bbb 71
Setting Material Properties by Region and Layercccocoeeueuniieicieiniincieieiccieieae 72

V0id COMPATTIMENTS wvvverereeieieiiiiieieieeie ittt bbb 74

Table of Contents i

10

11
12
13
14
15
16
17
18
19

20

Part I11

1

Limited REZIOMS ovevevieiurieteiiitiietete ittt bbb 74
Specifying Plots on Cut PIanescccocveueuiieieieiniiecietiet e 75
The Complete 3D CANISTET vvvereieiiiicieieiiieete et 76
Setting Boundary Conditions in 3D ..ottt 78
Shaped Layer INTErfacescouoeveeuriirieieiiiciicie s 81
Surface-Generating FUNCHONS «.vveveviiieieiiicciei s 83
Integrals in Three DIMENSIONS ...ococeveveiiueieieiiieeieieeet e 84
More Advanced POt CONIIOLS vecveerrerieeeeereeteetteeeeeteerreesreesseeeaeesseesssesssesseeeseesssesseesssesnnes 87
COMPIEX VATIADIES -rvvvevvvserrsnerimrrieriieriitiitiieii it 89
The Time-SiNUSOIAAl HEAL veeeeeereeerreereeiteeeteeeeeeteeteecreeeteeeeeeveeereeeseesseeseesseeessesssesssessseenns 90
Interpreting Time-Sinusoidal RESULLS «..cveeveieciriciniiciictc e 92
NV ECTOT VATIADLES +eeevveeeveeeerreerrterertereieeeitereseteesseessseesssseessssasssseesssseesssesssseessssessssesssseessssesssnsasss 94
CUIVIIINEAT COOTAINATES +eevveerreereerreirieereeiteeiteeereeeteeeteesseeeseessaeesseessessseesseesseessesssensseessesseen 95
Magnetic Vector Potentialcccoeeuereieieiiieiciei e 95
Variables Inactive in Some Regions .. 97
A ChemiCal BEAKET «veecveeeteeeiieeieeieeieecteetee e et et esteesteesseesssessaassassseesaesssasssasssassssensaenssasnsens 98
Moving TMIESIIES -+veevveeervremmrueersrureesueeeireesssseessseeesseesssseessssesssseessssssssssessssesssssasssssssssssssssassssassnsens 100
Mesh BalancCingeeeeeeeereieisieeieieiss e 101
The Pulsating BIOD .c.ovoveueieiiii e 102
Contro]]ing Mesh Density ... 103
Post-processing with FIEXPDE ..o 105
Exporting Data to Other APPICAtIONS «wwrwewessrreeesssssssesisssssssssssssssssssssssssssesssees 106
Importing Data from Other APPLCAtIONS - rrwsssrrreessrreesssnseressssssssssssssssssssssssssssee 108
Using ARRAYS and MATRICES ----cvureeeessmreesssnseessessssssssssssssss 109
SOIVING NONINEAT PTODIEIMS wrvvvvvssserrreessssssensssissssssssssessees 110
USING MUIHIPLE PTOCESSOTS wrvvrrrrreeesssssssnsesssns 112
Running FlexPDE from the CoOmMmMANd LINE -e-eerreereesrerrerrrerrerseesessaessessesssesesssessessasssenses 113
Running FlexPDE Without A Graphical INterface - .eeeeemecrnerincriecrieniinens 114
Getting Help ... 114
Problem Descriptor Reference 116
TN ETOAULCTIOTY --veevveererveerererereueraseerssseeseseeasseesssseeseseesssesssseesssseesssseessssesssseesssseesesessssesssseesssseessnses 116
Preparing a DeSCIIPLOT File ..ottt 117
File Names and EXTEIISIONS veeeveerteereerieeniieeiteeireeseesiseessessssesssesssssssssssssssssssssssssssssssssssssassses 117
Problem DesCriptor STrUCTUTE «..ovoveveuiieieieiiieiiet s 117
Problem Descriptor FOIMAL ..cccceviieieieiiieeiei e 118

CaSE SENSITIVITY rvevererereirinieeiiniee e 118

FlexPDE 6

T C A FILES cveveeeuueneeeaeeaeeeesssesnsnnnnnnnnnnnnnnsnnsnessssssssssssssssssssesseeeen 119
A Simple EXAMPLE oveveverereieieieieiee e 119
2 The Elements of a Descriptor ... 121
(076000 0005) 01 1< PTT TR 121
Reserved Words and Symbols «...cccoeeeeiiiiiiiiiii e 121
SEPATALOTS tveueeventrietrienteinteet ettt sttt sttt 124
Literal StIINGS «oveevereeeeeeieeieieeeee bbb 125
INUINIETIC COTISTAINIES 1oeeeeevrrnniereertenieeeeeeterueeeseeeessseesssessssssessseessssssesssssssssssssssssssssessssssssnsossseses 125
BUIE-I11 FUIICTIONIS toeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeneeeeeeeasesessessssssssesssesessssssssssssessssnnssnnnnnnnnnnnns 125
ANALYTIC FUNCHONS.....cootieieeerteieniieeecteetestestetese et et e eesse st esee st eeessesaeesse st esesseensessesnees 126
NON-ANALYHIC FUNCHONS. ..c.veeteriirirrenenitenieritesteseestesesssesseseessessesssessesssessessasssessasssessassaens 126
UNIE FUNCHONS ... vveeeiieeecieeeeieeecte e ctte e te e e e e e teeeeste e e steeeesaeeessaesssaeesssesssasesssessssssnnsesnnsees 128
STFING FUNCHOMNS. ..c.veetiierterieniesieeteteeeeteste st estesseete st e seeese st esbes st eeessestessesntesesstensessesneas 128
The FIT FUINCHOM ..c.uvviieiieeeieeeeieeceieeeerieeeeteeentreeesseeeeseeessseeessssessssesnsssesssseessssesnsssesssssesssreen 129
The LUMP FUNCHOML....ccccteieitieeeieeeeteeeiteeeeteeeeeeeeiseeeesesesssseessesessesssssssessssssesessssesssasennes 130
The RAMP FUNCHOM....cccciieieiieeeieeeeieeeitteeeteeesreeeitee e saeeessseeeseeseseeessssesssessssesessssesssasennes 130
The SAVE FUINCHOIL......ciiiiiieiieeeieeeireeeteeeeiteeeneeeesseeessseeessseeessssesssssesssssessssesssesesssssessssesnns 131
The SUM FUNCHON......viiiiieeecieeeieeecteeecteeeesteeeseeeeeseeeesseeeesssesssseeessssessssssssssesssssssssessssseennns 131
The SWAGE FUNCHOMcoioiviieiiecirecieeceieeeetreerreeceteeeeveeesseeeessseessssessssesssseensssesssesenssees 132
The VAL and EVAL fUNCHONS.ccviiiiieeeieeceiee et cieeeereeectee e teeesaeeesae e seeessnsesssasensens 132
Boundary Search FUNCHONS.......ccceeviiirticiirierieriecceeseestesseesseeeseesseessaessaeeseesnesssesssnenns 133

L0 0723 1 0] DT P 133
ATTTRIMEIC OPETALOTS . c.ueivirierierieeterienieteneestestestessesseestessesssessesssessessesssessesssessessesssessassees 133
COMPIEX OPETATOTS .. .ceveueeneereireeereetestestentesseetessestessesstessesseseessesstessesseesessessessesseessesses 134
Differential OPerators.......cocvvieieecierriiiiiicteeieesie et estee e st ssreessteseesssesssaesseesssesssessseasseesns 135
INTEETAl OPETALOTS...cueeeverrieiererienierteniertesteseestesseetestesssessessesssessasssessessssssassesssensessssssesses 136
Time INTEGTALS.........ecceeereereeeieeeeeetecre et eeeeesteeereeeseeeseeeseeeseeesaesssessesessenssesssessessssenseenns 136

LiNe INTEGTAIS........cccveereeirieereeeieeiteeeteeeeeereese e teeeaeeae e seeeseeesseesseesseesseessaesssenssesssaenseennes 136

2D SUIaCE INTEGTALS........cuveieeeiieeieieeeceeeceeee e e et eeteeene e e eseeesaseessneeesneessnseesenseesns 137

3D Surface INTEGTals...........ccveeiieeieeeirieeieeeeeeteeere e eeeeeereesseesseeeseeseenssesseeesaeseesssenssennnes 138

2D Volume INTEGTalS..........cceceieeieeeieeerieeieeeeeeeeeeteeeteeereeaeesseeeseeesseeseesseessseesseesaesseenseens 138

3D VolUME INTEGTALS........ccoviiieeieiieceeeeeeeee et e e e e e teeeaeeesseessaeesneessnseesnressnnees 139
Relational OPETratorS.....c.ccccieecueriierriirieeterrieeceesteseeesteesseesseestesssessseesseesssesssessssesseessesnses 139
STTING OPETATOTS. ..eveeverneeeerreeterteestertestertesseetessestessesteseessesnsessesntessesaeessessesnsessessessesenns 140
VECLOT OPETALOTS. ...eeiiiiiiiiieieeieeiteeete ettt et e st e et e s e rte s et e e st e s e st e senseeseseeseseesenneenane 140
TeNSOT OPETATOTS. ..ccicuiiiuiiiiiiiiiiieiit ittt sttt st ae s sre s st e sesbt e senee s sanesensaesenns 141
PredefiNed EIEIMEINTS . iiccerreeeeerieeeeieeeeeecteeeeeeereeeeeeseeeeeessseeeeessseseesssssseesssssssesssssssessssssseesnn 142
Expressions .. 143
REPEATEA TEXL rvovevevevereieieieiiiiiiiieie bbb 144
3 The Sections of a | DICTST0) o] (0) P 145
4 1 o (TSRO 145
SLECT weveeeeeeeeeeeeeeee e e et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaa——————————nnnnnnnannaaeaaeeesettteteeeetaeeettttttttaaraannnnnnnnnn, 145

Table of Contents \"/

STeY 1818 To) s W 6/0) 1 o) KTNSO 147
Global Graphics CONIOIS.........coeeueeuerienirririrereeertetetetee ettt ettt se s e nes 150
ClOOTAINIATES --vvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseensssnnnnnnnnnnnnsnsessssssssssssssssesesssssessesssssssessssnnnsnnnnnnnnnnnns 153
VATIADIES -evvveeeeitiieeeeetieeeeertteeeeetteeeeetreeeeeessaeeeeesssaeeeessssseessseseessssaseesassssseenssssseesnsssneesnnsssseenns 154
The THRESHOLD CIAUSE........uecciuieirrreereeenreeenreeeerieeeneeeesseeessseeessssesssssessssesssssessssssssssssnns 155
COMPIEX VATIaDIES....c..eecterieiiiiieecentee ettt ettt et ee e st s e saesseseessesneessenns 156
MOVING MESRES.....ueiiiiieieiieietteteteetee sttt ettt ste st e s e ee s et s s et e se s st e sse s e eaeessenn 156
VATIADIE ATTAYS. .. eecverierierreerieneerteniestesiestestessesssessesssessesseessessesssessasssensessssssessessensessasssasses 156
RYLTe 10 AV U F:1 o) (=S USSR 157
GlODAl VATIADIES +ooevveeeeereieieeitieeeeetteeeeeetteeeeeeteeeeeesseeeesesssasaesessasesesssssessessssesessssssessnssssesnnns 157
DIETINITTIONIS 1vvvvverreeeteieiiiiiiitrrteeeeeeeeeesssssrrreeeeeeesesssssssssseeeesessssssssssssseesessssesssssssssssssessssessssssnssnns 158
ARRAY Definitions......vveeeieieiieeeiiieeeteeeciteeeiteeesreeecreeesseeessaeeesseeessssesssssessssessssessssssesssessnnes 159
MATRIX DefiNitiONS.....ueeeieeieeitieciieeieeiteesieesteetee e esteeseessseesseessaesssasssessssessassssassssssssessanns 161
FUnCtion DefiNitiONScccueieiieeeiieeeieeeiie et e et eeitee e e e essreeecsaeeebeeesssseesaesessesesssesssaesnnes 163
STAGED DefiNItiONS ...ueiciuieeeirieeeiieeeiieeeiteeeiteeeeteeesaeeesseeesseeessseessssesssssssssssssssssesssssssssennes 164
POINT DEfINITIONS. .eeeeeurieerreerieeenieeeereeeerteeeseeeessreeesseeessssesssesesssseessssesssssesssssessssesssssesssssens 165
TABLE Import Definitions.......cccceeeveerierierenenienentestentesieseeeeseesee e sseeeessesneessesaeeeessens 165
The TABLE Input fUnCHON.........ccciivieriiiineetenenitenientesreseeste st e stestesssestessessessssssessesssensens 166
The TABLEDEF input Statement.............ccovvieerureereeeeieeenieeeneeeesseeessseeceseeesseseesseeensseeensene 167
TABLE MOGIFIETS........ccocuriereeieieeenireeteeeeteeenereenseeeeseeessseeessseeessssessssesesssesssssesssesonssssensens 167
TABLE File fOImat..........ccoeciiieiiieiiectecieeieecitee e steeste e e e s eeete e ve e saesae e saessaessnessaasnsasnnns 168
TABULATE AefiNITIONS ..ecceviieririeireeeieieneeeerieeeerteeessaeeesseeessseeessssesssesesssseessssesssssesssssesssseen 169
TRANSFER Import Definitions.......cccceetererirneereniienenieieneeeeseeeeseseeseeseeeesseseessesnenns 169
TRANSFER File fOITAL..........coooviiiiiiiiieeieieeceeee ettt e e eaeeeeseecesseessssessseesessesssnnessnne 170
The PASSIVE MOGIfIET......uviiciieecieeciiieceieeectteeeitee e teeeteeeereeseseeeeseeesssaesesaeenssessssssesseesnnns 172
MeSh CONEIOl PATAIMETETS.....c.vviiiveeiireeeeieeeeireeireeenteeeerteeeeseeessseessseeesssseessssesssesesssseessssesnns 173
TTHIAL VAT coeeeeeeeeeieeeeieeeeeeeeeteeeeteee e e e e e e e e eeeeeeeseasaassssssessessessessssssseeeennnnnnnnnnnnnnssnnnsnsnssees 174
EQUAIONS +vevetereieiieteie s 174
Association between Equations, Variables and Boundary
COMAITIONS. ..eeeeuvreeetieeeeiieeeteeeeteeeeteeeeteeeeteeeesreessseeessaseesseesssseessssesssssesssseensssesnsssesssseenssnesnns 175
Sequencing Of EQUATIONS.......ccceeerrirrerirrenerrierestesteseete st eeeseeseete st eeessestessesseesessesnees 175
Modal Analysis and Associated EQUAtiONS.........coceevverierreerieniernienenieneneessenesssesessesssensens 176
MOVING MESRES.....oeiviieeiieieiitecteeteete st et ee e sstesste e st e s eesstessssesseesseesssessssesssesnsesssessseesneanns 177
(070) 07510 2 11 0) Fo IR 178
FEXETTUISION +eevvvreenrreerrunneeeeeeeennneeeseeeessssessseesssssessssessesnssssssesssssssssssssssnssnsssssssssssssssssssnnsesssssssnnnnssses 179
BOUTIAATIES 1vvvvvreeeeiiieiiieeeireeeeee et eeeesersreeeeeeeseeesssssssseeteessssssssssssseeasssssssssssssssssssesesssssssssssnsnns 180
POINES ... itiiciieceieeeete e cte et e ettt e e cteeeeste e e tre e e ebee e bee e saae e saeeessaeesssaeasseeansaseasseeasseeenseeenssaeanns 181
Boundary Pathis........coceveeiriiiiieeeeeeeteeeetee ettt sttt s as 181
REZIOMS .. cuteitiiiteeteeteet ettt et et et e st e st s bt e st et e s b e s st e st esasessessseeseasnsasasans 183
Reassigning Regional Parameters...............ccceeereeeveeieeeseeeereeeeeseeeseesseeeseesseessecsseesssesseenns 184
Regions in One DIMENSION.............eeiieiuiieiiiiiieeieiiieeeceiteeeceeseeeeeessseeeeeessseeeessssseeeesssseseeses 184
Regions in Three DIMENSIONS............cccviiereiieieieeieeieeeeeeeeeeseeesseeeesseeessseesssseessssessseessnees 185
Regional Parameter Values i SD...........coovueivuiiiiuiiieieceieeceeeecreeeereeeenseeensneessneesnneesnnees 185
Limited Regions N 3Dc.ccccuiiiieeeieeeieeeiectecreeeteeeeeeeeeereeeseeeseeeseeeseeessessseessesseesssesssenns 186

Empty Layers N 3D.......ccuiiiiiiieeieeccieeeieeeceeeeceeeeteeeseeeeetaeessee e sesesssessssssesssseesssesensssennes 186

Vi FlexPDE 6
EXCIUAES. e ettt ettt tte et e e e eete e e tae e e bee e bae e saeeessaeesssaeessasesssaessssessaeenssnennes 187
FRATUTESuveieeeeeeieeecctettee e cecccctrtee e e e e e e e e e etteaaeeeeeesseseenssssaaaaaaessaseassnssssasaaaessesesnnnssssens 187
INOAE POINES .. eeeeiiieeiieeeieeeceeeeiteeeeteeeceeesireeeetreeeeseeesseeeeseeeessasessssesssseeessaesssssessseenssesnnsseenn 187
Ordering REZIONS.....cccueeeerierieriertenieiesreetestestestessteeessestessesueesessesnsessesneessessesnsesseseessenns 188
NUMDETING REZIOMNS ...ttt ettt et et se s te st esee et e e s seseenes 188
Fillets and BeVELS........ceccieieiieeeieeeieeecciee e eeeteeectte e teeesreesesee e seesssaesssaesensasssasesnsaeennsens 189
Boundary COnitions.......c.ceceeirrierirrienerierentesieneereeseetesresteeesseesee st seessesseessesseeneessens 189
Syntax of Boundary Condition Statements..............cccoevvueeeiiiinreeiiiiiereeeesieeeecesneeeeesssneeesenns 190
Point Boundary COnditions.............ccceeeruieieieeeeneeenrieecnereeneeeesseeenseeeesseeessseeessuseessssesssnesnses 190
Boundary conditions in 1D,........c...ceveeeerieeenieeenieeeesieeeeieeenreeeesseeeesseeesseeeessseeessssesssssesasesnns 191
Boundary Conditions in 3D..........c.ccueeeereereeieierinrenresreseerenseeessersessesessessessesessessessessessessens 191
JUMP BOUNAATIES........ccoiiiiiiieeeieeceieeciee e eenieeeerteeeeaeeessaeeeseeensseeessssessesenssseessssesssneenses 192
Periodic BOUNATIES,.........cccceeeueeerireenieeeeieeenieeeenteeeeseeeeseeeenseeeeseeessseesnsssesssssesssesenssseensene 193
Complex and Vector Boundary Conditions...............coovvveeeiiiereieiiiieeeeieiieeeeeenneeeesssneeeeenns 194
B 0 01 A PP P OO PUUPR P PUPPRN 194
RESOIVE ettt ettt ettt ee e e eeetee e e e e saee e e e saeeeeesssaseesesssaaaeesssasaesassasaesnsssnseeenssaneennssenes 195
THITIE eevvveeeeeenreeeeeeiteeeeeeitteeeeeesaeeeeeesssaeeeesssaseesassaseeeasssaeesassssaeessssssesassaseesnssssseessssssseenssssneennnsns 196
TMIONTTOTS ATIA PLOTS teetetettetttueeneeeeeeeeeeeeeeeeeeeeeeeeeeeeseessssssssssssssesssssesssesssssssnnnssnnnnnnnnnnsnsssnnssssees 197
Graphics Display and Data Export Specifications........cccceeevvereeveerersienenseenennenseeneeseennens 197
Graphic Display MOIfIETS.....cccueeerrierienirrienenienientesieneerteniestessessessessesssessesssessessasssessens 200
Controlling the Plot DOMAIN.cccoceevierirriereniereniereeeeetese sttt ettt eee s ee s eeessesaes 206
L 2E] 010 £ TSP PTOPR 208
The ERROR VALIADIE......coooiiiiiiieieeecieeceteeeieeeeieecetteecesereeseeesssseessssessasesssesessssessssenssees 209
WINAOW THlIIE ..ottt ettt ettt ettt see st e st e st s e se s st esse st eeesaenn 209
Monitors in Steady State ProODIEMS.......ccceeverriirieriernienenitiniertenieneeniesesseesseseessesesssessenns 209
Monitors and Plots in Time Dependent Problems...........coceeveecerernienenseecennensenneeseenenns 209
HaATACOPY . veeueeeeeeteieniteteceete ettt ettt st et st et et s et e sae st e s st et e be st e aesae et e seeneesesaeens 210
GTapPRiCS EXPOTL.c.uciiiiriirienierienieniesienentesiestesseseessessesssessessssssessesssessessessessesssessasssessassaens 210
EXAINPIES ...verueeteeieiertteteeeete ettt ettt ettt st be st sttt be st e b e et e b e sbe et e seeaeens 210
HISTOTIES 1 oeeeveenneeeeeitnnneeereeeerueeseeeteesseesssesessssesssessssnsssssssssssssssssssssssssnssssssssnsnnsssssssssssssssssssnnnnnss 211
D5 (o SO TP 212
4 Batch PrOCESSINE - ovvveeciiiiiiiiiin s 212
Part IV Electromagnetic Applications 214
1 IIUETOQUICTION +ovvvveeeervvreeerrsrreeeessrsueersssrseeessssueesssssseessssssseessssssaeesssssssesssssssaessssssssssssssssesessssasessssnnns 214
Finite Element MEthOdS vttt eeetteeeeeeteeeeesesveeeeeeseaeeseessesesssssesesssssssseenns 214
PIINCIPLES wvovrvriririiiiiii e 214
Boundary COnditions ... 215
Integration by Parts and Natural Boundary Conditionsccececeueeeueieuerneueieecsnienennns 216
Adaptive Mesh RefINementccceueueueueiiiiiiiiii e 217
Time Integration ... 217
10010101 O 218

Table of Contents VIl

PartV

O O3 O kA WO N R

O T
A W N ~ O

Part VI

Electrostatic FIeldS I 2D cvecveeieeieeeeeeereeteeeeeeeeecreeeteeeteeereesseeeseessseesaesssessseesseesseessennes 219
Electrostatics 1N 3D ..ot 223
Capacitance per Unit Length in 2D GEOMELtry ..cceeveveuereieeieiiiicicee, 225
MaAGNEtOSTATICS - vevvereeiiiiiii s 230
A Magnet Coil in 2D Cylindrical Coordinatescceeuveeuereirisineeieiiescieseees 231
Nonlinear Permeability in 2D ..ot 234
DiIVETrZENnCe FOTIN c.cucveviieiieieiiiciet bbb s 238
Boundary CONAitiONS . .ceeueeeuereieiiiieteiiiceiee ettt 239
Magnetic Materials in 3D ..ot e 239
Waveguides .. 245
Homogeneous Waveguides -ccoeeverereieieieieieinienieiness s 246

TE QDA TIM MOAES --veevvereereriesrieiesieseesteseestesseesessasssessesssessessessssssesssessessssssassssssessesssessasssens 247
Non-Homogeneous WavegUidescoeeveueueiereieieieieieieiceieicie e 251
Boundary CONditions ...o.ceeeeuereeieiiiceieis s 252
MALErial INTETTACES -veoverreerrereriinititenieetertestetese st este st esses e etessesssessasssessessesssessesssensesssensenses 253
RETEIEIICES -+eeevveeeveeraeereteeete ettt ettt sttt s et st e st e s e st e s e bt e s see s st e s enneesseesenseesanees 257
Technical Notes 260
Natural Boundary CONLATTIONS -+veevveereveresereersmreerarreessrserssseesssseesssseessseesssseessssasssssesssseessssaessnses 260
SOIVING NONINEAT PTODIEINS +:rrevevesssssrsessessnns 261
Eigenva]ues and Modal Ana]ysis ... 263
AVOLA DISCONTINIUITIES! -+eevveerverrrersrersreerrrersersreesruesssesssessseesssessssssessssesssesssesssessssssssasssasssessssesses 263
Importing DIXTF FILES «eeeveeeerveererreererueessruersieeseseeessteessseesesseessssesssseessssessssesssseessssesssssessssesssseeses 265
Extrusions in D e 265
App]ications in Electromagnetics .. 270
Smoothing Operators T1L PDIE'S ceeecveerreeetenruerniessrtestesssesssesssesssesssesssesssessssesssesssessssssssesssessses 277
3D MESh GENETALION +-evrevrereererrememeineieitiniieiciei st 279
Interpreting EXTOT ESTIINIATES «+-veeecvveeeveerereeearruersruererueessueessseeseeeesseesssseesseesssseessssasssseessssees 280
Coordinate Scaling .. 282
Making TVLOVIES --veeeeveeeerveersnreeraruesssseesssseessseesssseessssesssseeseseessnsesssseesessesssssessssessonsesssseessssasssseessssees 284
Converting from Version 4 t0 VEISION 5 - et 284
Converting from Version 5 t0 VEISION 6 ittt 285
Sample Problems 288
APPLICATIONS ovvvvressesseussissussissmussissinsiisssusissiississsssissississississessisstsssssisssississessstssssssssssssssssasssss 288
CHEIMISITY vveveieieieieiieet s 288
CREIMIDUITL. ..ttt ettt et ettt e s e e e e e e e ene 288

TNEIHIIZ ..ottt ettt st et e sa e et esee st et e sat et e besat e b e s atease st ent e st entessesstesesseeneessanns 2090

Vil

FlexPDE 6
Tz o1 0 o WO USRSt 201
1670) 0110 0) KOS SRPRRRt 203
CONTTOL_STEAAY ...eeuveeiiieiiieieeieetet ettt et e e sre e ste et e s e e e see e ae e st esaessbeesseasssasssassseanses 293
CONEIOL_TTANSIENT. .ccvviiiiiiieeiieeeiieeeeeeere et eeteeeeteeeeteeeeaeeesseeessseesssseeesesesssasensssessssennsees 204
ElECITICILY vvverereeeiettiet e 205
GA_ CAPACITOT e ievieeieeieicie ettt ettt et e s e s ste s ste e s e e s e e s saessaeesae e st esssesssaesseenseasssesseesseenses 295
3d__CAPACITOT_CHECK...cutiiiieiieeieeieeeccteetee ettt et e e ae s ae e ae e e e st e s sae e aeessaassnas 206
BA_QICLECETIC. veeeuvvreereeeeieeeeeectee ettt cerreeeteeeeteeeeteeeeteeeesseeessesessseeensssessssessseessssessssenssneen 298
CAPACITATICE. c.vveeuverreeeiieeieeiteestteeteete et esttesteesse s teessaesssesssaesseassaasssassseesseesssesssasssenseensaessses 299
QIELECITIC . vvveeveeeeree et cette et eetteeerte e e re e e teeeeteeesseeeessaeeessressasessssessssesnsssenssssenssnessssennsees 300
FIEIAMIAP ..ottt sttt sttt st sb st b e s e nesas 300
Plate__CAPACITOT....c.ueeieteriieteeiteteee ettt ettt st et s st e s bt et e besaeesbe s st eeessesaeessesaeensessenn 301
SPACE_CHATEE...uveeviererieiienieetesiertesteseetessestessesseessessesssessasssessassesssensesssensesssessessesssensassaens 302
TIUIAS +eeeerreeereeeiieeecte et e e te e ctteee e e e teeeeteeeebee e tee e e saeesssae e ssseessasasssaeanssseansasansseessssennseeensssennes 303
1d_UIETIAN. SHOCK ... utiiiieeiie ettt e e e e br e e e e e earr e e e s nnnaee s 303
1d_1agrangian_ ShOCK........ccecueeieriiiriiinierieeseestee ettt e ae e et esseessae e ae e e e s eeeseaeas 304
20 CUIETIANL. SNOCK . eteteeeteeeeeieeeeeeeeettte ettt ettt ettt eeeeeessssaeaaaeeesessssssssssenssaesesssssssssnes 305
2d_piston_MOVINGMESHcccueiiriiieieeeeeeeeee et 306
Lo Ta B 6 10)14 o Yo - S USSRt 308
3A_VECEOT_TlOWDOXc.ccuviiitiiietiieetieete ettt et cete e e treeesteeessteeesseseesseesssseesesesssaeens 309
P21 (01 E USSR 311
DLACK 001ttt ettt ettt et e e et e e e e e e s aaabaeeeeeessese s aaaaaeeaeesseesssnanaaateeeesssennnnns 312
DUOYANTHINIEeeveieteeieeieecteeeteete ettt ettt e st e st e st e et e e te e e e e s te e sesssaesssesnsasssesseennsasnsenn 313
DUOYANT.....eieeieeieecteeteeeet ettt ettt st e st e e ae e st e e st e s ae s seessaassaesssasseesssesssassseennes 315
CRATIIIEL ...ttt cete e ce e e abe e e taeeebeeeesseeessssesssreesssseessssesnresessseenssnesnns 317
CONtAMINANT_TTANSPOT L. veeuieiteeeieieeeeiteseetesteeeestesteeeestee e essesseessessesseessessasssessesssessassannsen 318
coupled_CONtaAMINANT....c.cicvirrieireicieeteeie ettt esre et eseesstessreeseesseesssessseesssesnsessasnne 319
TLOWSLAD ...ttt ettt erte e cete e e re e este e e abeeeesesesabaeeessseesasesnsasenssseenssresnsasennres 321
ZEOTIOW .ttt ettt et e st et st e be st be s be st et e he e e e senais 322
Y PEIDOLIC. . evveeeteieritetereetesert ettt ste st et e st et e sae et e be st e sessassbesaessaessasssensassesssensanes 323
JOWVESC tteeetee ettt eeitteee et e e te e e streesbee e tteeeseeesssae e saeeesseeesssaeessaseassaeassaassaseassaeasssensseenssennes 324
SWITL ..ttt eetteeeiee et eecee et e e teeecteeee e e et eeebeeeesbee e seeeesaeeasbes e saeeansaeessaaeasaaeansaeeassaeaseeennraeans 325
VECTOT _SWITL.uvviiiitiieeiieieieeeeieeeetecetee e e eeteeeerteeeesteeessaseesesesssneesssseesesesssseenssseensssesssneennes 327
VISCOULS . vreeerreeereeeitreeeiseeeeseeesseeeeseesassseassssesssasesssseessessssseessssessssssssssssssesssssessssssenssessssseenns 329
GTOUNAWALET ettt e 330
POTOUS...c.uveveeuresseeseesseeeassasseessesseassessesssessesssessassesssessesssessanssessessssssessesssessenssessesssessensesssensens 330
TICRATAS c.vve ettt ettt et e eete e essae e ebeeeestseessasesasasenssseensssessssennsseenssnenn 331
2 L <) T 332
AT O ettt et e e e e e et e e e eeeeeeeee e e ettt e e e e e aan—nnnnn e nnnnnaaaaaaaeaseseeereeeereeeeeeeetatrraaaaaaes 333
3 (o N 1 (0 Y: A/ o) o L= USSR 333
A DIICKSHEIITIC. . vveeeirieeiee ettt cctee ettt eeteecebeeeeteeeebeeessseeeseeessneesssseesesessseensseeenns 333
Lo Ta B o) o (6] <SOSR 335
AXISYMMETTIC_ NEAT....eieuiieiieiieieteeee ettt ae e sae et e s e e s ae e beessaassnas 336

TLOAE__ZOME...eeieureeiiiieeiieeciee ettt ctee et e eeteeeesreeessaeeesseeessseesssessseenssseessssessesessseenssnesnns 337

Table of Contents IX

heat_DOUNAATY....cccuiiciiieiieieeeeectetee ettt et e e e see e e e st e s aeesae e seassaessae e anenns 338
TAQIATION__TIOW .uvriiitiiieiieeiiecetee ettt et e cere e eerteeebeeeebeeessaseessaeesssseensseesnsssesssesenssneen 340
TadiatiVe_DOUNAATY......ciciieiieieiieecteeteete ettt sttt e et e e stessre e s e e sstesssessseesseesssesnsasnne 341

L] e =3 USRS 341
JASEIS eveeeeeerieeeee ettt ettt eecteeeeeerreeeeeetraeeee e bae e e eeebaaeee e s ba s e e e s b e e e e e s bt aaeeesbaaeeeansaaaeeesrareeeannraees 343
JASET NEATIIOW....eeiuiiicteeceieeeceectee ettt ettt et e eesbe e eeaaeeebeseeste e e saseesaeennraeens 343

L) N (0 Y2 1= U SUR 344
magnetism ... 346
R Te I 03T Ta 0 1< 1 1 o) o WO OO 346
3d_VECTOT__IMAZGNEITON. .. ecoueirerrerieniertesiertesteseestestessessesssessessasssessesssessesssessasseessessasssensens 347

o1 Y s Vo) (A o) 1 HA U UUUU RO SUURRN 349
IMNAGNET__COTL.uiiuieiiiiiiiieieeteese ettt ettt e et e e te e st e st e saessaeesseessaessseesa e seesssassseesseesseesnees 350
permanent._MmMagnet.......ccccvvviiiiiiiiiiiiiiii e 352
SATUTATION .. veeeiireeetieeeteeeiteeecteeeetee e tteeeeteeeebeeeseeeesaeeesseseseseasseeesssseassssansasansssesnsseenseeans 352
vector_helmhoItZ COil.....ccviicciieeeeeee e e e rae e e e s 354
VECtOT_MAZNEL_COMLuiuiiieririieriiiienertenienterteneerteste et este st estesseessessesssessesssessasseensessesssensens 356
TTAISC weeeeeeeeernnrrrrreeeeeeeeeeeesssssssesseeeeeseaeesssssssssseeeeseesessssssssssssesssesssssssssssssessesssessssssssssssesesssensnsssssnnens 357
L6 1 10 1S3 (o) T USROSt 357
MINIMAL SUTTACE....ccciieeeieeeeeeee et ee e e e e e e e re e e nee e e sbe e e sbae s sae e nsaeennnas 358
SUITACE TT.uveiieiiiieeiieciie ettt ettt cete e e teeertbeeebeeeesbeeesaseesesessseeessseensesenssseens 359

ST SIS s eerrruieruierritieertneeeruneeeesneeereseeeessseesssneserssseesssssessssesesssssssssssesssnesesssnsssssssssssnnssssnnesrsnnsesssnens 360
Lo Ta B 031 1<) v: | USRS 360
ANISOTTOPIC_SITESS..ceuvevereereerteiteneerteeeestesresteseesstestes st eeessesatessessteeessesnsessesntessesseessessesnees 362
AXISYINIMIETTIC SETESS.ceuteeterrirerteeteerteertteeteeteesteesteeestesteesse e st esseesstessesseesstesssessessseesseens 364
0155 614 0§ RS UUURRRUUS PR 366
ClASTICIEY v everiresteeteriest ettt e et e st et e s te et e sbe st e basas et e saeesbense st e sesssenbassaentesseensansenn 367
FIXEA_ PIATE..ceiriieeiieieeieecteet ettt et s e st e st e st e s te s ae e ra e et e s be e ra e saeeteeaaann 370
TTEE_ PIATE.c.eeiieeieeceeeceeee ettt ettt ettt s ae e e et e s e e et e s ae e st e s e e s ae e raennes 371
HATTNIONIC ...vve ettt ettt eeteeeestaeeeaeeeeseseessasessseeessseessasessesesssseenssnesnn 373
PTESTUDE. ...ttt ettt et te et e st e s e e et e e bt e s sa e s be e aeesseesseasssaassaessesssassseanses 375

1153 015310 s OSSR PRURUURROE 376
VIDTALE. .. vvveeetreeeiieeeiee ettt ette et e e teeeetreeebeeeeseeeeseeesssseebeseessssesssresasssessseenssressaeennsseenssne s 378

D USAZE cevererrerrereere s 380
2d_INTEZTALS wervvvreieieiiiii s 380
55 11 L USRS 381
FIEHWEIZIT e s 382
TUNCHION. dEfINITION -teoverrerreerririiientitieeteeeterest ettt sre sttt eesse st s sae s e s saesnene 382
LN 0 1<) WU TSR SRPRRRRE 383
TUIMIP ettt 384
POlAT_COOTAINATES 1vveveveverereieieieieieietetct e 384
) T 1 OO 385

FlexPDE 6

] 02 L6110 0 0 I OO 387
] 02 100 3OO 388
SPIINE_DOUNAATY «rvvvrereririiiiniiiitt bbb 389
Staged__GEOMELTY v viiiiiii 389
SEAZES everriiiiiiiiiii s 390
SEAZE_ VS vttt s s s 301
StANAATA. TUNCTIONLS +-eeverreeeerrentenertesenterteste et este st e ste st et esbe st e te st eatessesatessesstensesseensessesneens 391
SUIITL +evveereerreersvessseeeseessseeseessesasseessesssesseesssenssssssasssesassessssssssesssesssesssesssessssesssenssessseesessssesssesssens 392
SWAZE_ PULSE vveveretetetetetetetteett e 393
SWAZE_TEST weeriiiiiiiiiiiiiiiitinitt ettt s 393
1721 010 1 121 (< PO USSR 394
HINEEGTAL oveveveeeieieeee et 395
WO NISTOTIES eveeverntiiiritiieninteitrteteteterit ettt sttt sttt sae st bt saene st e ae s e ssaesneen 396
UINIE TUNCLIOMS «verveerreeeiieniiiterentee ettt sttt st sre st s st e sae st saessessaesnessaesaesneene 397
VECLOT _ TUTICTIONLS veevverreenterreritertenteriestesteseetesttetessesstessesseeeessesnsessesntensesstensessessesseseessesneens 397
11) LU 398
1A CYINAET ... eiieiieeceeceeeece ettt sttt te s sae s st e s e e sae s sa e seesseessaessaeesseenseesneannnas 398
1d__cylinder TranSIeNT......cccoeeciereritenienerteneeitesieseesteseetessessessesseessessesssessesseessessasssessanes 399
3 L B0 1 (o : L fl 7o) s < USROS 400
5 L B F=1 o TSROSO 400
1A SPRETE ..ttt ettt ettt et e et s st et e e et e st et e saa e s e be s st e bassaenes 401
3D AOIMIAIIS «veririiiriiii s 401
2d_sphere_in_ CYINAET......ccvieiieieeieiiteeteeeete ettt et stesstessre s saestesseessaesseans 401
3A_DOX_ AN SPRETE.....uiiiieiiiiiecteeete ettt ettt e st e e s s st s ae s sa et e s eesaaenns 402
BA_COCKEAIL...eeevvreeieeeeiiecieectte ettt et cerree e areeeetaeeebeeeesbseessasesssaeesssseessseesnsssesnsesensseenn 403
GO CYISPEC ettt ettt ettt ettt st et s e st e s e s ae e s e e e e e e sae e st e saeesseeese e raennes 404
R e B 1V oYY} U H OSSOSO SRR 405
3d_ellipsoid_Shell.....cc.coiiriiniiiieienieieneeteeet ettt ettt et et s st sae st e b e s e e sbesaa s 405
30 EXITUSION__SPEC..cuveireieeirierteriteeeeesteestesstessseesseeseesssesssessseasseesssesssassssesseesssesssesssasnes 406
BATIIET ettt ee e et e te e eear e e ba e eeba e e sbaeebaeeeba e e raresraeeenraeenneee 407
3A_heliX_JaYered......c.ceeuiieieeiieiiicieeteeieece ettt sttt ae e s e s e e ae e e e e s ee e aaens 408
3d_heliX_ WIaPPEQ.....ccueouieieeieieeeteceeeeeee ettt sttt ettt e s 410
GA_INEEGTALS. ..eveeieiiriiriereet et etese et e et e s e et e te st et e ste et e s ae st et e s st ebassa et e saesraenaeeseenee 412
Lo Ta B (<) s TS SRR 413
3A_lIMItEA_TEZIOM..ccuiieiiicieicieeieete ettt ettt e st e s ae s ae e aeeseessaessaeesanessnesssasssaannes 414
GA_PINCROUL ...ttt ettt s aeste et e s b st e sba s s e sbesaa e banaaen 415
Lo Te B o) P23 ts] oY RO 416
GA_PYTAMIA..c.eeeiiriiiierieneeiereet ettt et e se et e ste st e tesseebesaes e essasssensessasssensasssensessssnsansens 417
L6) s 1<) | DTS UURO R SRRRR 418
Lo Ta B s 1<) USROSt 419
GA_SPRETE ettt ettt et sttt et s ae et et e s a e et e e sa et e sbesaaenaeeaeenee 421

Table of Contents Xl

GA__SPRETESPEC ..ccutieiiiiieeieeieerteeteetes e e st es e estessseesseessaesssessse e saesssasssassseasseasssassseessennes 422
GA_SPOOL.cc ettt ettt ettt et s et e b st e st e b e st e b e s se e besaa et e beeatenbassaenee 423
3A_TherMOCOUPIE.......eeeieeiieciteeieeteee ettt te e te et e e e s ae s ae e ae et e s sessaeesseasseassnas 424
GAEOZEL ettt sttt e a et b e st ae s aee 425

BA 0T US oeeeiveeeeieeceieectee et eeteeceteeeertreeeteeeeseeeeseseesssesbeseesssessssessssessssensssessssensseenssnenn 427

Lo Ta B 1) 8 E T 111 oS USRS 427

Lo o B 1 1] SO U 429

BA V0L eiiieiieieiieceieccee ettt ceteeeeteeeetaeeesbeeeesbeeeesbseesbeseestseeesase e besenrbaeesaseenraeennraeens 431
TEZIONA]__SUTTACES....cccviieeieeieeieeieecteet ettt et et s e e sae s be e st e s aeesbe e seasssassaesssnanses 432
TADUIAT_SUTTACES ...cviiuteieeiiientrtereet ettt et see s e et e st st e sba st e sae s s esbesssensassasssensanns 433
TWO__SPRIETES. ..ceutiieeieiieeieete ettt st e et e st e s ste s sae s st e st e s saessaeesseesstasssesseeseasssesssesnsaenses 434
EWOZ_QITECL.....eeeuiecieceie ettt et et ettt e e ete e e e e e e e teeeseeeseeesseesbeesseessessseesseesaessenssennns 434
EWOZ_EXPOTT. ... ecuveeteeteeteetestessesseseetesseesesseessesseessessasssassassesssessasssasesssessassenssessensensanneen 435
EWOZ_IIMIPOTT......c.uiiiieicieieteeeteeiteste st eeeestessaessae e e esaessseesssesseesssesssesseesseesssessssesseenseensees 436
EWOZ_PIANAT.......ccueeciiitieieceeeete st etes et et e s e e se et e s se e e e sesss e sesseessessesssasesssessesssensensennes 438
EWO_SPRIETESuiiiiiciecteeeeecte ettt e eeeteeete e teeeteeeteeeseeesseesseesseeseessseesseesseesaessenssennnes 439
accuracy ... 440
§{0) XcA /<) U USRS 440
GAUSTA e euveeureeieeienierterieeeestestesteste et e testeesesseessessesssessesseessessesssensesssensesseensensasssensesssensesseenes 441
CAUSZ2W e evieiieeieierieeteeite et estteeteetesste e st e et e e se e se e s st esssasssa e seessaaessaesa e sa e stessanse e seenraasnsas 442
ZAUSTA e evieiieeieicteeteetee st et e ettt eteeste e st e st e e ae e be e s st e s e e e s be e se e se e aa e s e e sa e st eessaeae e saenraanntas 442

L3 18 <3 [« IO T U U U USSR 443
SINE2A . e eieiieieteeteee ettt et e e et e st e et e et e st e st e et e et e e be e bt e e st e et e e te e bt essaeessasaraan 444
312132 T BT PRSPPI 445
ATTAYSHIMALTICES 1vevevevetereieininieieieieietete et 446
ATTAYS. e eeuveeeueereueeraseesastesessteeastesaseesesstesanseesaseesestesenseesaseesestesanseesaseesenseesansessaseesasseesasesss 446
ATTAY_DOUNAATY ...cccvieieierieeieeiteriteeeeeetee e esteesteesseesatesssessseesstesssessessssasseesseesssessssesseesseanns 446
TTIATTICES 1. veevreeurerrerereeeteetessteesseeetessesssessseasseeestessseassaesssesasessseesseesssesssessseasseesssessseesseenseenns 447
MALTIX_ DOUNAATY...c.viruiiiirieriiiertctereet ettt st e ste st e ste s e s ssesse st essesssessessesssensassaens 448
COMPIEX_VATIADIES w-vevevviiieieieieieietetet e 449
COMPIEXHHINE ...c.ciuiiiiiiiic bbb 449
COMIPLEX_ BIMW2T..eiuieiiiieiieeieeiieesteeeeteesteesteesseesstesssesssessseesssesssesssessseasssesssesssessseesseesssesses 449
COMPIEX_ VATIADIES. .. eiuveuiriiniirierientetene et et st et e s e st e ste st essessa e sesbesssessasssensassesnsansens 450

L3N0 L 0Tt e L =Y) 0 =Y: | AU 450
CONISTTAINIES +eevveeerreeeireeriteisiteeesteeeseesesteeesraeeebeessseeessaeeesseessssaessssssesseessssaessssasesseesssseessseesssees 451
Lo Ta B eT0) o 11 0 =1 1 1 OO 451
3A_SUIT CONSITAINT.....ueitieeieeiecieece ettt et et eeteeete e st e st e e te e beeesaeestesnbeesaessaesnsesnseanes 453
boUNdary_ CONSITAINT....c.cueieiiieieeieeierct ettt ettt re e st e e tessbe s seesseesstessseessaenseanns 454
COMSITAINE ...uviiiiieicieeecteeete ettt e sre e s te e se e e s sta e s s taesssaaeesnessssnessssasssseessssaesnsseesnns 454
COOTdiNate_ SCAINE .veveveveverereieieieiiinieic e 455
SCALEA _Zu.uveeieeiieeieeieecte ettt ettt e e et e et e et e et e et e e ta e e ba e be e ba e sbaeste e aa e saensaaenseenreeraans 455
UNSCALEA_Zuveeeerieeiieeecieeeeiee ettt e e teeee st e et e e e taeesbe e e sba e s saeeessaeesssaessaseessasesssenseesnnns 456
diSCONtINUOUS_ VATIADIES - ueeveeeeeneeienieieteteteee ettt ettt 457
GA_COMEACT. .. vtieuteeieetiecteeteete et et e rte et e st e s teste s te e st e s aesse e seessaasssaessassseasssasssaesseensaennees 457

3d_CONEACT TEZIOM.c.uveeuieiiiiiieieetetese ettt sttt e e st et e st e ste s e st esbe s s esbassaessessesssensanaes 459

Xl

FlexPDE 6
contact_resistance_heating........cccceeeviiriiiriierieiieirteeeee et ee e see et e s e e reeas 460
Thermal CONTACT TESISEATICE. ..ciiiiieeeeeeeeeeeeeeeeeeeeeetteeeeeeeeeeeessraeeeeeeesseessssssssssseeesssssssnns 461
transient_contact_resistance_heating...........ccceceeverveiriiiniienieiceereeseeeee e see e 462

EIZENVAIUES -.vveveverereieieteteteteet s 463
Lo Ta B0 1 Ua 'y 11 o o WU 463
B PIATE ceeiieriieteeeeteree ettt sttt ettt s et s et esbe et e be e e et e s st e besaaenaan 464
APUIMNEAQ. .. .ottt et e e e e ee e e be e e be e s baeeebee e sseessaseessaeesssennseesnnns 465
16 38 Ba 1 s To) (=SOSR 466
FIIIEAGUIAE. ...eeuveeeeteeeeeieeeetere ettt ettt et be st et e s e st e s bt esbesaasssessasssensasssessansasnsansesssan 467
SHIFEZUIAC, ettt ettt ettt et e st et s et e s e st e be st et e sneeneessesntns 468
A2 1021 USRS 469
WAVEZUIAC .. vveveeurerieriesieneesteseestestesstestesseessessessessesssessassesssessesssensasssessessssssessesssensesssessasses 471
WAVEGUIAC20......eeeieeieiiieciteeteeieesteee e eeteeste e teesstestessessseasstasssaessessseasssasssessessseesssesssessenn 472
10000 0100 i BT o):q 01) i OO OO 473
R Te HD 03 ToTS] o T o> q 0 o) it FO OO SO PSRRI 473
3d_MESH_IIMPOTL..ciiiriiiieriiierierteseeteert ettt te st st s st e sae st esse s s esbasssensassssssansens 473
3A__POST_PIOCESSINEG .. .eeeurerreieriieierteieteeetesteestessstestesaesssessseesseessesssessseasseesssesssessseesseanns 474
GA_SUIT EXPOTL..eeutiiiiiiriiiiereeteseeteseet ettt te st et e s e st e ste st essasssesbassasssassasssensassesnsansens 475
o) 161 S 21 o LT USSR 476
1254 070} o FU TSR 477
EXPOTT_FOTINAL..c..iitiiiiierietereeteseet ettt et st e sbesae et e sbe et esba st ebesussssasseessensessssnsanses 477
EXPOTT_ NISTOTY eetiuieteeiieieerteeete ettt ettt et e st sbe st aesse et e bt s e esesaes 478
INESN__EXPOTT .utiiuiiiiiieieeieett ettt sttt e et e e te s ae e et e et e s stessseesseesstesssesseasssesnsessessseesneanns 479
IMESH_ IINPOTT . .eiitieiiiiiieitereet ettt sre st et e st et e sae st e besse et e ssa et essasssessesssensasssenes 480
POSE_PTOCESSIIIZ ..c.ueeveereeeenrertereentetesseestessesstetesseeeessesstesesstestessesatesesstesessesnsessesneessessens 481
SPHNELADIE.veriieieiieieteeeet ettt ettt e et s et e s be st e st e st et e sae et esbe et enbesseebensaesaens 482
172 o) (TSRS 482
1721 o) (< L S U 483
TADIE_EXPOT . cuuiiureiieiinieiterieeterte st ese et e ste st et e st et e ste st esbes st esae s e ebessa e bensesssensasstensassaennan 484
1721 0) (T 0111 7o) o SRR OO TSROSO 484
1020015315 G -4 010) ' SO USROS 485
TLANSTET TMPOTT..eiiuiiiieieiiriiieeetetese ettt sttt e s e st e sbe st et e ste st esbessnesbassasssensesssensanaes 485
INESH CONTTOL c-veveenteienieeeee ettt ettt sttt b e st ss e st esae s bt e eessesaens 487
BA_ CUIVATULE. ... eeecieeeeiieeeiee et e cee et e e tteeestee e tee e saeeeseeesssaessaseessasasssessaeesssessssseensseesnnes 487
boUNAAry__AENSITY .. .covieeeerieieieeietecen ettt ettt ettt et r e s seesrene 488
DOUNAAIY__SPACINIG....ceverreririiiiriitenienterieeeestesestesteseessestessessesssessessesssessasssessessasssensanns 488
140 01| AR USSR 489
IMNESH_ AENISILY . cuveeuiiieeiiiierieriesert ettt et s e et e st e st et e s e st et e saaesbessaessessessnenaesssenes 490
MESH_ SPACITIZ . ..eveeiiiieieeteeteteeteeeee ettt ettt s et e st et b e st sesse et e s se s e e sesaeenee 490
TESOLVE. .. veeeieeeeitieeeieeeeteeecteeeeiteeestteeeesaeessesessseessaseasseaessseesasesssasasssaeessasenssesasssenseesnsseennns 491
MNOVING_ IMESH «eveviriiiiiiiiiiiiii bbb 492
LA STTEECIX cvveeeveeeetee ettt ettt e ce it erbeeeeteeeeats e e beseesaeenssseesesesssaeessssessesesnsaeens 492
2d_Lagrangian_ShOCK.........ccuieiiriiriiiiriieteeieeieestt et sre sttt e saestessae e s e e saeesaessaaananens 493

2D INOVEPOINT....utieieiieietieeteeiieeiteesteeteesteestessteesseestesssesssessssesssesssessseasseesssesssesssesssaesseenns 494

Table of Contents Xl

PoTe I o Yo RS0 1 (o) o T o) (o) o U OO TSRS 495
2 SITEECHL Xevieiiiiiieiieeeeeeeeeee ettt ettt e e e e ettt eeeeesseessssssssateeeesssesssssssnsateasesssssnsssnnnnes 496
P22 B 10 (1 1o) 1 M o RPN 497
2d_VEIOCIEY_DIOD....ciiiiiiieieiececee ettt et st 498
3d_POSIHION_DIOD...c.uiiiiiiiieeieienieteneetenest ettt e e te st e sae s e et e s e et essessaessesssessassesnnan 499
3A_VEIOCIEY_DLOD...cieiiiiiitecececeet ettt ettt ae s e a e neas 501
0 Yo (< J TSRS 502
T A YT 1 oY (U 502
NONIIIOAE ...c.vieieeirieeieecete ettt eerreeeeteeceaeeesseeeebeeeesaseebesesssseessssessasesssasensssessnsennses 503
FSYcTeTe) o o M) e (<3l w1 o s (=TS 504
PETIOAICILY 1vveveveverereteteietetete et 504
A ANTIPETIOAIC . ueievteeieeieeeiieeieeteerte ettt et e e ste et e et e et e e te s teesseesssesssesseasssasssesssesseanseens 504
G XPETIOAIC. c.veiureverienierieriertertest et eee et et e st et esee et e s beetesbe s st esbessaesbassesnsessasssessesssensassasnes 505
3A__ZPETIOAIC ..ueevreeurerieicieeteete ettt eeteestesete e et eseeste s bees st esseesssesssaessaesssesssesssaesseessessseanns 507
ANTIPETIOAIC ..veieveieieeieie ettt sttt e s rte s ae e st e s e e s sae s se e see st esssassssesseessnasnss 507
AZIMULhAl_ PETIOAIC. c.vieiiiiriiitirierteiert ettt ettt sae et e ste st e sbessaesesbassnessasaas 508
PETIOAICHTIIIIE c.euveevieeiteeteeteeet ettt et e et e e ste e ste e et e et e s be s seessaesssesnsesseasssasssesssesseanseens 509
PETIOMAC. 1 euvteereieeieiertesteeterte st et e te st et e st e beste et e tesseesbassee b assasssensasssensessssnsansesssensesssensenses 510
TWO-WAY_PETIOAIC e vt eveerieeerieeiereetetesttetes ettt st e ste st et e be st esse st e ste s st etessesneessesaeessesaeenee 511
PLOTHIIIE oeeveerieii s 512
L2 Ta I o) (0 () 4 U OO SO SRR 512
PLOT_ON__BTI .eiiiiieiieieieeteeetc ettt ettt et st e sa e st e sb e st s st e be s e e be st e besaaenanaaenean 513
0] (o) A] OO OO OO SURRRRRR 514
PIANE O T uuiieieiiiieeieeieerieest et ee e e st s ett e s te s tessteestaessse s seesseesssasssesseesssasssasssasseesseesssanssennnes 515
regional_variables . ..ot 516
TeZIONAl_ VATIADIES. .. .eiuiiierieiirieiieeet ettt ste st et s e et e s e e tesbe st esbassaessessasssansans 516
sequenced_equations ... 517
TNENEGHTIIMIE. . eveereeveeienieetesert et et e st et e st et e sbe st e ae s e e bessessbessesssessesssessassasssensesssensasseans 517
THETIEQ ettt ettt ettt st e s et s bt st ettt s st et e s besat e b e s ae et e seentesseeaeens 518
SEOPHTESTATT «ovveiiiiiiiiiiii s 519
(SIS I B 54 010 o PR 519
TESEATE_IIMIPOTE ..ceutieieeiereiteeteesieete et te et et et e st e e et e bt e st e st e sssesseesstesssesasesseesseesnsasasens 520
VATIiADIE__ATTAYS wveveverererereteieieieieieieiete s 521
ATTAY_VATIADIES. .. eiicviieiiieieeie ettt ettt st e e e st e st e s sbe e se e s e e sstesssessseesseesnsesssasnns 521
VECLOT_ VATIADLES -veevtetiieetereeteertetecee ettt ettt st te s bt et s st essesae st e sse et e se st e saesmeenee 522
AL ¢ 0 w6 1 s LS USSR 522
VECEOT _LJOWVISCheeveeeiiieeeeetetteeee et e eeeeeeetteeeeeeeeesessseaaseeeesesssssssssssssaesesssssssssssssssssssssssssnsnnns 522
Lo 10 21w =1 o) (T USRS 523

Index 525

Part

Getting Started

FlexPDE 6 : Getting Started

1

1.1

1.2

Getting Started

This section presents an overview of how to install and interact with FlexPDE on your computer. It does
not address the issues of how to pose a partial differential equations problem in the scripting language of
FlexPDE. These issues are addressed in the sections User Guide/301and Problem Descriptor Reference/116),

Installation

The general principles of installation for FlexPDE are the same across all platforms: the set of installation
files must be extracted from the compressed distribution archive and placed in the system file hierarchy.
The details of how this is done vary with computer platform.

There are two media options for FlexPDE installation:

Installation from CDROM. Your documentation package should include printed Installation

instructions. An electronic version of these instructions will be found in the individual operating system
folders on the CDROM.

Installation from Internet download. Click the file name of the desired version, and store the

downloaded file at a convenient place in your file system. For more information, click the "Installation"
link next to the version download you have chosen.

Starting FlexPDE

Windows

The FlexPDE installation program will place a FlexPDE icon on your desktop. You can start FlexPDE
merely by double-clicking this icon. Alternatively, you can use the File Manager to navigate to the
folder where FlexPDE was installed, and then double-click on the FlexPDE executable.

The installation program will also create an association of the ".pde" extension with the installed
FlexPDE executable, so that FlexPDE can be started merely by double-clicking a script file in the file
manager.

Mac OSX

FlexPDE is installed in the "Applications | FlexPDE6" folder by default, but you can choose to install it
in any location you wish. Navigate to this folder and open the flexpde6 application.

The installation program will also create an association of the ".pde" extension with the installed
FlexPDE executable, so that FlexPDE can be opened merely by double-clicking a script file in the
Finder.

Linux

FlexPDE is installed in the directory you choose when extracting the archive. You can start FlexPDE
by typing a command line in a console window, or from the file manager by navigating to the
installation directory and opening the flexpde6 application.

Association of the ".pde" extension with flexpde6 can be made manually using the standard
procedures of the operating system. You can also place a FlexPDE icon on your desktop using the
"fpde6icon.png” file included in the installation files.

Getting Started : Starting FlexPDE 3

1.3

The Sign-On Screen

Whatever method you use to invoke FlexPDE, you will see a screen like this:

¥ FlexPDE Professional Yersion 6.00/¢32 3D Q@El
D Ele Conols View Stop Edt Hep Q@ E & @ # @ - FE2)

m FlexPDE 6.00
Professional Version

A Flexible Selution System for Partial Differential Equations
Win32 12:29:18 Sep 11 2008
© 1996-2008 PDE Solutions Inc
www.pdesolutions. com

The display banner reports "FlexPDE", the version number and date of creation of the running version of
FlexPDE.

Whenever a license has been acquired*, the display banner will show the class of the user's license (Student
or Professional). The window caption bar will also report the platform version and license level, with "1D",
"2D" or 3D", depending on the licensing level of the running program. Temporary licenses will display the

time remaining in the license.

The window presents a standard menu bar and a tool bar, most items of which at this point are disabled.

* Note: Software keys and dongle licenses are read at invocation of FlexPDE. Network licenses are not
read until a problem is run; at that time, a license of the required level, 1D, 2D or 3D will be requested from
the network.

FlexPDE Working Files

FlexPDE works with an assortment of files differing in the file extension. All have the structure <problem
name>.<extension>, where <problem name> is the unique identifier for the model being run. The meaning
of the most commonly used extensions are described below. Other file extensions can be created and used
in other circumstances as described later in the documentation.

Input
.PDE

FlexPDE reads a model description from a script file with the extension ".pde". This file is created by
the user and contains the full description of the model to be run. The name of this file establishes the

FlexPDE 6 : Getting Started

1.4

<problem name> used by the other files. This is an ordinary text file and can be opened with any text
editor. This file should not be modified by formatting editors like Word as they may insert illegal
characters.

Output

PG6

FlexPDE writes primary graphical output into a file with the extension ".pg6". This file can be viewed
later and used to print or export graphical data to various other formats. The format of this file is
unique to FlexPDE and cannot be read by other programs.

.LOG

FlexPDE writes a summary of the progress of each run into a file with the extension ".log". This file
contains information about time steps, error estimates, memory use and other data. This is an
ordinary text file and can be opened with any text editor.

.DBG
FlexPDE writes a more elaborate summary of each run into a file with the extension ".dbg". This file is

sometimes useful in determining errors or locating trouble spots in the domain. This is an ordinary
text file and can be opened with any text editor.

EIG

In eigenvalue problems, FlexPDE writes a summary of final system eigenvalues into a file with the
extension ".eig". This is an ordinary text file and can be opened with any text editor.

Note: By default Windows hides the file name extensions, relying on distinctive icons to indicate file type.
Windows can be configured to show file extensions and we encourage users to do this. FlexPDE has unique
icons for ".pde" and ".pg6" files, but not for the other files.

The DELETE Selector

DELETE (extension, ...) included in the SELECT [145) section will cause FlexPDE to delete the specified files
<problem name>.extension when the ".pde" file is closed. For example, DELETE (dbg, log) will delete the
associated ".dbg" and ".log" files.

The Main Menu Bar

¥ FlexPDE Professional Yersion 6.00AY32 3D

. File Cortols View Stop Edit Help

The items of the main menu present many of the conventional functions of graphical applications. The
availability and precise meaning of these menu items depends on the current state of processing of the
problem. We summarize the menu items here, and describe them in more detail in the following sections.

Getting Started : The Main Menu Bar 5

File
The "File" menu item allows you to begin operation by opening a problem descriptor file, importing a
DXEF file, or viewing previously stored graphical output from a FlexPDE run. It also allows you to save
your work or exit the application. These operations are performed using standard dialogs of the
computer operating system. (See "The File Menu"[6");

Controls
This menu contains an assortment of functions that may be performed during the generation and
running of a problem descriptor, such as running the script or switching between edit and plot modes.
(See "The Controls Menu"[7%)

View
When a stored FlexPDE graphics file has been opened, the View menu item will present a menu of
options for controlling the display of the stored images. (See "Viewing Saved Graphic Files"[197)

Stop
While a problem is being run, the Stop menu item will display a selection of termination strategies of

various levels of urgency. (See "The Stop Menu"| 8")

Edit
When a descriptor is being edited, this menu provides standard editing commands. (See "Editing
Descriptor Files"[107)

Help
The Help menu contains six items as shown below:

_‘i:) Help CtrleH

R eqister FlexPDE

Check far Update

Wieh Prowy Settings
About FlexPDE

Fead License Agreement

On Windows, the "Help" sub-item will initiate the help system.
On Mac and Linux, you must manually initiate your browser and direct it to "Help | Html |
Index.html" in the FlexPDE installation directory.

o The "Register FlexPDE" sub-item allows you to inspect or modify the FlexPDE license registration. (
See "Registering FlexPDE"| 21)

o The "Check for Update" sub-item will contact the PDE Solutions website and determine whether
later updates are available. Updates will not be automatically downloaded or installed. This check is
performed automatically on a random basis when you run FlexPDE (approximately 5% of the time.)
To bypass this auto check, manually modify the "flexpde6.ini" file with "[UPDATECHECK] 0". The
file can be found in the user's "flexpde6user" directory.

e The "Web Proxy Settings" sub-item allows you to set relevant information about your Proxy Server,
if you have one.

o The "About FlexPDE" sub-item redisplays the sign-on screen. Note that on Mac this item appears in
the FlexPDE "Application" menu.

o The "Read License Agreement" sub-item displays the End-User Licence Agreement.

Note: On Windows and Linux, the menu bar can be detached and moved to a different part of the screen.

FlexPDE 6 : Getting Started

1.4.1 The File Menu

The File Menu allows the creation of new files, opening existing files, saving and closing active problems,
importing DXF files and viewing saved graphics:

File | Controls Miew Stop Edit Help
[Mew Script Chrl4+n
2 OpenFile Chrl4+0
IE save seript Chrl+s
Save As... Ckrl+A
Close kel
Imnport...]
Wien File Ckrl+3hifE -+
Exit

The menu items have the following functions:

New Script
Use this menu item to create a new problem descriptor file (or "script"). FlexPDE will initialize the

descriptor with the most common section headings. In most cases, it will be more convenient to create
a new descriptor by editing an existing one which is close in function to the new problem.

Open File
This menu item can be used to open an existing descriptor file (either to modify it or to run the

problem), to open a stored graphics file for viewing, or to open a DXF file for import. A standard
Open_ File dialog will appear. Navigate to the folder which contains the descriptor you wish to open.
For example, navigating to the standard samples folder "Samples | Usage | 3D_domains" will display
the following screen:

Open @@
Look it [30_domairs = e ®EerE-
[E)two_spheres AL 3d_shell.pde
’J ‘kzd_sphere_\n_cyhnder‘pde -Q3d_sphere.pde
Recent B 3d box_in_sphere.pde L 3d_spherebox.pds
= A4 3d_cocktall. pde 4 3d_spherespec pde
Lﬁ B 3d_cylspec.pde £ 3d_spocl pde
Desktop B 3d_extrusion_spec.pde B(3d_toggle.pde
\ ‘k3d_ﬁllet‘pde -S&Sd_turus‘pde
< £(3d_helix_laveredpde A 3d_torus_tube.pde
Roatz ‘de_hehx_wrapped‘pde -s&3d_twist‘pde
. £ 3d_integrals. pde AL 3d_void.pde
:]/Lg ‘k3d_lenses.pde -Qregional_surfaces.pde
Harman &4 3d_limited_region.pde A tsbular_surfaces.pde
- &4 3d_pinchout.pde
.»} £(3d_planespec.pds
-
Spokane A4 3d_pyramid pde
File pame: [= Open
Fies of bope [5 criptsf” pde) B2 Eaneel

Graphics(*.pgt * pg5 *.pad.
DiF(™.def)
All Files("."]

(If your system is configured to hide file extensions, you will not see the ".pde" part of the filenames,
but you can still recognize the FlexPDE icon.)

The default display shows script files (.pde extension). You can select other file types using the
dropdown "Files of Type" list. (On Macintosh or Linux, the selection of alternate file types is slightly
different, but follows the customary methods for the operating system.)

Getting Started : The Main Menu Bar 7

Double-click on the file of your choice, or single-click and click Open. See the following section "Editing
Descriptor Files"[101 for the rest of the story.

A new tab will be displayed, showing the name of the selected problem file. You can switch between
tabs at will.

You can open as many descriptors as you wish, and any number of them can be running at the same
time.

Save Script
Use this menu item to save a descriptor which you have modified. The currently displayed file is saved

in place of the original file. This function is automatically activated when a problem is Run.

Save As
Use this menu item to save to a new file name a descriptor which you have modified. The original
source file will remain unchanged.

Close
Use this menu item to remove the currently displayed problem and disconnect from the associated files.

Import
Use this menu item to import descriptors from other formats. The only option available at this time is

"DXF", which will import a descriptor from AutoCad version R14. See the Technical Note "Importing
DXF Files" |26 for more information. (This function is the same as "Open File" with the DXF file type
selected.)

View
Use this menu item to open a file of saved graphical output from a FlexPDE problem which was run
and completed at an earlier time. A standard Open_ File dialog will appear. Navigate the folder
containing the desired ".pg6" file. Double-click on the file of your choice, or single-click and click
Open. See the following section "Viewing Saved Graphics Files"| 19" for more information. You may
View more than one saved problem, and you may open files for viewing while other descriptors are
open, but you should not open the same problem for simultaneous viewing and running, since file
access conflicts may occur. (This function is the same as "Open File" with the "Graphics" file type
selected.)

Exit
Click here to terminate your FlexPDE session. All open descriptors and Views will be closed. If
changes have been made and not saved, you will be prompted.

1.4.2 The Controls Menu

The Controls menu presents several optional functions for processing descriptors.

¥ FlexPDE Professional Yersion 60032 3D

Fil= | Controls | Yiew Stop Edit Help

[Ef 2d) B ComainReview Ctr+D

Z Bun Script Chrl4-R
Inthis - jan with an off

figure Bf ShowEdtor Corve faces are ins
ofthe Show Plots Chrl+L

8 FlexPDE 6 : Getting Started

FlexPDE has two different operating modes, Edit and Plot. When in edit mode, the text of the current
discriptor is displayed for editing. When in Plot mode, graphics are displayed, either the monitors and
plots being constructed as a problem runs, or the final state of plots when a run is completed.

Domain Review
This is a modified form of the "Run" item. When FlexPDE is in Edit mode, the Domain Review menu
item will begin processing the displayed problem descriptor, halting at various stages of the mesh
generation to display the current state of the mesh construction. This is an aid to constructing problem
domains. (See topic "Domain Review"| 12" below.)

Run
When FlexPDE is in Edit mode, the Run menu item will begin processing of the displayed problem
descriptor. Execution will proceed without interruption through the mesh generation, execution and
graphic display phases. (See topic "While the Problem Runs"[141below.)

Show Editor
When a problem is in Plot mode with graphics being displayed, the Show Editor menu item will enter
Edit mode and display the current problem text. (See topic "Editing Scripts"[10 below.) If the problem

is stopped or has not yet been run, the tab will show the [icon. Ifthe problem is running while the
editor is displayed, the & icon will display on the problem tab.

Show Plots
When a problem is in the Edit mode, the Show Plots menu item will switch to Plot mode and display the
current state of the problem graphics. (See topic "While the Problem Runs"| 14 below.)

1.4.3 The Stop Menu

When a problem is running, it is sometimes necessary to request an abnormal termination of the solution
process. This may be because the user has discovered an error in his problem setup and wishes to modify
it and restart, or because the solution is satisfactory for his needs and additional computation would be
unnecessary.

The Stop menu provides several ways to do this, with the most imperative controls at the top, descending
to less immediate terminations:

¥ FlexPDE Professional Yersion 6,020 32 3D

" File Controls Wiew | Stop | Edit Help @) &
£ 3d_void Skap Maw!

Skap Salver
3d_void Finish Iteration
Elansed Time 02 Finish Grid
Grid P
Modes 1325 ause
Cells 880 [w] Dump for Restart
Linknowns 13255
Memik 25907 P |
RS Errar 0.011495 Bt | —

The contents of this menu will depend on the type of problem that is being run. Below are the most
common.

Getting Started : The Main Menu Bar 9

Stop Now!
This is a panic stop that causes processing to be interrupted as soon as possible. No attempt is made to

complete processing or write output. You will be given a chance to change your mind:

& Halk 3d_woid?

If you click "No", the "Stop Now!" will be ignored.

Finish Iteration
At the conclusion of the current iteration phase, the processing will be completed as if convergence had
been achieved. Final plots will be written, and FlexPDE will halt in Plot mode.

Finish Grid
Processing will continue until convergence requirements have been met for the current mesh. No
additional adaptive mesh refinement will be attempted, and the problem will terminate as if final
convergence had been achieved. Final plots will be written, and FlexPDE will halt in Plot mode.

Finish Stage
In a "Staged"| 431 problem (q.v.), the current stage will be completed, including any necessary mesh

refinement. Final plots will be written for the current stage, but no more stages will be begun. FlexPDE
will halt in Plot mode.

Pause
FlexPDE will stop processing and go into an idle state waiting for a mouse click response to the
displayed dialog:

¥ 3d_wvoid

Fause : 3d_void

Continue E dit |

"Continue" will resume processing at the point where it was interrupted. "Edit" will terminate
processing as if "Stop Now!" had been clicked. This function can be used to temporarily free computer
resources for a more important task without terminating the FlexPDE run.

Dump for Restart
Selecting this checkbox will cause FlexPDE to save a TRANSFER |14 file after another entry in the Stop
menu is selected. See the example "Restart_Export.pde"[5t9. Note: TRANSFER files do not save the
state of HISTORY plots, so restarted problems will have fragmented Histories.

10 FlexPDE 6 : Getting Started

1.5 The Tool Bar

¥ FlexPDE Professional Yersion 6.00/7 32 3D
C Ele Contok View Stp Edt Heb D@ E & 87 @- @32

The buttons in the tool bar replicate some of the common entries in the various menus:

Icon Function from Menu
0 New Script File

= Open Script File

= Save Script File

& Print Script Edit

1) Domain Review Controls

=z Run Script Controls
€9 - Stop Now (select arrow for Stop Menu) Stop

& Show Editor Controls
Show Plots Controls

The tool bar icons also appear on the menu bar entries with corresponding function.

Note: The tool bar can be detached and moved to another part of the screen.

1.6 Editing Descriptor Files

A FlexPDE problem descriptor file is a complete description of the PDE modeling problem. It describes
the system of partial differential equations, the parameters and boundary conditions used in the solution,
the domain of the problem, and the graphical output to generate. See the section "User Guide/ 3" for a
tutorial on the use of FlexPDE problem descriptors. See the section "Problem Descriptor Reference/1161" for
a complete description of the format and content of the descriptor file.

You can open a descriptor file in either of two ways: 1) by running FlexPDE from the desktop icon or from
your file manager program, and then following the "File|Open" menu sequence; or 2) if an association of
FlexPDE with the ".pde" extension has been made, either automatically in Windows or manually in other
operating systems, you can double-click on the .pde file in your file manager. In either case, the descriptor
file will be opened, a new tab will be created, and an edit window will appear.

For example, suppose we follow the "Open" sequence to the "Samples | Misc | 3D_domains" folder and
select "3d_void.pde". The newly opened problem file will be recorded in a tab along the top of the window,
allowing it to be selected if a number of scripts are open simultaneously.

The Edit window appears as follows:

Getting Started

: Editing Descriptor Files

I FlexPDE Professional Version 6.00/W32 3D

D Fle Contols View Stop Edt Heh (OB H & & 2 @ - HE2)
Ead_vo\d ‘

title 30 WOID LAYER TEST'

coordinates
catesian3

select
erlim = 0.005

Variahles
u

definitions
k=101

h=0

#0=0.2 y0=-0.3
wl=1 y1=03

equations
L div(kegradiu)) + h=10

extrusionz=0,0.3,07,1

boundaries
Region 1
start(-1,-1)
value(u)=0 { Force U=0 on perimeter }
lineto {1,-1})
arci{center=-1,0)to (1,1)
lineta -1,1)
arcicenter=-3,0) to close

limited region 2 {void exists only on layer 2 }
£

>

€

11

This is a standard NOTEPAD-type editing window, showing the contents of the selected descriptor. You
can scroll and edit in the usual way. FlexPDE keywords are highlighted in red, comments in green, and

text strings in blue.

The "Edit" item in the main menu contains the editing functions:

¥ FlexPDE Professional Yersion 6.00AY32 3D

File Contrals “iew Stop | Edit | Help ==

& 3d_void | Undo
) Cuk
fitle 30 WOID LAYER TEST'
Copy
coordinates Paste
cartesiani Delete
Eind
select
ertlim = 0.0045 Fonk

Wariahlaco

The menu items have the conventional meanings, and the control key equivalents are shown.

The Find, Font and Print items have the following use:

Find

This item allows you to search the file for occurrences of a string. The search will find imbedded

patterns, not just full words.

Font

Crl+Z

ChrlH
CEFHHC
ChEY
Dl

Ctrl4+F

&b Prink Script Crl+P

This item allows you to select the display font for the editor. Your selection will be recorded and used

in subsequent FlexPDE sessions.

12 FlexPDE 6 : Getting Started

1.7

Print Script
Prints the descriptor file to a configured printer.

In addition to the main menu Edit item, you can right-click the text window to bring up the same editing
menu.

At any time, you can click "File | Save" or "File |Save_As..." in the main menu to save your work before
proceeding.

Now click "Domain Review" or "Run Script" in the Controls menu, and your problem will begin execution.
The file will be automatically saved in the currently open file, so if you wish to retain the unedited file, you
must use "Save_As" before "Run".

Note: The FlexPDE script editor is a "programming" editor, not a word processor. There are no
sophisticated facilities for text manipulation.

Domain Review

The "Domain Review" menu item is provided in the Controls menu as a way to validate your problem
domain before continuing with the analysis.

2D Problems

When you click "Domain Review", the descriptor file will be saved to disk, and the domain
construction phase will begin. FlexPDE will halt with a display of the domain boundaries specified in
the descriptor. If these are as you intended, click "Continue". If they are not correct, click "Edit", and
you will be returned to the edit phase to correct the domain definition. If you continue, the mesh
generation process will be activated, and FlexPDE will halt again to display the final mesh. Again, you
can continue or return to the editor.

3D Problems

The 3D domain review is more extensive. Echoing the mesh generation process used in FlexPDE, the
review will halt after each of the following stages:

¢ A domain plot showing the boundaries of each extrusion surface and layer in order from lower to
higher Z coordinate. The surface plots show the boundaries that exist in the surface. The layer plot
shows the boundaries that extend through the layer and therefore form material compartments. If at
any point you detect an error, you can click "Edit" to return to the editor and correct the error.

e After the display of individual surfaces and layers, you will be presented a composite view of all the
boundaries of the domain, which might look like this:

Getting Started : Domain Review 13

I FlexPDE Professional Version 6.00/W32 3D

DBl Cotols View Stop Edt Heh (0@ H & O0F @- BED
Z 3d_void

3d_void Hesh
Bapsed Time 005

Grd]

Nodes o

Cells o

Gnknouns

o] 7ar 17, 3d_void ? x|
RMS Emor 1

hax Emar 1

Domain

Domain

Features

NodesiCalls -

[

e [s]

log Convergence

log Eror

e Once the domain boundaries are correct, FlexPDE will proceed to the generation of the 2D finite

element mesh for each extrusion surface. These will be displayed in order from lower to upper
surfaces. You can return to "Edit" after any surface.

Once the surface meshes are correct, FlexPDE will proceed to the generation of the 3D finite element
mesh. Each subregion of the first layer will be displayed and meshed. When the layer is complete, the

full layer will be displayed. When all layers are complete, the full 3D mesh will be displayed. You can
return to "Edit" at any point.

A 3D "Domain Review" plot might look like this:

I FlexPDE Professional Version 6.00/W32 3D

DEle Conols View Stop Edt Heph Q@ EH & 77 @ - & B2
£ 3d_void

3d_void Mesh
Sased Time o LAYER 2 REGION 1
Hodes e el x|

ells |[%]
LUinkr B .
e = 17, 3d_void 4 M
RMS Emar 1

higx Emor i

L&YER 2 REGION 1

Bounding Shell
“wblume hiesh

L

Nodes¢Cells

(

Continue I [Edit]

log Convergence

lag Erar

Mesh

14 FlexPDE 6 : Getting Started

1.8 While the Problem Runs

Whether you click "Run" or proceed through the "Domain Review", once the problem begins running, the

icon on the problem tab will change from the edit icon (E) to the Run icon (). The screen will look
something like this:

¥ FlexPDE Professional Version 6,00/W32 30 CEX
£ Fle Cortrols View Stop Edt Help [& g r0- BEQ
& 3d_vaid

3d_void s Rl e

Bansed Time 1:01 W e

ngas 1891? ‘I’ il .‘ﬂﬁ' .‘%‘

The STATUS Panel

On the left is the "Status Panel”, which presents an active report of the state of the problem execution.
It contains a text based report, a progress bar for the current operation, several history plots
summarizing the activity, and a "Thumbnail" window of the current computational grid.

The history plots are new in version 6. They summarize the number of nodes/cells in the mesh, the
convergence of the current solver, the error estimates for the solution, and the current time step (in the
case of time dependent problems).

The format of the printed data will depend upon the kind of problem, but the common features will be:

The elapsed computer time charged to this problem.

The current regrid number.

The number of computation Nodes.

The number of Finite Element Cells.

The number of Unknowns (nodes times variables).

The amount of memory allocated for working storage (in KiloBytes).
The current estimate of RMS (root-mean-square) spatial error.

The current estimate of Maximum spatial error in any cell.

Other items which may appear are:

e The current problem time and timestep

Getting Started : While the Problem Runs 15

The stage number

The RMS Solution error for the most recent iteration
The iteration count

The convergence status of the current iteration

A report of the current activity

The PLOT Windows

On the right side of the screen are separate "Thumbnail" windows for each of the PLOTS or
MONITORS requested by the descriptor.

In steady-state problems, only MONITORS will be displayed during the run. They will be replaced by
PLOTS when the solution is complete.

In time-dependent problems, all MONITORS and PLOTS will be displayed simultaneously, and
updated as the sequencing specifications of the descriptor dictate.

PLOTS will be sent to the ".pg6" graphic record on disk for later recovery. MONITORS will not.

In eigenvalue problems, there will be one set of MONITORS or PLOTS for each requested mode. In
other respects, eigenvalue problems behave as steady-state problems.

A right-click in any "thumbnail" plot brings up a menu from which several options can be selected:

¥ FlexPDE Professional Yersion 6.00W32 3

¢ File Cortrols YWiew Stop Edit Help - [

@ 2d_void

JFod_wvoid :'l_
EnE'SSEd Time ‘:EE Maximize [
Hodes 23210
Eel}!:s Egﬁg . Reskare
NENQWNz -
rﬁfﬂngrgﬁ Dﬁgggg . Prink

r] .
hax Eror D005 . Export 4\
~HONE- Rokate

T F T T T 1

The menu items are:

Maximize
Causes the selected plot to be expanded to fill the display panel. You can also maximize a
thumbnail by double-clicking in the selected plot.

Restore
Causes a maximized plot to be returned to thumbnail size.

Print
Sends the window to the printer using a standard Print dialog.

16 FlexPDE 6 : Getting Started

Export
Invokes a dialog which allows the selection of a format for exporting the plot in standard format

to other processes. Currently, the options are BMP, EMF, EPS, PNG, PPG and XPG. For bitmap
formats (BMP, PNG, PPG and XPG) the dialog allows the selection of the drawing linewidth and
resolution of the bitmap, independent of the resolution of the screen. For vector formats (EMF,
EPS) no resolution is necessary (FlexPDE uses a fixed resolution of 5400x7200). EPS produces
an 8.5x11 inch landscape mode PostScript file suitable for printing.

Rotate
3D plots can be rotated in polar and azimuthal angle.

Plot Labeling

A typical CONTOUR plot might appear as follows:

3D VOID LAYER TEST 17:14:39 9/11/08
L L 1 1 1 FlexPDE 6.00

onz=05

max

IIH

OO0O00DO0O0O0O0O0O0DO0O0000 000 ——
oo —MMNLLE RN -DDODoDD
Somomadomomomomaho q oo o

0.5

-0.51

X

3d_void: Grid#s P2 Nodes=23210 Cells=15680 RMS Err= 0.0036
Integral= 0.949794

At the top of the display the "Title" field from the problem descriptor appears, with the time and date
of problem execution at the right corner, along with the version of FlexPDE which performed the
computation.

At the bottom of the page is a summary of the problem statistics, similar to that shown in the Status
Window:

The problem name

The number of gridding cycles performed so far

The polynomial order of the Finite-Element basis (p2 = quadratic, p3 = cubic)

The number of computation nodes

The number of computation cells

Getting Started : While the Problem Runs 17

e The estimated RMS value of the relative error in the variables

In staged problems, the stage number will be reported.

In eigenvalue problems, the mode number will be reported.

In time dependent problems, the current problem time and timestep will be reported.

By default, FlexPDE computes the integral under the displayed curve, and this value is reported as
"Integral".

Any requested REPORTS will appear in the bottom line.

A typical ELEVATION plot might appear as follows:

3D VOID LAYER TEST 17:14:39 9/11/08

FlexPDE 6.00
07 u
\ from (-0.8.,0,0.8)
’ to (1.25.0,0.8)

0.6

FR \
|

01

-08 -03 ol 03 0s 09 12 *
X

3d_void: Grid#6 P2 Nodes=23210 Cells=15680 RMS Err= 0.0036
Integral= 0.880787

Here all the labeling of the contour plot appears, as well as a thumbnail plot of the problem domain,
showing the position of the elevation in the figure. For boundary plots, the joints of the boundary are
numbered on the thumbnail. The numbers also appear along the baseline of the elevation plot for
positional reference.

Editing While Running

While the problem is running, you can return the display panel to the editor mode by clicking the Edit
Script tool () or the Show Editor item in the Controls menu. The Run icon (#) will continue to be
displayed in the problem tab as long as the problem is running. When the problem terminates, the

problem tab will again display the Edit icon (E).

You can return to the graphic display panel by clicking the Show Plots tool () or the Show Plots item in
the[# Controls menu.

18 FlexPDE 6 : Getting Started

1.9 When the Problem Finishes

When FlexPDE completes the solution of the current problem, it will leave the displays requested in the
PLOTS section of the descriptor displayed on the screen. The problem tab will display the Edit icon (E).

¥ FlexPDE Professional Yersion 6.00/AY32 30D
Eile Controls “iew Stop Edit Help D =EH & 0 7 6 - E\l?)
(& 3d_vaid |

3d_Wid :mll'll-l.'llll *IEOE-aO :DI"“I.'I-I' IEO-O
Hap=ed Time 1:26 tmrrtam B tmrreLm
Grid fi f ey T by
Nodes 23210 e = .
Cellz 15620 f ,
Unknowns 23210 ||
im0 GOTSG L . .’Ir I'|
RhdS Emor 0.0036 | . lll . i ||.
hiax Emor 0.0061 . 3
--DONE- d 1/ |
i J 2
a
A
B Cear? e TG mEn o B Caar A TG A e
MNodes/Cells
u u
L [[;-':-“:::
i BE =
log Conwergence @ E E 5
1 - L i - L i

- EHY [Y e -~ EHY [1Y £
))
sl Ciwdl F7 Homs. 70-NCak. -BENPYD bu LEKH win Cindl F7 Hom. 7T+ 0 Calle - BENPWD Fu LECH
b"l.'..l L :h.l e

At this point you have several options:

Edit or Save the Script

Click "Controls|Show Editor" (or the Ef Tool) to switch the display into Edit mode, allowing you to
change the problem and run again.
From Edit mode, you can click "Controls|Show Plots" (or the =l Tool) to redisplay the plots.

You can also click "File|Save" (or the = Tool) to save the file, "File|Save_As" to save with a new name,
or "File|Close" to close the problem.

Switch to Another Problem
Each currently open problem is represented by a named tab on the tab bar. You can switch back and
forth among open problems by selecting any tab.

Open a New File
Click "File|Open" (or the @ Tool) to open another problem script without closing the current problem.

Getting Started : Viewing Saved Graphic Files 19

1.10 Viewing Saved Graphic Files

Whenever a problem is run by FlexPDE 6, the graphical output selected by the PLOTS section of the
descriptor is written to a file with the extension ".pg6". These files can later be viewed by FlexPDE without
re-running the job. (FlexPDE 6 can also open output files from versions 4 and 5.) You can open these files
from the "File | View File" or the "View | View FIle" menu items on the main FlexPDE menu, or from the
"File | Open File" menu using suffix selection. A standard "Open_File" dialog will appear, from which you
may select from the available files on your system. Once a file is selected, the first block of plots will be
displayed.

On the left is a "Status" window, much like the one that appears during the run. Not all the runtime
information will appear here, but only those items necessary to identify the current group of plots.

In steady-state problems, all the PLOT windows will be displayed. If the problem is staged, then each stage
will appear in a separate group.

In time-dependent problems, each plot time group specified in the PLOTS section of the descriptor will
form a display group.

The Problem Tab shows the icon 2! to indicate that this is a "View" file, not a PDE problem.

You can use the "View" item in the main menu to control the viewing of these stored graphics:

¥ FlexPDE Professional Yersion 6.04A732 3D

o File Contrals | Wiew Stop Edit Hep O @2 E &

3d_woid Mek Chel+Shift+M

Back, Ckrl+3hift+6
3d_void Restart Chrl+Shift+R —
GRID Last Chrl+Shift-+L T
N2DES Select Ctrbshiftel |
S B Ilovie CErl+Shif -+

Expork Movie Crrl4+3hift+E

Frame Delay Ckrl+3hifk+m -
Skop Maovie Crrl+3hifE+5

Wiew File Chrl+Shif b+

Thumbnail Plot Displays

In the normal thumbnail display, all the plots of a group are displayed simultaneously. In this case, the
"View" menu items have the following meanings:

Next
Use this item to advance to the next group of plots in the file. If there are no more groups, a
message box will appear.

Back
Causes FlexPDE to back up and redisplay the previous group. If there are no earlier groups, a

20 FlexPDE 6 : Getting Started

message box will appear.

Restart
Returns to the beginning of the file and displays the first group.

Last
Scans to the end of the file and displays the last group.

Select
Displays a list of plot times that can be viewed. Double-clicking an entry views the selected plot
group.

Movie
This item is active only for time-dependent or staged problems. It will cause all groups to be
displayed sequentially, with a default delay of 500 milliseconds between groups (plus the file
reading time).

Frame Delay
Allows redefining of the delay time between movie frames.

Stop
During the display of a movie, you can use Stop to halt the display.

View File
Selects a new graphics file to be opened in a new tab.

Maximized Plot Windows

When a selected View plot is maximized, either by the right-click menu or by double-click, the behavior
of some of the View menu items is modified:

Next
Advances to the next instance of the currently maximized plot. If there are no more instances, a
message box will appear.

Back
Backs up and redisplays the previous instance of the currently maximized plot. If there are no
earlier instances, a message box will appear.

Movie
This item is active only for time-dependent or staged problems. It will cause all instances of the
current plot to be displayed sequentially, separated by the currently active Frame Delay time (plus
the file read time).

Export Movie
An export parameters dialog will appear, allowing you to select the file format and resolution. A

movie will then be displayed as with "Movie". Each frame of the movie will be exported to a file of
the selected type and resolution. The files will be numbered sequentially, and can be
subsequently imported into an animation program such as "Animation Shop" to create
animations.

1.11 Example Problems

The standard distribution of FlexPDE includes over one hundred example problems, showing the
application of FlexPDE to many areas of study. These problem scripts are installed by the standard
installation procedure, and are located in a tree structure headed by the "Samples"” folder in the installation
directory. Modifying a copy of an existing descriptor is frequently the most efficient way to start building a

Getting Started : Example Problems 21

descriptor for a new problem.

Also included in the distribution, in the "Backstrom_Books" folder, are many samples from books written
by Prof. Gunnar Backstrom showing the use of FlexPDE in an academic environment. See professor
Backstrom's website at http://learnbyprogramming.com/fields.htm.

Since the example problem scripts are installed in the same folder as the FlexPDE executable file, it may be
necessary to copy the sample files to another directory before running or modifying, to avoid file
permission problems in your environment.

1.12 Registering FlexPDE

The standard distribution of FlexPDE will run demonstration problems as provided by PDE Solutions Inc,
or view stored graphics files from FlexPDE runs without need for license registration. Any other use
requires a license, which may be purchased from PDE Solutions Inc in one of many forms.

Internet Key
The standard method of licensing FlexPDE Professional Version is by Internet activation. This mode
of licensing generates a text key that locks the execution of FlexPDE to a specific computer. Access to
the internet is required on a periodic basis to validate the key. The key can be released from one
machine and reactivated on another without difficulty. If you need to use a proxy server for internet
access, you can set this information on the "Help | Web Proxy Settings"[4" menu.

Dongle
On request, Professional configurations can be licensed by use of a portable hardware license key (or
dongle). You should receive this device in your FlexPDE distribution kit. The standard dongle for use
with FlexPDE 6 is a single-machine USB device. You may request a parallel port dongle or network
dongle at the time of your order.

In order for FlexPDE to find the dongle, you must

1) Run the appropriate dongle driver install program to load it into your system.

2) Install the dongle in an appropriate USB connector or hub.

3) Start FlexPDE and go to the "Help | Register FlexPDE" menu to inform FlexPDE that it is to look
for a dongle license. (See "The Register Dialog" | 227)

Network License
FlexPDE can be licensed over a network, in which case one selected machine in the network runs the
license manager service (with a network dongle attached), and client computers on the network can
request licenses to run FlexPDE on a first-come first-served basis up to the limit of the licensed
number of stations. To tell FlexPDE to search the network for a license server, go to the "Help |
Register FlexPDE" menu and select "Network Dongle" licensing (See "The Register Dialog"|227). A
network version of the dongle is required.

Software Key
On request, Professional configurations can be licensed in the form of a text key that locks the
execution of FlexPDE to a specific computer CPU. If you prefer a software license key, you must first
download and install the software and record the computer ID from the sign-on screen or "Help |
Register" screen. Include the computer ID on the license application form. Your software key will be
sent to you by Email. Copy this key to the FlexPDE installation directory (you may need administrator
privileges to do this).

22 FlexPDE 6 : Getting Started

1.12.1 The Register Dialog

To open the license registration dialog, click "Help" on the main menu bar, then click "Register". The
following dialog will appear:

¥ FlexPDE License Registration

M Computer ID: f220 e3f3 e10b 1c8b

Current License:
Metwork 128d8df0 FlesPDE B Pro - 1020030 - 3 MetUzers [2 2d)[1 3d]

Select the method pau want to uze to activate your license for FlexPDE.

O ACOUIRE INTERMET KEY:
Cottact s, pdesolutions.com o acquire an activation key for this cormputer.

RELEASE IMTERMET KEY"
() Contact v pdesolutions.com to release the key assigned to this computer
0 that it can be moved to another machine.

DOMGLE:
Use a local single-uzer USE Dongle.

WETw/ORK DONGLE:
@)

Use alicensze acquired dynamically from a local Metwork icense manager.

o SOFTWARE KEY:
Fead a license Key from a disk file

[Cancel | [Continue]

Computer ID

This text is the unique identification of your computer. It may be used to request a software key or
Evaluation license for FlexPDE Professional.

Current License

If your license has already been registered, this text will display the details of that registration. In the

case displayed,

o the license method is by network USB dongle;

o the dongle serial number is #128d8dfo;

o the network dongle has three total licenses - all three licenses can run 1D problems, two of the three
can run 2D problems, and only one can run 3D problems.

Select a License Method

This section allows you to choose the form of licensing you will use. You can select one of the four
options:

¢ Acquire Internet Key,

e Dongle,

e Network,

e Software Key.

Choose an option and click the "Continue" button.

Getting Started : Registering FlexPDE 23

¢ Release Internet Key can be used to move the license to another machine.

1.12.2 Internet Key Registration

Activation

Enter your serial number into text field and click "Contact Web Server". If successful, the license contents
will be displayed. If not, FlexPDE will report an error. Click "OK" to finish the registration. (If this
activation is performed in public places, you can choose to "Hide" the Serial Number.)

I FlexPDE Online License Activation

If you have received pour SERIAL MUMBER by email

Enter it here: YT Hide
[Sawe thiz number, you will need it in future transactiots)

and click. here: I Contact Web Server]

Licenze content:

FlexPDE E Pro - 1D

|F the license iz comrect, click OF.

Cancel] [aF.

Deactivation

Enter your serial number into the text field and click "Contact Web Server". If successful, FlexPDE will
release the license on the local machine. If not, it will report an error.

I FlexPDE Online License Release

If pou wizh to RELEASE the license key uzed by thiz computer

Enter pour SERIAL NUMBER here: ssssssnse Hide

[Cancel | [Contact Wweb Server

Mate: This aperation will make FlexsPDE UMLICEMNSED an this machine.

Initially, the license must be deactivated from the same machine that is currently activate. However, in an
attempt to make switching the license between two machines more convenient, FlexPDE will allow
deactivation of the license from either of the last two machines that have been successfully registered.

Notes :

A computer's identification is constructed in part from it's MAC address and the operating system's report
of a unique identifier for that installation. Sometimes the MAC address can change (usually on laptops
connecting to different networks or when connected by Wi-Fi instead of a wired connection). If this

24 FlexPDE 6 : Getting Started

happens after the machine is licensed, FlexPDE will issue an error telling the user that the license
authorizes a different computer. When that happens, the user can simply release and reacquire the license
in order to resolve the issue.

If you need to use a proxy server for internet access, you can set this information on the "Help | Web Proxy
Settings"[4" menu.

1.12.3 Dongle Registration

If your license is to be read from a locally attached dongle, click the "Dongle" button in the Register Dialog
then click "Continue". The following dialog will appear:

I FlexPDE License Dongle @El

If you have installed the dongle diver and ingerted the dongle, click here

Dongle #04abebea i Read Dongle

Licenze cantent:

FlexPDE 6 Pro - 1D/2D/3D

IF the dongle is active, click Register

[Cancel] [Register

|f you have a new key to uparade the dongle, enter it and click Upgrade

[Upagrade

The "Read Dongle" button

This button will read the contents of the dongle without installing it as the selected license method.
FlexPDE will search the USB and Parallel ports for an appropriate license dongle. If a dongle is found,
the ID number and the license contents are displayed. You must select the "Register” button to activate
the dongle as the license method.

If no dongle is found, or if the dongle driver has not been installed, the search will fail, and FlexPDE will
report an error.

License Content

This line displays the characteristics encoded in the license identified by the previous selections. In the
case displayed above, the license encodes a FlexPDE Professional license for 1D, 2D or 3D problems.

The "Register" button

Click "Register" to install the dongle as the active license method. Subsequently, every time you start
FlexPDE it will search the USB and Parallel ports for the dongle.

The "Cancel" button

Click "Cancel" to abort without changing the active license method.

Getting Started : Registering FlexPDE 25

Upgrading a Dongle

You can use the Register dialog to field-upgrade a dongle (including Network dongles). If you have
previously been issued a FlexPDE version 4, version 5 or version 6 dongle, and subsequently purchase
an upgrade, you will be sent a software key which encodes the upgrade. Dongles issued with FlexPDE
version 2 or version 3 cannot be upgraded to version 6. You will be sent a new version 6 dongle when
upgrading from these versions.

Type or paste your upgrade key in the field provided, and click "Upgrade". Your dongle will be updated
with the information encoded in the key. Note that the dongle upgrade facility will rewrite the dongle
only if the serial number of the dongle matches the serial number encoded in the upgrade key. Click
"Register” finish the upgrade.

1.12.4 Network Dongle Registration

If you select "Network", then "Continue", from the Registration Dialog, FlexPDE will search your network
for a running license manager, and return the status of that license.

Unlike local dongle registration, Network Dongle registration automatically installs the network dongle as
the active registration method. You will not be given the option of registering the dongle. This success or
failure of Network Dongle registration depends only on the presence or absence of a valid license facility on
the network. It does not examine the available licensed capabilities.

In the future, every time you start FlexPDE, it will expect to find a network license manager to grant
licenses. In fact, the request for a network license will not be made until you actually "Run" a problem. At
that time, a license of the appropriate class, 1D, 2D or 3D will be requested from the network. The
acquired license will be held until the current invocation of FlexPDE is terminated. In this way, networks
of FlexPDE users can get optimal use out of the mix of 1D, 2D and 3D licenses that have been purchased.

When you "Run" a problem with the network licensing method, if the license manager finds that all
available licenses are in use, you will be given the option of waiting for an available license or running in
demonstration mode.

License Manager Installation

In order to use the network dongle, one must first install a license manager service on the machine that
the dongle is physically connected to. The license manager installer must be downloaded from the
dongle vendor's website. A URL link to the download is provided along with the dongle driver on your
FlexPDE installation CD or from our website at www.pdesolutions.com/sdmenu6.html .

To set up the license manager :

1) Choose a computer on the local network that you want to be the "server". This machine will have the
dongle physically connected to it.

2) Install the dongle driver on the server.

3) Install the license manager as a "service" on the server.

4) Plug the network dongle into the server.

At this point, any machine on the local network should be able to run FlexPDE and find the network
dongle.

26 FlexPDE 6 : Getting Started

Modifying How FlexPDE Accesses The License Manager

Note: The search parameters for finding a running license manager can be controlled by editing the
"nethasp.ini" file in the FlexPDE installation folder. See comments in the file for a complete list and
explanation of the settings.

In order to access the license manager from outside the local network, the "nethasp.ini" file will have to
be modified. Under the appropriate protocol section (IPX, NETBIOS or TCPIP), enter the server name
or IP address (and/or port number). An example is shown here :

[NH_TCPIP]

NH_SERVER_ADDR = 12.123.456.789
NH_SERVER_NAME = Imserver
NH_PORT_NUMBER = 999

If experiencing frequent timeouts of FlexPDE communicating with the license manager, the timeout
length can be modified by changing the value of NH_SEND_RCV . This number is the number of
seconds that FlexPDE will wait for a response from the license manager before displaying a dialog
notifying the user that connection has been lost.

1.12.5 Software Key Registration
If your license is to be read from a software key file, click the "Manual" button in the Register Dialog then
click "Continue". The following dialog will appear:
¥ FlexPDE License Key @E|

If you hawe received pour LICEMSE KEY by email
Enter the path ta the file here:

C:\FlesPDE B\ lexpdebkey. tut

and click here: Walidate key]

Licenze content:

Unlicensed

I the license content iz corect, click Fegister

[Cancel] [Fegister]

Browse to the location of the software key file and select "Validate Key".

The "Validate Key" button

This button will read the contents of the license file without installing it as the selected license method.
FlexPDE will validate the license file entered and display the contents. You must select the "Register"
button to set this as the license method.

License Content

Getting Started : Registering FlexPDE 27

This line displays the characteristics encoded in the license identified by the previous selections. In the
case displayed above, there is no license file and FlexPDE is in Evaluation mode.

The "Register" button

Click "Register" to install this as the active license method. FlexPDE will copy this information into the
installation folder. In future, every time you start FlexPDE, it will look for the license key file in the
installation folder.

The "Cancel" button

Click "Cancel" to abort without changing the active license method.

Part

User Guide

30 FlexPDE 6 : User Guide

2 User Guide

This section introduces the reader gradually to the use of FlexPDE in the solution of systems of partial
differential equations.

We begin with a discussion of the basic character of FlexPDE. We then construct a simple model problem
and proceed to add features to the model.

The result is a description of the most common features of FlexPDE in what we hope is a meaningful and
understandable evolution that will allow users to very quickly become accustomed to the use of FlexPDE
and to use it in their own work.

No attempt is made in this manual to present a complete description of each command or circumstance
which can arise. Detailed descriptions of each command are presented in the Problem Descriptor
Reference /1161 section.

2.1 Overview

2.1.1 What Is FlexPDE?

FlexPDE is a "scripted finite element model builder and numerical solver".

By this we mean that from a script written by the user, FlexPDE performs the operations necessary to
turn a description of a partial differential equations system into a finite element model, solve the
system, and present graphical and tabular output of the results.

FlexPDE is also a "problem solving environment".

It performs the entire range of functions necessary to solve partial differential equation systems: an
editor for preparing scripts, a mesh generator for building finite element meshes, a finite element
solver to find solutions, and a graphics system to plot results. The user can edit the script, run the
problem and observe the output, then re-edit and re-run repeatedly without leaving the FlexPDE
application environment.

FlexPDE has no pre-defined problem domain or equation list.
The choice of partial differential equations is totally up to the user.
The FlexPDE scripting language is a "natural" language.

It allows the user to describe the mathematics of his partial differential equations system and the
geometry of his problem domain in a format similar to the way he might describe it to a co-worker.

For instance, there is an EQUATIONS section in the script, in which Laplace's equation would be
presented as

Div(grad(u)) = 0.

Similarly, there is a BOUNDARIES section in the script, where the geometric boundaries of a
two-dimensional problem domain are presented merely by walking around the perimeter:

Start(x1,y1) line to (x2,y1) to (x2,y2) to (x1,y2) to close

This scripted form has many advantages

o The script completely describes the equation system and problem domain, so there is no uncertainty

User Guide : Overview 31

21.2

213

about what equations are being solved, as might be the case with a fixed-application program.

e New variables, new equations or new terms may be added at will, so there is never a case of the
software being unable to represent a different loss term, or a different physical effect.

e Many different problems can be solved with the same software, so there is not a new learning curve
for each problem

There is also a corollary requirement with the scripted model:

e The user must be able to pose his problem in mathematical form.
In an educational environment, this is good. It's what the student wants to learn.

In an industrial environment, a single knowledgeable user can prepare scripts which can be used and
modified by less skilled workers. And a library of application scripts can show how it is done.

What Can FlexPDE Do?

FlexPDE can solve systems of first or second order partial differential equations in one, two or
three-dimensional Cartesian geometry, in one-dimensional spherical or cylindrical geometry, or in
axi-symmetric two-dimensional geometry. (Other geometries can be supported by including the proper
terms in the PDE.)

The system may be steady-state or time-dependent, or alternatively FlexPDE can solve eigenvalue
problems. Steady-state and time-dependent equations can be mixed in a single problem.

Any number of simultaneous equations can be solved, subject to the limitations of the computer on
which FlexPDE is run.

The equations can be linear or nonlinear. (FlexPDE automatically applies a modified Newton-Raphson
iteration process in nonlinear systems.)

Any number of regions of different material properties may be defined.

Modeled variables are assumed to be continuous across material interfaces. Jump conditions on
derivatives follow from the statement of the PDE system. (CONTACT boundary conditions can handle
discontinuous variables.)

FlexPDE can be extremely easy to use, and this feature recommends it for use in education. But

FlexPDE is not a toy. By full use of its power, it can be applied successfully to extremely difficult
problems.

How Does It Do 1t?

FlexPDE is a fully integrated PDE solver, combining several internal facilities to provide a complete
problem solving system:

¢ A script editing facility with syntax highlighting provides a full text editing facility and a graphical

domain preview.

¢ A symbolic equation analyzer expands defined parameters and equations, performs spatial

differentiation, and symbolically applies integration by parts to reduce second order terms to create
symbolic Galerkin equations. It then symbolically differentiates these equations to form the Jacobian

32

FlexPDE 6 : User Guide

214

coupling matrix.

A mesh generation facility constructs a triangular or tetrahedral finite element mesh over a two or
three-dimensional problem domain. In two dimensions, an arbitrary domain is filled with an
unstructured triangular mesh. In three-dimensional problems, an arbitrary two-dimensional domain is
extruded into a the third dimension and cut by arbitrary dividing surfaces. The resulting
three-dimensional figure is filled with an unstructured tetrahedral mesh.

A Finite Element numerical analysis facility selects an appropriate solution scheme for
steady-state, time-dependent or eigenvalue problems, with separate procedures for linear and nonlinear
systems. The finite element basis may be linear, quadratic or cubic.

An adaptive mesh refinement procedure measures the adequacy of the mesh and refines the

mesh wherever the error is large. The system iterates the mesh refinement and solution until a
user-defined error tolerance is achieved.

A dynamic timestep control procedure measures the curvature of the solution in time and adapts
the time integration step to maintain accuracy.

A graphical output facility accepts arbitrary algebraic functions of the solution and plots contour,
surface, vector or elevation plots.

A data export facility can write text reports in many formats, including simple tables, full finite
element mesh data, CDF, VTK or TecPlot compatible files.

Who Can Use FlexPDE?

Most of physics and engineering is described at one level or another in terms of partial differential
equations. This means that a scripted solver like FlexPDE can be applied to virtually any area of
engineering or science.

Researchers in many fields can use FlexPDE to model their experiments or apparatus, make
predictions or test the importance of various effects. Parameter variations or dependencies are not
limited by a library of forms, but can be programmed at will.

Engineers can use FlexPDE to do design optimization studies, feasibility studies and conceptual
analyses. The same software can be used to model all aspects of a design -- no need for a separate tool
for each effect.

Application developers can use FlexPDE as the core of a special-purpose applications that need
finite element modeling of partial differential equation systems.

Educators can use FlexPDE to teach physics or engineering. A single software tool can be used to
examine the full range of systems of interest in a discipline.

Students see the actual equations, and can experiment interactively with the effects of modifying terms
or domains.

User Guide : Overview

2.1.5 What Does A Script Look Like?

A problem description script is a readable text file. The contents of the file consist of a number of sections,
each identified by a header. The fundamental sections are:

o TITLE a descriptive label for the output.

e SELECT user controls that override the default behavior of FlexPDE.

o VARIABLES here the dependent variables are named.

e DEFINITIONS useful parameters, relationships or functions are defined.

¢ EQUATIONS each variable is associated with a partial differential equation.

e BOUNDARIES the geometry is described by walking the perimeter of the domain,

stringing together line or arc segments to bound the figure.

e MONITORS and PLOTS desired graphical output is listed, including any combination of

CONTOUR, SURFACE, ELEVATION or VECTOR plots.

e END completes the script.

33

Note: There are several other optional sections for describing special aspects of the problem. Some of
these will be introduced later in this document. Detailed rules for all sections are presented in the
FlexPDE Problem Descriptor Reference chapter "The Sections of a Descriptor|145".

COMMENTS can be placed anywhere in a script to describe or clarify the work. Two forms of comment are

available:

e { Anything inside curly brackets is a comment. }

e | from an exclamation to the end of the line is a comment.

Example:

A simple diffusion equation on a square might look like this:

TITLE 'Simple diffusion equation’

{ this problem lacks sources and boundary conditions }

VARIABLES

u
DEFINITIONS

k=3 { conductivity }
EQUATIONS

div(k*grad(u)) =0
BOUNDARIES

REGION 1

START(0,0)

LINE TO (1,0) TO (1,1) TO (0,1) TO CLOSE

PLOTS
CONTOUR(u)
VECTOR(k*grad(u))
END

34 FlexPDE 6 : User Guide

Later on, we will show detailed examples of the development of a problem script.

21.6 What About Boundary Conditions?

Proper specification of boundary conditions is crucial to the solution of a PDE system.
In a FlexPDE script, boundary conditions are presented as the boundary is being described.

The primary types of boundary condition are VALUE and NATURAL.

The VALUE (or Dirichlet) boundary condition specifies the value that a variable must take on at the
boundary of the domain.

The NATURAL boundary condition specifies a flux at the boundary of the domain. (The precise meaning
of the NATURAL boundary condition depends on the PDE for which the boundary condition is being
specified. Details are discussed in the Chapter "Natural Boundary Conditions/s1")

In the diffusion problem presented above, for example, we may add fixed values on the bottom and top
edges, and zero-flux conditions on the sides as follows:

BOUNDARIES
REGION 1
START(0,0)
VALUE(u) =0 LINE TO (1,0) { fixed value on bottom }
NATURAL(u)=0 LINETO (1,1){ insulated right side }
VALUE(u)=1 LINE TO (0,1) { fixed value on top }
NATURAL(u)=0 LINE TO CLOSE { insulated left side }

Notice that a VALUE or NATURAL statement declares a condition which will apply to the subsequent
boundary segments until the declaration is changed.

2.2 Basic Usage
221 How DoISet Up My Problem?

FlexPDE reads a text script that describes in readable language the characteristics of the problem to be
solved. In simple applications, the script can be very simple. Complex applications may require much
more familiarity with the abilities of FlexPDE.

In the following discussion, we will begin with the simpler features of FlexPDE and gradually introduce
more complex features as we proceed.

FlexPDE has a built-in editor with which you can construct your problem script. You can edit the script,
run it, edit it some more, and run it again until the result satisfies your needs. You can save the script for
later use or as a base for later modifications.

User Guide : Basic Usage 35

The easiest way to begin a problem setup is to copy a similar problem that already exists.

Whether you start fresh or copy an existing file, there are four basic parts to be defined:

Define the variables and equations
Define the domain

Define the material parameters
Define the boundary conditions
Specify the graphical output.

These steps will be described in the following sections. We will use a simple 2D heatflow problem as an
example, and start by building the script from the most basic elements of FlexPDE. In later sections, we
will elaborate the script, and address the more advanced capabilities of FlexPDE in an evolutionary
manner. 3D applications rely heavily on 2D concepts, and will be discussed in a separate chapter.

2.2.2

Note: We will make no attempt in the following to describe all the options that are available to the
user at any point, but try to keep the concept clear by illustrating the most common forms. The full
range of options is detailed in the FlexPDE Problem Descriptor Reference. Many will also be
addressed in subsequent topics.

Problem Setup Guidelines

In posing any problem for FlexPDE, there are some guidelines that should be followed.

Start with a fundamental statement of the physical system. Descriptions of basic conservation
principles usually work better than the heavily massaged pseudo-analytic "simplifications" which
frequently appear in textbooks.

Start with a simple model, preferably one for which you know the answer. This allows you
both to validate your presentation of the problem, and to increase your confidence in the reliability of
FlexPDE. (One useful technique is to assume an analytic answer and plug it into the PDE to generate
the source terms necessary to produce that solution. Be sure to take into account the appropriate
boundary conditions.)

Use simple material parameters at first. Don't worry about the exact form of nonlinear
coefficients or material properties at first. Try to get a simple problem to work, and add the
complexities later.

Map out the domain. Draw the outer boundary first, placing boundary conditions as you go. Then
overlay the other material regions. Later regions will overlay and replace anything under them, so you
don't have to replicate a lot of complicated interfaces.

Use MONITORS of anything that might help you see what is happening in the solution. Don't just
plot the final value you want to see and then wonder why it's wrong. Get feedback! That's what the
MONITORS section is there for.

Annotate your script with frequent comments. Later you will want to know just what it was you were
thinking when you wrote the script. Include references to sources of the equations or notes on the
derivation.

Save your work. FlexPDE will write the script to disk whenever you click "Domain Review" or "Run
Script". But if you are doing a lot of typing, use "Save" or "Save_as" to protect your work from

36 FlexPDE 6 : User Guide

unforeseen interruptions.

2.2.3 Notation

In most cases, FlexPDE notation is simple text as in a programming language.

¢ Differentiation, such as du/dx, is denoted by the form dx(u). All active coordinate names are
recognized, as are second derivatives like dxx(u) and differential operators Div, Grad and Curl.
¢ Names are NOT case sensitive. "F" is the same as "f".

e Comments can be placed liberally in the text. Use { } to enclose comments or ! to ignore the remainder
of the line.

Note: See the Problem Descriptor Reference chapter on Elements 127 for a full description of FlexPDE
notation.

2.2.4 Variables and Equations
The two primary things that FlexPDE needs to know are:

e what are the variables that you want to analyze?
e what are the partial differential equations that define them?

The VARIABLES and EQUATIONS sections of a problem script supply this information. The two are
closely linked, since you must have one equation for each variable in a properly posed system.

In a simple problem, you may have only a single variable, like voltage or temperature. In this case, you can
simply state the variable and equation:

VARIABLES
Phi

EQUATIONS
Div(grad(Phi)) =0

In a more complex case, there may be many variables and many equations. FlexPDE will want to know
how to associate equations with variables, because some of the details of constructing the model will
depend on this association.

Each equation must be labeled with the variable to which it is associated (name and colon), as indicated
below:

VARIABLES

AB
EQUATIONS
A: Div(grad(A)) =0
B: Div(grad(B)) =0
Later, when we specify boundary conditions, these labels will be used to associate boundary conditions
with the appropriate equation.

User Guide : Basic Usage 37

2.2.5 Mapping the Domain

Two-Dimensional Domain Description

A two-dimensional problem domain is described in the BOUNDARIES section, and is made up of
REGIONS, each assumed to contain unique material properties. A REGION may contain many closed
loops or islands, but they are all assumed to have the same material properties.

e A REGION specification begins with the statement REGION <number> (or REGION "name") and all
loops following the header are included in the region.

e REGIONS occurring later in the script overlay and cover up parts of earlier REGIONSs.

e The first REGION should contain the entire domain. This is an unenforced convention that makes the
attachment of boundary conditions easier.

Region shapes are described by walking the perimeter, stepping from one joint to another with LINE,
SPLINE or ARC segments. Each segment assumes that it will continue from the end of the previous
segment, and the START clause gets things rolling. You can make a segment return to the beginning with
the word CLOSE (or TO CLOSE).

e Arectangular region, for example, is made up of four line segments:

START(x1,y1)
LINE TO(x2,y1)
TO (x2,y2)
TO (x1,y2)
TO CLOSE

(Of course, any quadrilateral figure can be made with the same structure, merely by changing the
coordinates. And any polygonal figure can be constructed by adding more points.)

e Arcs can be built in several ways, the simplest of which is by specifying a center and an angle:

START(r,0)
ARC(CENTER=0,0) ANGLE=360

e Arcs can also be built by specifying a center and an end point:

START(r,0)
ARC(CENTER=0,0) TO (0,r) { a 90 degree arc }

An elliptical arc will be built if the distance from the center to the endpoint is different than the
distance from the center to the beginning point. The axes of the ellipse will extend along the horizontal
and vertical coordinate axes. The axes can be rotated with the ROTATE=degrees command.

. Loops can be named for use in later references, as in:

START "Name" (...)

The prototype form of The BOUNDARIES section is then:

BOUNDARIES
REGION 1

38 FlexPDE 6 : User Guide

<closed loops around the domain>

REGION 2
<closed loops around overlays of the second material>

You can build your domain a little at a time, using the "domain review" menu button to preview a drawing

of what you have created so far.
The "Save" and "Save_ As" menu buttons allow you to frequently save your work, just in case.

2.2.6 An Example Problem

Let us build as an example a circular inclusion between two plates. We will simply treat the plates as the
top and bottom surfaces of a square enclosure, with the circle centered between them. Using the

statements above and adding the required control labels, we get:

BOUNDARIES
REGION 1 'box' { the bounding box }
START(-1,-1)

LINE TO(1,-1)

TO (1,1)

TO (-1,1)

TO CLOSE

REGION 2 'blob' { the embedded circular 'blob' }
START 'ring' (1/2,0)

ARC(CENTER=0,0) ANGLE=360 TO CLOSE

The resulting figure displayed by the "domain review" button is this:

Note: The detailed Rules for constructing domain boundaries is included in the Reference chapter "
Sections | Boundaries|1s0".,

User Guide : Basic Usage 39

2.2.7 Generating A Mesh

When you select "Run Script" from the Controls menu (or the £ button), FlexPDE will begin execution by
automatically creating a finite element mesh to fit the domain you have described. In the automatic mesh,
cell sizes will be determined by the spacing between explicit points in the domain boundary, by the
curvature of arcs, or by explicit user density controls.

In our example, the automatic mesh looks like this:

Notice that the circular boundary of region 2 is mapped onto cell legs.

There are several controls that the user can apply to change the behavior of the automatic mesh. These are
described in detail in the chapter "Controlling Mesh Density" [1051 below.

As an example, we can cause the circular boundary of region 2 to be gridded more densely by using the
modifier MESH_SPACING:

REGION 2 'blob' { the embedded 'blob' }
START(1/2,0)
MESH_SPACING = 0.05
ARC(CENTER=0,0) ANGLE=360

The resulting mesh looks like this:

40 FlexPDE 6 : User Guide

In most cases, it is not necessary to intervene in the mesh generation, because as we will see later, FlexPDE
will adaptively refine the mesh wherever it detects that there are strong curvatures in the solution.

2.2.8 Defining Material Parameters

Much of the complexity of real problems comes in the fact that the coefficients that enter into the partial
differential equation system take on different values in the various materials of which a structure is
composed.

This is handled in FlexPDE by two facilities. First, the material parameters are given names and default
values in the DEFINITIONS section. Second, the material parameters are given regional values within the
domain REGIONS.

So far, it has been of little consequence whether our test problem was heat flow or electrostatics or
something else entirely. However, for concreteness in what follows, let us assume it is a heat equation,
describing an insulator imbedded in a conductor between to heat reservoirs. We will give the circular
insulator a conductivity of 0.001 and the surrounding conductor a conductivity of 1.

First, we define the name of the constant and give it a default value in the definitions section:
DEFINITIONS
k=1
This default value will be used as the value of "k" in every REGION of the problem, unless specifically
redefined in a region.
Now we introduce the constant into the equation:
EQUATIONS
Div(-k*grad(phi)) =0

Then we specify the regional value in region 2:

REGION 2 'blob' { the embedded blob }
k = 0.001
START(1/2,0)
ARC(CENTER=0,0) ANGLE=360

We could also define the parameter k=1 for the conductor in REGION 1, if it seemed useful for clarity.

User Guide : Basic Usage 41

2.2.9 Setting the Boundary Conditions
Boundary conditions are specified as modifiers during the walk of the perimeter of the domain.
The primary types of boundary condition are VALUE and NATURAL.

The VALUE (or Dirichlet) boundary condition specifies the value that a variable must take on at the
boundary of the domain. Values may be any legal arithmetic expression, including nonlinear dependences
on variables.

The NATURAL boundary condition specifies a flux at the boundary of the domain. Definitions may be any
legal arithmetic expression, including nonlinear dependence on variables. With Laplace's equation, the
NATURAL boundary condition is equivalent to the Neumann or normal derivative boundary condition.

Note: The precise meaning of the NATURAL boundary condition depends on the PDE for which the
boundary condition is being specified. Details are discussed in the Chapter "Natural Boundary
Conditions!eM."

Each boundary condition statement takes as an argument the name of a variable. This name associates the
boundary condition with one of the listed equations, for it is in reality the equation that is modified by the
boundary condition. The equation modified by VALUE(u)=0, for example, is the equation which has

previously been identified as defining u. NATURAL(u)=0 will depend for its meaning on the form of the
equation which defines u.

In our sample problem, suppose we wish to define a zero temperature along the bottom edge, an insulating
boundary on the right side, a temperature of 1 on the top edge, and an insulating boundary on the left. We
can do this with these commands:

REGION 1 'box' { the bounding box }
START(-1,-1)

{ Phi=0 on base line: }
VALUE(Phi)=0 LINE TO(1,-1)
{ normal derivative =0 on right side: }
NATURAL(Phi)=0 LINE TO (1,1)
{ Phi =1 ontop: }
VALUE(Phi)=1 LINETO (-1,1)
{ normal derivative =0 on left side: }
NATURAL(Phi)=0 LINE TO CLOSE

Notice that a VALUE or NATURAL statement declares a condition which will apply to the subsequent
boundary segments until the declaration is changed.

Notice also that the segment shape (Line or Arc) must be restated after a change of boundary condition.
Note: Other boundary condition forms are allowed. See the Reference chapter "Sections |
Boundaries!| 180",

2.2.10 Requesting Graphical Output
The MONITORS and PLOTS sections contain requests for graphical output.
MONITORS are used to get ongoing information about the progress of the solution.

PLOTS are used to specify final output, and these graphics will be saved in a disk file for later viewing.

42 FlexPDE 6 : User Guide

FlexPDE recognizes several forms of output commands, but the primary forms are:

¢ CONTOUR a plot of contours of the argument; it may be color-filled
e SURFACE a 3D surface of the argument
¢ VECTOR a field of arrows

e ELEVATION a "lineout" along a defined path
¢ SUMMARY text-only reports

Any number of plots may be requested, and the values plotted may be any consistent algebraic
combination of variables, coordinates and defined parameters.

In our example, we will request a contour of the temperature, a vector map of the heat flux, k*grad(Phi), an
elevation of temperature along the center line, and an elevation of the normal heat flux on the surface of
the blob:

PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) TO (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

Output requested in the PLOTS section is produced when FlexPDE has finished the process of solving and
regridding, and is satisfied that all cells are within tolerance. An alternative section, identical in form to
the PLOTS section but named MONITORS, will produce transitory output at more frequent intervals, as
an ongoing report of the progress of the solution.

A record of all PLOTS is written in a file with suffix .PG6 and the name of the .PDE script file. These
recorded plots may be viewed at a later time by invoking the VIEW item in the FlexPDE main menu.

MONITORS are not recorded in the .PG6 file. It is strongly recommended that MONITORS be used
liberally during script development to determine that the problem has been properly set up and that the
solution is proceeding as expected.

Note: FlexPDE accepts other forms of plot command, including GRID plots and HISTORIES. See the
Reference chapter "Sections | Monitors and Plots[1971".

2.2.11 Putting It All Together
In the previous sections, we have gradually built up a problem specification.
Putting it all together and adding a TITLE, it looks like this:
TITLE 'Heat flow around an Insulating blob'

VARIABLES

Phi { the temperature }
DEFINITIONS

K=1 { default conductivity }

R =0.5 { blob radius }
EQUATIONS

Div(-k*grad(phi)) = 0

User Guide : Basic Usage

BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
REGION 2 'blob' { the embedded blob }
k = 0.001
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
END

We have defined a complete and meaningful problem in twenty-three readable lines.

The output from this script looks like this:

Heat flow around an Insulating blob 22:

19:22 11/6/08
FlexPDE 6.00

. Phi

0.9 max 1.00

t: 1.00

S 0.95

r 0.90
0.6

n 0.70

m 0.65

I: 0.60

. k: 0.55

03 i 0.50

i 0.45

h: 0.40

g: 0.35

f: 0.30

> 0 e 025

d: 0.20

c: 0.15

b: 0.10

a: 0.05

037 min 0.00
-0.6
-0.91

T T T T T T T
-0.9 -0.6 -0.3 0. 0.3 0.6 0.9
X

ex1: Grid#4 P2 Nodes=7727 Cells=3806 RMS Err= 5.4e-6
k= 1.000000 INTEGRAL(Phi, 'blob')= 0.392695 Integral= 1.999995

43

: User Guide

FlexPDE 6

44

22:19:22 11/6/08
FlexPDE 6.00

—k*grad(Phi)

o

=t

Heat flow around an Insulating blob

0.9

0.6

0.3

-0.3

-0.6

-0.9

=3806 RMS Err= 5.4e-6

7727 Cells

ex1: Grid#4 P2 Nodes

18:27:37 11/8/08
FlexPDE 6.00

<
<}
/l\)
S —
- <
..mmmw o
owe

0

-

Heat flow around an Insulating blob

0.8

0.6

ud

04

0.6 0.9

03

-0.6 -0.3

-0.9

-6

3806 RMS Err= 5.4e

7727 Cells

ex1: Grid#4 P2 Nodes
Integral= 0.999959

User Guide : Basic Usage 45

Heat flow around an Insulating blob 12:58:33 10/24/10
od FlexPDE 6.14

~ Normal(-k*grad(Phi))
/ ON ring

1: Normal(-k*grad(Phi))

Normal(-k*grad(Phi))

N

2 3 4 1
0. 0.5 1, 15 2. 25 3.

Distance

ex1: Grid#2 P2 Nodes=815 Cells=386 RMS Err= 6.5e-4
Integral= 3.936190e-7

2.212 Interpreting a Script

2.3

It is important to understand that a FlexPDE script is not a procedural description of the steps to be
performed in solving the PDE system. It is instead a description of the dependencies between various
elements of the model.

A parameter defined as P = 10 means that whenever P is used in the script, it represents the constant
value 10.

If the parameter is defined as P = 10*X, then whenever P is used in the script, it represents 10 times the
value of X at each point of the domain at which the value of P is needed for the solution of the system. In
other words, P will have a distribution of values throughout the domain.

If the parameter is defined as P = 10*U, where U has been declared as a VARIABLE, then whenever P is
used in the script, it represents 10 times the current value of U at each point of the domain, and at each
stage of the solution process. That is, the single definition P = 10*U implies repeated re-evaluation as
necessary throughout the computation.

Some Common Variations

2.3.1 Controlling Accuracy

FlexPDE applies a consistency check to integrals of the PDE's over the mesh cells. From this it estimates
the relative uncertainty in the solution variables and compares this to an accuracy tolerance. If any mesh
cell exceeds the tolerance, that cell is split, and the solution is recomputed.

The error tolerance is called ERRLIM, and can be set in the SELECT section of the script.

The default value of ERRLIM is 0.002, which means that FlexPDE will refine the mesh until the estimated
error in any variable (relative to the variable range) is less than 0.2% over every cell of the mesh.

46 FlexPDE 6 : User Guide

Note: This does not mean that FlexPDE can guarantee that the solutions is accurate to 0.2% over the
domain. Individual cell errors may cancel or accumulate in ways that are hard to predict.

In our sample problem, we can insert the statement

SELECT ERRLIM=1e-5

as a new section. This tells FlexPDE to split any cell in which the consistency check implies an error of
more than 0.001% over the cell.

FlexPDE refines the mesh twice, and completes with a mesh that looks like this:

PO
<A)
A h\(&‘i%é

O 4
&W%&‘X@’ﬁ e

ey AV

In this particular case, the result plots are not noticeably different from the default case.
Note: In time-dependent problems, spatial and temporal errors are both set by ERRLIM, but they
can also be independently controlled by XERRLIM and TERRLIM. See the Problem Descriptor
Referencel14n.
2.3.2 Computing Integrals

In many cases, it is an integral of some function that is of interest in the solution of a PDE problem.
FlexPDE has an extensive repertoire of integration facilities, including volume integrals, surface integrals
on bounding surfaces and line integrals on bounding lines. The two-dimensional forms are

e Result = LINE_INTEGRAL(expression, boundary_name)

Computes the integral of expression over the named boundary.
Note: BINTEGRAL is a pseudonym for LINE_INTEGRAL.

e Result = VOL_INTEGRAL(expression, region_name)

Computes the integral of expression over the named region.
If region_name is omitted, the integral is over the entire domain.

Note: INTEGRAL is a pseudonym for VOL_INTEGRAL.
Note: In 2D Cartesian geometry, AREA_INTEGRAL is also the same as VOL_INTEGRAL, since the

User Guide : Some Common Variations 47

domain is assumed to have a unit thickness in Z.

In our example problem, we might define

DEFINITIONS
{ the total flux across 'ring':
(recall that 'ring' is the name of the boundary of 'blob') }
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring")
{ the total heat energy in 'blob': }
Tenergy = VOL_INTEGRAL(Phi, 'blob")

In the case of internal boundaries, there is sometimes a different value of the integral on the two sides of
the boundary. The two values can be distinguished by further specifying the region in which the integral is
to be evaluated:

{ the total flux across 'ring": }
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring', 'box")
{ evaluated on the 'box' side of the boundary }

Note: Three-dimensional integral forms will be addressed in a later section. A full description of
integral operators is presented in the Problem Descriptor Reference section "Elements | Operators |
Integral Operators|13sY".

2.3.3 Reporting Numerical Results

In many cases, there are numerical quantities of interest in evaluating or classifying output plots. Any plot
command can be followed by the REPORT statement:

REPORT value AS "title"
Or just

REPORT value

Any number of REPORTSs can be requested following any plot, subject to the constraint that the values are
printed on a single line at the bottom of the plot, and too many reports will run off and be lost.

For instance, we might modify the contour plot of our example plot to say

CONTOUR(Phi) REPORT(k) REPORT(INTEGRAL(Phi, 'blob"))

On running the problem, we might see something like this at the bottom of the plot:

exl: Grid#l pl Modes=1121 Cells=530 EIJIS Err= 5.e-5
l= 1000000 INTEGEAL{Ph, lob"= 0.302695 Integral= 1.900000

2.3.4 Summarizing Numerical Results

A special form of plot command is the SUMMARY. This plot command does not generate any pictorial
output, but instead creates a page for the placement of numerous REPORTS.

SUMMARY may be given a text argument, which will be printed as a header.

48 FlexPDE 6 : User Guide

For example,

SUMMARY
REPORT(k)
REPORT(INTEGRAL(Phi,'blob")) as "Heat energy in blob"
REPORT('no more to say')

In our sample, we will see a separate report page with the following instead of a graphic:

SUMMARY

k= 1000000
Heat energy inblob= 0392695
no more to say

2.3.5 Parameter Studies Using STAGES

FlexPDE supports a facility for performing parameter studies within a single invocation. This facility is
referred to as "staging". Using staging, a problem can be solved repeatedly, with a range of values for a
single parameter or a group of parameters.

The fundamental form for invoking a staged run is to define one or more parameters as STAGED:

DEFINITIONS
Name = STAGED(valuel, value2,)

The problem will be re-run as many times as there are values in the value list, with "Name" taking on
consecutive values from the list in successive runs.

If the STAGED parameter does not affect the domain dimensions, then each successive run will use the
result and mesh from the previous run as a starting condition.

Note: This technique can also be used to approach the solution of a strongly nonlinear problem, by
starting with a linear system and gradually increasing the weight on a nonlinear component.

If the STAGED parameter is used as a dimension in the domain definition, then each successive run will be
restarted from the domain definition, and there will be no carry-over of solutions from one run to the next.

As for time-dependent problems (which we will discuss later), variation of arbitrary quantities across the
stages of a problem can be displayed by HISTORY plots. In staged runs the history is plotted against stage
number.

As an example, let us run our sample heat flow problem for a range of conductivities and plot a history of
the top edge temperature.

We will modify the definition of K in the insulator as follows:

DEFINITIONS
Kins = STAGED(0.01, 0.1, 1, 10)
{ Notice that the STAGED specification must appear at the initial declaration of a
name. It cannot be used in a regional redefinition. }

REGION 2 'blob' { the embedded blob }
K = Kins
START(R,0) ARC(CENTER=0,0) ANGLE=360

HISTORY(Phi) AT (0,-R)

User Guide : Some Common Variations 49

When this modified descriptor is run, the history plot produces the following;:

Heat flow around an Insulating blob 22:34:07 11/6/08
FlexPDE 6.00
045 HISTORY
1: Phi
0.4
0.35
0.3
=
o
0.25
0.
0.15
0.1
1. 15 2. 2.5 3. 3.5 4.
STAGE
ex1s: Grid#1 P2 Nodes=1201 Cells=570 RMS Err= 3.e-4
Stage 4

In a staged run, all PLOTS and MONITORS requested will be presented for each stage of the run.

Other Staging Controls

o The global selector STAGES can be used to control the number of stages to run. If this selector appears,
it overrides any STAGED lists in the DEFINITIONS section (lists shorter than STAGES will report an
error). It also defines the global name STAGE, which can be used subsequently in arithmetic
expressions. See the Problem Descriptor Referencel164) for details.

o The default action is to proceed at once from one stage to the next, but you can cause FlexPDE to pause
while you examine the plots by placing the command AUTOSTAGE=OFF in the SELECT section of the
script.

Note: The STAGE facility can only be used on steady-state problems. It cannot be used with time
dependent problems.
2.3.6 Cylindrical Geometry

In addition to two-dimensional Cartesian geometry, FlexPDE can solve problems in axisymmetric
cylindrical coordinates, (r,z) or (z,r).

Cylindrical coordinates are invoked in the COORDINATES section of the script. Two forms are available,
XCYLINDER and YCYLINDER. The distinction between the two is merely in the orientation of the
graphical displays.

o XCYLINDER places the rotation axis of the cylinder, the Z coordinate, along the abscissa (or "x"-axis) of

50 FlexPDE 6 : User Guide

the plot, with radius along the ordinate. Coordinates in this system are (Z,R)
e YCYLINDER places the rotation axis of the cylinder, the Z coordinate, along the ordinate (or "y" axis) of
the plot, with radial position along the abscissa. Coordinates in this system are (R,Z)

Either form may optionally be followed by a parenthesized renaming of the coordinates. Renaming cannot
be used to change the geometric character of the coordinate. Radius remains radius, even if you rename it
"le.

The default names are

XCYLINDER implies XCYLINDER('Z','R").
YCYLINDER implies YCYLINDER('R','Z").

2.3.6.1 Integrals In Cylindrical Geometry

The VOL_INTEGRAL (alias INTEGRAL) operator in Cylindrical geometry is weighted by 2*PI*R,
representing the fact that the equations are solved in a revolution around the axis.

An integral over the cross-sectional area of a region may be requested by the operator AREA_INTEGRAL.
This form differs from VOL_INTEGRAL in that the 2*¥PI*R weighting is absent.

Similarly, the operator SURF_INTEGRAL will form the integral over a boundary, analogous to the
LINE_INTEGRAL operator, but with an area weight of 2*PI*R.

2.3.6.2 A Cylindrical Example

Let us now convert our Cartesian test problem into a cylindrical one. If we rotate the box and blob around
the left boundary, we will form a torus between two circular plates (like a donut in a round box).

These changes will be required:

e We must offset the coordinates, so the left boundary becomes R=o0.
e Since we want the rotation axis in the Y-direction, we must use YCYLINDER coordinates.
e Since 'R'is now a coordinate name, we must rename the 'R' used for the blob radius.

The full script, converted to cylindrical coordinates is then:

TITLE 'Heat flow around an Insulating Torus'
COORDINATES
YCYLINDER
VARIABLES
Phi { the temperature }
DEFINITIONS
K=1 { default conductivity }
Rad = 0.5 { blob radius (renamed)?}
EQUATIONS
Div(-k*grad(phi)) = 0
BOUNDARIES
REGION 1 'box'
START(O0,-1)
VALUE(Phi)=0 LINETO (2,-1)
NATURAL(Phi)=0 LINE TO (2,1)
VALUE(Phi)=1 LINE TO (0,1)
NATURAL(Phi)=0 LINE TO CLOSE

User Guide : Some Common Variations

REGION 2 'blob' { the embedded blob }

k = 0.001

START 'ring' (1,Rad)

ARC(CENTER=1,0) ANGLE=360 TO CLOSE

PLOTS

CONTOUR(Phi)

VECTOR(-k*grad(Phi))

ELEVATION(Phi) FROM (1,-1) to (1,1)

ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
END

The resulting contour and boundary plot look like this:

Heat flow around an Insulating Torus 22:36:02 11/6/08
. . A FlexPDE 6.00

Phi

0.9 max

ro
o6 x |

0.31]

»

» ~
OOo=a
©woo
ond

OO0C00000000000
QO NWWERUITID O~
SGonONONMOUIOTO O

JuToQ0 *Q@ I TR TSSO

031 —f

[o2
067 S~

-0.91 a———

T T T T T T T
0. 0.3 06 0.9 12 15 1.8 21
R

ex2: Grid#1 P2 Nodes=1201 Cells=570 RMS Err= 2.8e-4
Vol_Integral= 12.56647

52 FlexPDE 6 : User Guide

Heat flow around an Insulating Torus 22:36:02 11/6/08

64 9 FlexPDE 6.00
b1 Normal(-k*grad(Phi))
\ L ON ring
/1

1: Normal(-k*grad(Phi))

Normal(-k*grad(Phi))
/

- \
L /

9 2 3 A 1
0. 0.5 1. 1.5 2. 25 3.

Distance

ex2: Grid#1 P2 Nodes=1201 Cells=570 RMS Err= 2.8e-4
Surf_Integral= -1.806200e-5

2.3.7 Time Dependence

Unless otherwise defined, FlexPDE recognizes the name "T" (or "t") as representing time. If references to
time appear in the definitions or equations, FlexPDE will invoke a solution method appropriate to
initial-value problems.

FlexPDE will apply a heuristic control on the timestep used to track the evolution of the system. Initially,
this will be based on the time derivatives of the variables, and later it will be chosen so that the time
behavior of the variables is nearly quadratic. This is done by shortening or lengthening the time intervals
so that the cubic term in a Taylor expansion of the variables in time is below the value of the global
selector ERRLIM.

In time dependent problems, several new things must be specified:

The THRESHOLD of meaningful values for each variable (if not apparent from initial values).
The time-dependent PDE's

The time range of interest,

The times at which plots should be produced

Any history plots that may be desired

Note: FlexPDE can treat only first derivatives in time. Equations that are second-order in time must
be split into two equations by defining an intermediate variable.

The time range is specified by a new script section

TIME start TO finish

Plot times are specified by preceding any block of plot commands by a time control, in which specific times
may be listed, or intervals and end times, or a mixture of both:

FOR T=1t1, t2BYstep TO 3 ...

User Guide : Some Common Variations 53

We can convert our heat flow problem to a time dependent one by including a time term in the heat
equation:

Div(k*grad(Phi)) = c*dt(Phi)

To make things interesting, we will impose a sinusoidal driving temperature at the top plate, and present a
history plot of the temperature at several internal points.

The whole script with pertinent modifications now looks like this:

TITLE '"Transient Heat flow around an Insulating blob'

VARIABLES
Phi (threshold=0.01) { the temperature }
DEFINITIONS
K=1 { default conductivity }
c=1 { default heat capacity }
R=1/2
EQUATIONS
Div(-K*grad(phi)) + C*dt(Phi) = 0
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=sin(t) LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
REGION 2 'blob' { the embedded blob }
K = 0.001
Cc=0.1
START(R,0)

ARC(CENTER=0,0) ANGLE=360
TIME O TO 2*pi
PLOTS
FORT = pi/2 BY pi/2 TO 2*pi
CONTOUR(PhI)
VECTOR(-K*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
HISTORIES
HISTORY(Phi) AT (0,r/2) (O,r) (0,3*%r/2)
END

At the end of the run (t=2%*pi), the contour and history look like this:

54 FlexPDE 6 : User Guide

Transient Heat flow around an Insulating blob 22:37:27 11/6/08
A)))) . . FlexPDE 6.00
Phi
0.9 i F max 0.07
n: 0.06
m: .03
0.6 o j -0.06
i -0.09
h: -0.12
g: -0.15
f: -0.18
4 - e: -0.21
03 d: -0.24
c: -0.27
b: -0.30
a: -0.33
> 0. L min -0.36
-0.31 F
-0.6 r
-0.94 -

-0.9 -0.6 -0.3 0. 0.3 0.6 0.9

ex3: Cycle=88 Time=6.2832 dt=0.1741 P2 Nodes=1449 Cells=694 RMS Err= 0.0015
Integral= -0.453983

Transient Heat flow around an Insulating blob 22:37:27 11/6/08
FlexPDE 6.00
09 e HISTORY
1: Phi
0.6 /
03 A

Phi
o
o

e~

ex3: Cycle=88 Time= 6.2832 dt= 0.1741 P2 Nodes=1449 Cells=694 RMS Err= 0.0015

2.3.7.1 Bad Things To Do In Time Dependent Problems

Inconsistent Initial Conditions and Instantaneous Switching

If you start off a time-dependent calculation with initial conditions that are inconsistent, or turn on

User Guide : Some Common Variations 55

boundary values instantaneously at the start time (or some later time), you induce strong transient signals
in the system. This will cause the time step, and probably the mesh size as well, to be cut to tiny values to
track the transients.

Unless it is specifically the details of these transients that you want to know, you should start with initial
conditions that are a consistent solution to a steady problem, and then turn on the boundary values,
sources or driving fluxes over a time interval that is meaningful in your problem.

It is a common mistake to think that simply turning on a source is a smooth operation. It is not.
Mathematically, the turn-on time is significantly less that a femtosecond (zero, in fact), with attendant
terahertz transients. If that's the problem you pose, then that's the problem FlexPDE will try to solve.
More realistically, you should turn on your sources over a finite time. Electrical switches take
milliseconds, solid state switches take microseconds. But if you only want to see what happens after a
second or two, then fuzz the turn-on.

Turning on a driving flux or a volume source is somewhat more gentle than a boundary value, because it
implies a finite time to raise the boundary value to a given level. But there is still a meaningful time
interval over which to turn it on.

2.3.8 Eigenvalues and Modal Analysis
FlexPDE can also compute the eigenvalues and eigenfunctions of a PDE system.

Consider the homogeneous time-dependent heat equation as in our example above,

c% _v.xvg-o
at
together with homogeneous boundary conditions
$=0
and/or
@ +ag=0
&

on the boundary.

If we wish to solve for steady oscillatory solutions to this equation, we may assert
P, y5t) = wix,y)exp(=pi)

The PDE then becomes
VeEVir+ Ay =0
A=-Cp

The values of A and ¥ for which this equation has nontrivial solutions are known as the eigenvalues and
eigenfunctions of the system, respectively. All steady oscillatory solutions to the PDE can be made up of
combinations of the various eigenfunctions, together with a particular solution that satisfies any
non-homogeneous boundary conditions.

Two modifications are necessary to our basic steady-state script for the sample problem to cause FlexPDE

56 FlexPDE 6 : User Guide

to solve the eigenvalue problem.

e A value must be given to the MODES parameter in the SELECT section. This number determines the

number of distinct values of 4 that will be calculated. The values reported will be those with lowest
magnitude.

e The equation must be written using the reserved name LAMBDA for the eigenvalue.

o The equation should be written so that values of LAMBDA are positive, or problems with the ordering
during solution will result. The full descriptor for the eigenvalue problem is then:

TITLE 'Modal Heat Flow Analysis'
SELECT
modes=4
VARIABLES
Phi { the temperature }
DEFINITIONS
K=1 { default conductivity }
R =0.5 { blob radius }
EQUATIONS
Div(k*grad(Phi)) + LAMBDA*Phi = 0
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=0 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
REGION 2 'blob' { the embedded blob }
k=0.2 { This value makes more interesting pictures }
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
END

The solution presented by FlexPDE will have the following characteristics:

The full set of PLOTS will be produced for each of the requested modes.
An additional plot page will be produced listing the eigenvalues.

The mode number and eigenvalue will be reported on each plot.
LAMBDA is available as a defined name for use in arithmetic expressions.

The first two contours are as follows:

User Guide :

Some Common Variations

Modal Heat Flow Analysis

22:39:17 11/6/08
FlexPDE 6.00

0.9 B

0.6

0.3

-0.37

-0.64

-0.94 u

Phi

o<
50O
N
o

JOTOQ0 PQ@S TR T3S 0T
@
S

ex4: Grid#1 P2 Nodes=1201 Cells=570 RMS Err= 3.2e-4
Mode 1 Lambda= 2.0761 Integral=-3.396896

Modal Heat Flow Analysis

22:39:17 11/6/08
FlexPDE 6.00

0.9

0.6

0.3

-0.37

-0.64

-0.94

JuTOoQ® hQ T TR
<}
®
o

ex4: Grid#1 P2 Nodes=1201 Cells=570 RMS Err= 3.2e-4
Mode 2 Lambda= 3.4320 Integral=-3.761614e-5

57

58 FlexPDE 6 : User Guide

2.3.8.

24

241

1 The Eigenvalue Summary

When running an Eigenvalue problem, FlexPDE automatically produces an additional plot displaying a
summary of the computed eigenvalues.

If the user specifies a SUMMARY plot, then this plot will supplant the automatic summary, allowing the
user to add reports to the eigenvalue listing.

For example, we can add to our previous descriptor the plot specification:

SUMMARY
REPORT(lambda)
REPORT(integral(phi))

This produces the following report on the summary page:

Modal Heat Flow Analysis 22:15:55 5/23/05
FlexPDE 5.0.0

Eigenvalues:

Mode 1:lambda= 2.076144 integral(phij=-3.408079
Mode 2:lambda= 3.431960 integral(phi)=-4.340801e-6
Mode 3:lambda= 5.704378 integral(phi)=-1.050399
Mode 4:lambda= 6.752271 integral(phi)= 9.194491e-4

Addressing More Difficult Problems

If heat flow on a square were all we wanted to do, then there would probably be no need for FlexPDE. The
power of the FlexPDE system comes from the fact that almost any functional form may be specified for the
material parameters, the equation terms, or the output functions. The geometries may be enormously
complex, and the output specification is concise and powerful.

In the following sections, we will address some of the common situations that arise in real problems, and
show how they may be treated in FlexPDE.

Nonlinear Coefficients and Equations

One common complication that arises is that either the terms of the equation or the material properties are
complicated functions of the system variables. FlexPDE understands this, and has made full provision for
handling such systems.

Suppose, for example, that the conductivity in the 'blob' of our example problem were in fact a strong
function of the temperature. Say, for example, that K=exp(-5*phi). The solution couldn't be simpler.
Just define it the way you want it and click "run":

iiEGION 2 'blob' { the embedded blob }
k = exp(-5*phi)

User Guide : Addressing More Difficult Problems

59

The appearance of a nonlinear dependence will automatically activate the nonlinear solver, and all the

dependency details will be handled by FlexPDE.

The modified result appears immediately:

Heat flow around an Insulating blob 22:41:08 11/6/08
L L L L L 1 1 FlexPDE 6.00
Phi
097 +—m7mn r max 1.00
S ~— t: 1,00
—r s: 0.95
\//— e 0.90
0.6 -
m 0.65
.
0.3] e 050
i 0.45
h: 0.40
P
> 07 e 025
h d: 0.20
— c: 0.15
b: 0.10
a: 0.05
0.3 S - I min 0.00
d
/
-0.67 Co— o | T
_//b\
— /_\
-0.9 a -

ex5: Grid#2 P2 Nodes=1293 Cells=616 RMS Err= 0.0015
Integral= 1.916010

Nonlinear terms in the equation are just as easy. If our system has a nonlinear sinusoidal source, for
example, we may type:

EQUATIONS
Div(k*grad(phi)) + 0.01*phi*sin(phi) = 0

Click "run", and the solution appears:

60 FlexPDE 6 : User Guide

Heat flow around an Insulating blob 22:42:09 11/6/08
. . ! . . .) FlexPDE 6.00

0.9 r max

\ /’— t:

S

0.6

cooooo000000000
QO=22NNWWEBEOIOIOD
ocgoooUIoUIO OO Ul

IWTOQ® AT A

-0.3

-0.6

_/———”A/—\
0.9 3
T T T T T T T
0.9 0.6 0.3 0. 03 06 0.9
X

ex6: Grid#1 P2 Nodes=1201 Cells=570 RMS Err= 3.8e-4
Integral= 2.123946

2411 Complications Associated with Nonlinear Problems
Actually, nonlinear problems are frequently more difficult than we have implied above, for several reasons.

¢ Nonlinear problems can have more than one solution.
¢ A nonlinear problem may not, in fact, have a solution at all.

FlexPDE uses a Newton-Raphson iteration process to solve nonlinear systems. This technique can be very
sensitive to the initial estimate of the solution. If the starting conditions are too far from the actual
solution, it may be impossible to find the answer, even though it might be quite simple from a different
starting value.

There are several things that can be done to help a nonlinear problem find a solution:

e Provide as good an initial value as you can, using the INITIAL VALUES section of the script.

o Ensure that the boundary conditions are consistent.

e Use STAGES to progress from a linear to a nonlinear system, allowing the linear solution to provide
initial conditions for the nonlinear one.

e Pose the problem as a time-dependent one, with time as an artificial relaxation dimension.

e Use SELECT CHANGELIM to limit the excursion at each step and force FlexPDE to creep toward a
solution.

e Use MONITORS to display useful aspects of the solution, to help identify troublesome terms.

We will return in a later section[1101to the question of intransigent nonlinear problems.

User Guide : Addressing More Difficult Problems 61

24.2 Natural Boundary Conditions

The term "natural boundary condition" usually arises in the calculus of variations, and since the finite
element method is fundamentally one of minimization of an error functional, the term arises also in this
context.

The term has a much more intuitive interpretation, however, and it is this which we will try to present.

Consider a Laplace equation,
VeV =0

The Divergence Theorem says that the integral of this equation over all space is equal merely to the
integral over the bounding surface of the normal component of the flux,

J'J'afw (grad ())dA = q’m sgrad (1)l
A a
(we have presented the equation in two dimensions, but it is valid in three dimensions as well).

The surface value of /1*EF ad (I,L) is in fact the "natural boundary condition" for the Laplace (and

Poisson) equation. It is the way in which the system inside interacts with the system outside. It is the
(negative of the) flux of the quantity u that crosses the system boundary.

The Divergence Theorem is a particular manifestation of the more general process of Integration by
Parts. You will remember the basic rule,

rudu =m?[: - r Vefie

a a

The term iV is evaluated at the ends of the integration interval and gives rise to surface terms. Applied to
the integration of a divergence, integration by parts produces the Divergence Theorem.

FlexPDE applies integration by parts to all terms of the partial differential equations that contain
second-order derivatives of the system variables. In the Laplace equation, of course, this means the only
term that appears.

In order for a solution of the Laplace equation (for example) to be achieved, one must specify at all points
of the boundary either the value of the variable (in this case, i) or the value of firg¥ ad (1',{) .
In the notation of FlexPDE,

VALUE(u)=ul supplies the former, and
NATURAL(u)=F supplies the latter.

In other words,

The NATURAL boundary condition statement in FlexPDE supplies the value of the surface
flux, as that flux is defined by the integration of the second-order terms of the PDE by parts.
The default boundary condition for FlexPDE is NATURAL(VARIABLE)=0.

Note: On an internal boundary the NATURAL defines the difference in flux between the two adjacent
regions, producing a source or sink at that boundary.

Consistent with our discussion of nonlinear equations, the value given for the surface flux may be a
nonlinear value.

62 FlexPDE 6 : User Guide

The radiation loss from a hot body, for example, is proportional to the fourth power of temperature, and
the statement

NATURAL(u) = -k*un4
is a perfectly legal boundary condition for the Laplace equation in FlexPDE.

2421 Some Typical Cases

Since integration by parts is a fundamental mathematical operation, it will come as no surprise that its
application can lead to many of the fundamental rules of physics, such as Ampere's Law.

For this reason, the Natural boundary condition is frequently a statement of very fundamental
conservation laws in many applications.

But it is not always obvious at first what its meaning might be in equations which are more elaborate than
the Laplace equation.

So let us first list some basic terms and their associated natural boundary condition contributions (we
present these rules for two-dimensional geometry, but the three-dimensional extensions are readily seen).

e Applied to the term 5'f (M)f"r & , integration by parts yields

Il @;Cu) dedy = § fluydy = § F)]

Here (X is the x-direction cosine of the surface normal and ¢f{ is the differential path length. Since
FlexPDE applies integration by parts only to second order terms, this rule is applied only if the

function f (I,L) contains further derivatives of 1L. Similar rules apply to derivatives with respect to
other coordinates.

2
e Applied to the term a2f (1',{,)/ ax , integration by parts yields
& fiu gf (14 gf (i
J‘J‘ fg)fdy=c§f()y? =(]5f() Jl
o o o
Since this term is second order, it will always result in a contribution to the natural boundary

condition.

e Applied to the term Ve F (H) , integration by parts yields the Divergence Theorem
_U‘?-F(u)dxdy = (}S Fu)widi

Here # is the outward surface normal unit vector.

As with the x-derivative case, integration by parts will not be applied unless the vector & itself
contains further derivatives of u.

e Applied to the term V% Fi) , integration by parts yields the Curl Theorem
jjv w F(w)dxdy = gSn x F ()l

User Guide : Addressing More Difficult Problems 63

Using these formulas, we can examine what the natural boundary condition means in several common
cases:

The Heat Equation

Div(-k*grad(Temp)) + Source = 0
Natural(Temp) = normal(-k*grad(Temp)) { outward surface-normal flux }

(Notice that we have written the PDE in terms of heat flux with the negative sign imbedded in the
equation. If the sign is left out, the sign of the Natural is reversed as well.)

One-dimensional heat equation

dx(-k*dx(Temp)) + Source = 0
Natural(Temp) = outward surface-normal component of flux = (-k*dx(temp)*nx),

where nx is the x-direction cosine of the surface normal.
Similar forms apply for other coordinates.
Magnetic Field Equation

curl(curl(A)/mu) = J
Natural(A) = tangential component of H = tangential(curl(A)/mu)

Convection Equation

dx(u)-dy(u)=0
Natural(u) is undefined, because there are no second-order terms.

See the section "Hyperbolic systems" for further discussion.

2.4.2.2 An Example of a Flux Boundary Condition

Let us return again to our heat flow test problem and investigate the effect of the Natural boundary
condition. As originally posed, we specified Natural(Phi)=0 on both sidewalls. This corresponds to zero
flux at the boundary. Alternatively, a convective cooling loss at the boundary would correspond to a flux

Flux = -K*grad(Phi) = Phi - Phi0

where PhiO is a reference cooling temperature. With convectively cooled sides, our boundary specification
looks like this (assuming Phi0=0):

REGION 1 'box'
START(-1,-1)

VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=Phi LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)

NATURAL(Phi)=Phi LINE TO CLOSE

The result of this modification is that the isotherms curve upward:

64 FlexPDE 6 : User Guide

Heat flow around an Insulating blob 22:43:18 11/6/08
L L h L L L 1 FlexPDE 6.00
Phi
0.99 max 1.00
u: 1.00
t: 0.95
s 0.90
0.6+
m 0.60
4 - | 0.55
03 k: 0.50
i 0.45
i 0.40
- 030
L g :
> 0 f: 025
e: 0.20
d: 0.15
T
-0.31 a: 0.00
min 0.00
0.6 3
0.9+ -

ex7: Grid#2 P2 Nodes=1221 Cells=578 RMS Err= 0.0011
Integral= 1.590394

2.4.3 Discontinuous Variables

The default behavior of FlexPDE is to consider all variables to be continuous across material interfaces.
This arises naturally from the finite element model, which populates the interface with nodes that are
shared by the material on both sides.

FlexPDE supports discontinuities in variables at material interfaces by use of the words CONTACT and
JUMP in the script language.

CONTACT(V) is a special form of NATURAL boundary condition which also causes the affected variable to
be stored in duplicate nodes at the interface, capable of representing a double value.

JUMP(v) means the instantaneous change in the value of variable "v" when moving outward across an
interface from inside a given material. At an interface between materials '1' and '2', JUMP(V) means
(V2-V1) in material '1', and (V1-V2) in material '2'.

The expected use of JUMP is in a CONTACT Boundary Condition statement on an interior boundary. The
combination of CONTACT and JUMP causes a line or surface source to be generated proportional to the
difference between the two values.

JUMP may also be used in other boundary condition statements, but it is assumed that the argument of
the JUMP is a variable for which a CONTACT boundary condition has been specified. See the example
"Samples | Usage | Discontinuous_Variables | Contact_Resistance_Heating.pde" for an example of this
kind of use.

The interpretation of the JUMP operator follows the model of contact resistance, as explained in the next
section.

User Guide : Addressing More Difficult Problems 65

2.4.3.1 Contact Resistance

The problem of contact resistance between two conductors is a typical one requiring discontinuity of the
modeled variable.

In this problem, a very thin resistive layer causes a jump in the temperature or voltage on the two sides of
an interface. The magnitude of the jump is proportional to the heat flux or electric current flowing across
the resistive film. In microscopic analysis, of course, there is a physical extent to the resistive material. But
its dimensions are such as to make true modelling of the thickness inconvenient in a finite element
simulation.

In the contact resistance case, the heat flux across a resistive interface between materials '1' and '2' as seen
from side '1' is given by

F1 = -K1*dn(T) = -(T2-T1)/R
where F1 is the value of the outward heat flux, K1 is the heat conductivity, dn(T) is the outward normal

derivative of T, R is the resistance of the interface film, and T1 and T2 are the two values of the
temperature at the interface.

As seen from material '2',

F2 = -K2*dn(T) = -(T1-T2)/R = -F1

Here the normal has reversed sign, so that the outflow from '2' is the negative of the outflow from '1',
imposing energy conservation.

The Natural Boundary Condition for the heat equation
div(-K*grad(T)) = H

is given by the divergence theorem as
Natural(T) = -K*dn(T),

representing the outward heat flux.

This flux can be related to a discontinuous variable by use of the CONTACT boundary condition in place of
the NATURAL.

The FlexPDE expression JUMP(T) is defined as (T2-T1) in material '1' and (T1-T2) in material '2'.

The representation of the contact resistance boundary condition is therefore

CONTACT(T) = -JUMP(T)/R

This statement means the same thing in both of the materials sharing the interface. [Notice that the sign
applied to the JUMP reflects the sign of the divergence term.]

We can modify our previous example problem to demonstrate this, by adding a heat source to drive the
jump, and cooling the sidewalls. The restated script is:

TITLE 'Contact Resistance on a heated blob'

VARIABLES
Phi { the temperature }
DEFINITIONS
K=1 { default conductivity }
R =0.5 { blob radius }
H=0 { internal heat source }

66 FlexPDE 6 : User Guide

Res = 0.5 { contact resistance }
EQUATIONS
Div(-k*grad(phi)) = H

BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0{ cold outer walls }
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE
REGION 2 'blob' { the embedded blob }
H=1 { heat generation in the blob }
START 'ring' (R,0)
CONTACT(phi) = -JUMP(phi)/Res
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS
CONTOUR(Phi)
SURFACE(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
END

The surface plot generated by running this problem shows the discontinuity in temperature:

Contact Resistance on a heated blob 22:44:17 11/6/08
FlexPDE 6.00

Phi
viewpoint(-0.57,-1.39, 30.)

:
]
x
I
ocooooo
NISESTNTNINY
Roo~N®o

ex8: Grid#1 P2 Nodes=1249 Cells=570 RMS Err= 2.1e-4
Integral= 0.304967

2.4.3.2 Decoupling

Using the Contact Resistance model, one can effectively decouple the values of a given variable in two
adjacent regions. In the previous example, if we replace the jump boundary condition with the statement

User Guide : Addressing More Difficult Problems 67

CONTACT(phi) = 0*JUMP(phi)

the contact resistance is infinite, and no flux can pass between the regions.

Note: The JUMP statement is recognized as a special form. Even though the apparent value of the
right hand side here is zero, it is not removed by the arithmetic expression simplifier.

2.4.3.3 Using JUMP in problems with many variables

An expression JUMP(V) may appear in any boundary condition statement on a boundary for which the
argument variable V has been given a CONTACT boundary condition.

In an electrical resistance case, for example, the voltage undergoes a jump across a contact resistance, and
the current through this contact is a source of heat for a heatflow equation. The following example, though
not strictly realizable physically, diagrams the technique. Notice that the JUMP of Phi appears as a source
term in the Natural boundary condition for Temp. Phi, having appeared in a CONTACT boundary
condition definition, is stored as a double-valued quantity, whose JUMP is available to the boundary
condition for Temp. Temp, which does not appear in a CONTACT boundary condition statement, is a
single-valued variable at the interface.

TITLE 'Contact Resistance as a heat source'

VARIABLES
Phi { the voltage }
Temp { the temperature }
DEFINITIONS
Kd =1 { dielectric constant }
Kt=1 { thermal conductivity }
R =0.5 { blob radius }
Q=0 { space charge density }
Res = 0.5 { contact resistance }
EQUATIONS

Phi: Div(-kd*grad(phi)) = Q
Temp: Div(-kt*grad(temp) = 0
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0{ grounded outer walls }
VALUE(Temp)=0 { cold outer walls }
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE
REGION 2 'blob' { the embedded blob }
Q=1 { space charge in the blob }
START 'ring' (R,0)
CONTACT(phi) = -JUMP(phi)/Res
{ the heat source is the voltage difference times the current }
NATURAL(temp) = -JUMP(Phi)~2/Res
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
CONTOURC(Phi) SURFACE(Phi)
CONTOUR(temp) SURFACE(temp)
END

The temperature shows the effect of the surface source:

68 FlexPDE 6 : User Guide

Contact Resistance as a heat source 22:45:14 11/6/08
, . . \ . . . FlexPDE 6.00

0.9

< s %<
SISISTSIN
SN WA
OO0 =

0.6

(S5}
l=1=}

0.3

-0.37

00000000000 s
CO=NWAUDNWOOO=NWH
[=lslelaololelolaloleoleeleleee)

-0.6
Scale = E-2

-0.94

T T T T T T T
-0.9 -0.6 -0.3 0. 0.3 0.6 0.9
X

ex9: Grid#1 P2 Nodes=1249 Cells=570 RMS Err= 5.1e-4
Integral= 0.045589

2.5 Using FlexPDE in One-Dimensional Problems

FlexPDE treats problems in one space dimension as a degenerate case of two dimensional problems.

The construction of a problem descriptor follows the principles laid out in previous sections, with the
following specializations:

o The COORDINATES specification must be CARTESIAN1, CYLINDER1 or SPHERE1
e Coordinate positions are given by one dimensional points, as in
START(0) LINE TO (5)
e The boundary path is in fact the domain, so the boundary must not CLOSE on itself.
¢ Since the boundary path is the domain, boundary conditions are not specified along the path. Instead
we use the existing syntax of POINT VALUE and POINT LOAD to specify boundary conditions at the
end points of the domain:
START(0) POINT VALUE(u)=0 LINE TO (5) POINT LOAD(u)=1
e Only ELEVATION and HISTORY are meaningful plots in one dimension.

Our basic example problem does not have a one-dimensional analog, but we can adapt it to an insulating
spherical shell between two spherical reservoirs as follows:

TITLE 'Heat flow through an Insulating shell'
COORDINATES
Spherel
VARIABLES
Phi { the temperature }
DEFINITIONS
K=1 { default conductivity }
Rl1=1 { the inner reservoir }
Ra =2 { the insulator inner radius }

User Guide : Using FlexPDE in One-Dimensional Problems 69

2.6

2.6.1

Rb =3 { the insulator outer radius }
R2 =4 { the outer reservoir }
EQUATIONS
Div(-k*grad(phi)) = 0
BOUNDARIES
REGION 1 { the total domain }

START(R1) POINT VALUE(Phi)=0
LINE TO (R2) POINT VALUE(Phi)=1
{ note: no 'Close'! }
REGION 2 'blob' { the embedded layer }
k = 0.001
START (Ra) LINE TO (Rb)
PLOTS
ELEVATION(Phi) FROM (R1) to (R2)
END

Using FlexPDE in Three-Dimensional Problems

First, a caveat:

Three-dimensional computations are not simple. We have tried to make FlexPDE as easy as possible to
use, but the setup and interpretation of 3D problems relies heavily on the concepts explained in 2D
applications of FlexPDE. Please do not try to jump in here without reading the preceding 2D discussion.

Extrusion:

FlexPDE constructs a three-dimensional domain by extruding a two-dimensional domain into a third
dimension. This third dimension can be divided into layers, possibly with differing material properties and
boundary conditions in each layer. The interface surfaces which separate the layers need not be planar, but
there are some restrictions placed on the shapes that can be defined in this way.

The finite element model constructed by FlexPDE in three-dimensional domains is fully general. The
domain definition process is not.

The Concept of Extrusion

The fundamental idea of extrusion is quite simple; a square extruded into a third dimension becomes a
cube; a circle becomes a cylinder. Given spherical layer surfaces, the circle can also become a sphere.

Note: It is important to consider carefully the characteristics of any given problem, to determine the
orientation most amenable to extrusion.

What happens if we extrude our simple 2D heat flow problem into a third dimension? Setting the
extrusion distance to half the plate spacing, we get a cylinder imbedded in a brick, as we see in the
following figure:

70 FlexPDE 6 : User Guide

A cross-section at any value of Z returns the original 2D figure.

A cross-section cut at Y=0 shows the extruded structure:

2.6.2 Extrusion Notation in FlexPDE
Performing the extrusion above requires three basic changes in the 2D script:

o The COORDINATES section must specify CARTESIAN3.

o A new EXTRUSION section must be added to specify the layering of the extrusion.

e PLOTS and MONITORS must be modified to specify any cut planes or surfaces on which the display is
to be computed.

There are two forms for the EXTRUSION section, the elaborate form and the shorthand form. In both
cases, the layers of the model are built up in order from small to large Z.

In the elaborate form, the dividing SURFACES and the intervening LAYERS are each named explicitly,
with algebraic formulas given for each dividing surface.

Note: With this usage, we have overloaded the word SURFACE. As a plot command, it can mean a
form of graphic output in which the data are presented as a three-dimensional surface; or, in this new
case, it can mean a dividing surface between extrusion layers. The distinction between the two uses
should be clear from the context.

In the simple case of our extruded cylinder in a square, it looks like this:

EXTRUSION
SURFACE 'Bottom' z=0
LAYER 'Everything'
SURFACE 'Top' z=1

User Guide : Using FlexPDE in Three-Dimensional Problems A

The bottom and top surfaces are named, and given simple planar shapes.
The layer between these two surfaces comprises everything in the domain, so we can name it 'Everything'.
In the shorthand form, we merely state the Z-formulas:

EXTRUSION z=0,1

In this case, the layers and surfaces must later be referred to by number. The first surface, z=0, is
identified as surface 1. The second surface, z=1, as surface 2.

Notice that there is no distinction, as far as the layer definition is concerned, between the parts of the layer
which are in the cylinder and the parts of the layer which are outside the cylinder. This distinction is made
by combining the LAYER concept with the REGION concept of the 2D base plane representation. In a
vertical cross-section we can label the parts as follows:

Surface 2 "Top"
!
|

\

\

V' Layer |

H'I "Everything"

!
I

f
/

Surface 1 "Bottom'

Regon 1 Fegon 2 Regon |
”hDX” ”h].l:lb" "bDX"

Notice that the cylinder can be uniquely identified as the intersection of the blob' region of the base plane
with the 'Everything' layer of the extrusion.

2.6.3 Layering

Now suppose that we wish to model a canister rather than a full length cylinder. This requires that we
break up the material stack above region 2 into three parts, the canister and the continuation of the box
material above and below it.

We do this by specifying three layers (and four interface surfaces):

EXTRUSION

SURFACE "Bottom" z=-1/2
LAYER "Underneath"

SURFACE "Can Bottom" z=-1/4
LAYER "Can"

SURFACE "Can Top" z=1/4
LAYER "Above"

SURFACE "Top" z=1/2

We have now divided the 3D figure into six logical compartments: three layers above each of two base
regions.

72 FlexPDE 6 : User Guide

Each of these compartments can be assigned unique material properties, and if necessary, unique
boundary conditions.

The cross section now looks like this:

— Surface 4 "Top"

Layer 3 "Abowe"
— Surface 3 "Can Top"

Layer 2 "Can"

— Surface 2 "C'an Bottom"
Layer 1
“Undemeath”

— Surface 1 "Bottom”

Region 1 Region 2 Region 1
”BDX" "B]J:lb" "BDX”

It would seem that we have nine compartments, but recall that region 1 completely surrounds the cylinder,
so the left and right parts of region 1 above are joined above and below the plane of the paper. This results
in six 3D volumes, denoted by the six colors in the figure.

We stress at this point that it is neither necessary nor correct to try to specify each compartment as a
separate entity. You do not need a separate layer and region specification for each material compartment,
and repetition of identical regions in the base plane or layers in the extrusion will cause confusion.

The compartment structure is fully specified by the two coordinates REGION and LAYER, and any
compartment is identified by the intersection of the REGION in the base plane with the LAYER in the
extrusion.

2.6.4 Setting Material Properties by Region and Layer

In our 2D problem, we specified the conductivity of the blob inside the REGION definition for the blob,
and that continues to be the technique in 3D.

The difference now is that we must also specify the LAYER to which the definition applies. We do this with
a LAYER qualification clause:

REGION 2 'blob' { the embedded blob }

User Guide : Using FlexPDE in Three-Dimensional Problems 73

LAYER 'Can' K = 0.001
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360

Without the LAYER qualification clause, the definition would apply to all layers lying above region 2 of the
base plane. Here, the presence of the parameter definition inside a REGION and qualified by a LAYER
selects a specific 3D compartment to which the specification applies.

In the following diagram, we have labeled each of the six distinct compartments with a (region,layer)

coordinate.

K=0.001

! Crden
Blob" ¢ "Undermeath
1

The comprehensive logical structure of parameter redefinitions in the BOUNDARIES section with the
location of parameter redefinition specifications in this grid can be described for the general case as
follows:

BOUNDARIES

REGION 1
params(1,all) { parameter redefinitions for all layers of region 1 }
LAYER 1

params(1,1){ parameter redefinitions restricted to layer 1 of region 1 }
LAYER 2

params(1,2){ parameter redefinitions restricted to layer 2 of region 1 }
LAYER 3

params(1,3){ parameter redefinitions restricted to layer 3 of region 1 }
START(,)TO CLOSE { trace the perimeter }

REGION 2

params(2,all) { parameter redefinitions for all layers of region 2 }
LAYER 1

params(2,1) { parameter redefinitions restricted to layer 1 of region 2 }
LAYER 2

params(2,2) { parameter redefinitions restricted to layer 2 of region 2 }
LAYER 3

params(2,3) { parameter redefinitions restricted to layer 3 of region 2 }
START(,)TO CLOSE { trace the perimeter }

{ ... and so forth for all regions }

74 FlexPDE 6 : User Guide

2.6.5 Void Compartments

The reserved word VOID is treated syntactically the same as a parameter redefinition. If this word appears
in any of the LAYER-qualified positions above, then that (region,layer) compartment will be excluded from
the domain.

REGION 2 'blob' { the embedded blob }
LAYER 'Can' VOID
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360

"Blob" / "Above" "Bow" / Above!

S " Ty
Blob" / "Undermeath

The example problem "Samples | Usage | 3D_Domains | 3D_Void.pde /431" demonstrates this usage.

2.6.6 Limited Regions

In what we have discussed so far, the region structure specified in the 2D base plane has been propagated
unchanged throughout the extrusion dimension. FlexPDE uses the specifier LIMITED REGION to restrict
the defined region to a specified set of layers and/or surfaces.

Instead of propagating throughout the extrusion dimension, a LIMITED REGION exists only in the layers

User Guide : Using FlexPDE in Three-Dimensional Problems 75

and surfaces explicitly referenced in the declarations within the region. Mention of a layer causes the
LIMITED REGION to exist in the specified layer and in its bounding surfaces. Mention of a surface
causes the LIMITED REGION to exist in the specified surface.

In our ongoing example problem, we can specify:

LIMITED REGION 2 'blob' { the embedded blob }
LAYER 'Can' K = 0.001
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

In this form, the canister is not propagated through the "Above" and "Underneath" layers:

"Blok" 1"Can®

2.6.7 Specifying Plots on Cut Planes

In two-dimensional problems, the CONTOUR, SURFACE, VECTOR, GRID output forms display data
values on the computation plane.

In three dimensions, the same displays are available on any cut plane through the 3D figure. The
specification of this cut plane is made by simply appending the equation of a plane to the plot command,
qualified by 'ON':

PLOTS
CONTOUR(Phi) ON x=0

76 FlexPDE 6 : User Guide

Note: More uses of the ON clause, including plots on extrusion surfaces, will be discussed later! s,

We can also request plots of the computation grid (and by implication the domain structure) with the GRID
command:

GRID(x,z) ON y=0

This command will draw a picture of the intersection of the plot plane with the tetrahedral mesh structure
currently being used by FlexPDE. The plot will be painted with colors representing the distinct material
properties present in the cross-section. 3D compartments with identical properties will appear in the same
color. The arguments of the GRID plot are the values to be displayed as the abscissa and ordinate
positions. Deformed grids can be displayed merely by modifying the arguments.

2.6.8 The Complete 3D Canister
With all the described modifications installed, the full script for the 3D canister problem is as follows:

TITLE 'Heat flow around an Insulating Canister'
COORDINATES
Cartesian3
VARIABLES
Phi { the temperature }
DEFINITIONS
K=1 { default conductivity }
R=0.5 { blob radius }
EQUATIONS
Div(-k*grad(phi)) = 0
EXTRUSION
SURFACE 'Bottom’' z=-1/2
LAYER 'underneath’
SURFACE 'Can Bottom' z=-1/4
LAYER 'Can'’
SURFACE 'Can Top' z=1/4
LAYER 'above’
SURFACE 'Top’ z=1/2
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
LIMITED REGION 2 'blob' { the embedded blob }
LAYER 2 k = 0.001 { the canister only }
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS
GRID(y,z) ON x=0
CONTOUR(Phi) ON x=0
VECTOR(-k*grad(Phi)) ON x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0) { note 3D coordinates }
END

User Guide : Using FlexPDE in Three-Dimensional Problems 77

Since we have specified no boundary conditions on the top and bottom extrusion surfaces, they default to
zero flux. This is the standard default, for reasons explained in an earlier section.

The first three of the requested PLOTS are:

Heat flow around an Insulating Canister 22:48:58 11/6/08
. A) A . . . FlexPDE 6.00
v,z
on x=0
0.99 r
0.6 r

0.3

N s |

R/
S

@
?A/‘\

-0.34

-0.6 L

-0.9 -

-0.9 -0.6 -03 0. 03 0.6 0.9

3ex3: Grid#2 P2 Nodes=9855 Cells=6462 RMS Err= 0.0015

Heat flow around an Insulating Canister 22:47:39 11/6/08
1 L) L L 1 1 FlexPDE 6.00
Phi
on x=0
0.9 -
max 1.00
u: 1.00
t: 0.95
S 0.90
0.6 -
| \ ’ T ’ l
] ¢ L n‘w 0.60
03 . | t \ 0.55
! K: 0.50
b f j 0.45
NN .ok
N 0.7 h H R 0.30
| f: 0.25
e: 0.20
Vi d: 0.15
0.3 ' H - b 008
a [f a: 0.00
I , | min 0.00
-0.61 L
-0.91 -

-0.9 -0.6 -03 0. 03 0.6 0.9

3ex2: Grid#2 P2 Nodes=9281 Cells=6012 RMS Err= 0.0015
Integral= 0.999997

78 FlexPDE 6 : User Guide

Heat flow around an Insulating Canister 22:47:39 11/6/08
.)) A . . . FlexPDE 6.00
-k*grad(Phi)
on x=0
0.9 F
max 0.77
0.80
S
0.70
0.6 o — 0.65
— 0.60
1 — — 0.55
i SEEEaaReesEens 0.50
R amam e e e 045
4 e L 0.40
03 e 0.35
:*"‘"‘""':“:’/ 0.30
7 a4 0.25
. T 0.20
-] - 0.15
N 0.1 4 - M 0.10
“n 0.05
-1 N 0.00
Pl B —— :\\Q min 1e-3
PP e
_0_3- :—_—-—-—-—-——N -
i SesssssTTESES
-0.6 r
-0.91 r
-0.9 -0.6 -0.3 0. 0.3 0.6 0.9

Y
3ex2: Grid#2 P2 Nodes=9281 Cells=6012 RMS Err=0.0015

2.6.9 Setting Boundary Conditions in 3D

The specification of boundary conditions in 3D problems is an extension of the techniques used in 2D.

¢ Boundary condition specifications that in 2D applied to a bounding curve are applied in 3D to the
extruded sidewalls generated by that curve.
e The qualifier LAYER numberor LAYER "name" may be applied to such a sidewall boundary
condition to restrict its application to a specific layer of the sidewall.
¢ Boundary conditions for extrusion surfaces are constructed as if they were parameter redefinitions over
a REGION or over the entire 2D domain. In these cases, the qualifier SURFACE number or SURFACE
"name" must precede the boundary condition definition.

In the following figure, we have labeled the various surfaces which can be assigned distinct boundary
conditions. Layer interface surfaces have been labeled with an "s", while sidewall surfaces have been
labeled with "w". We have shown only a single sidewall intersection in our cross-sectional picture, but in
fact each segment of the bounding trace in the base plane can specify a distinct "w" type wall boundary
condition.

User Guide : Using FlexPDE in Three-Dimensional Problems 79

sl d) s[14]

w(1,3)

wil 2)

w(l 1)

s2,1) 5611

The comprehensive logical structure of the BOUNDARIES section with the locations of the boundary
condition specifications in 3D can be diagrammed as follows:

BOUNDARIES
SURFACE 1
s(all, 1) <{ BC's on surface 1 over full domain }
SURFACE 2
s(all, 2) <{ BC's on surface 2 over full domain }
{...other surfaces }
REGION 1
SURFACE 1
s(1,1) { BC's on surface 1, restricted to region 1 }
SURFACE 2
s(1,2) { BC's on surface 2, restricted to region 1 }

START(,) <{ -- begin the perimeter of region m }
w(1,..) { BC's on following segments of sidewall of region 1 on all layers }
LAYER 1
w(1,1) { BC's on following segments of sidewall of region 1, restricted to layer
1}
LAYER 2
w(1,2) { BC's on following segments of sidewall of region 1, restricted to layer

2%

LINE TO

{ segments of the base plane boundary with above BC's }

LAYER 1
w(1,1) { new BC's on following segments of sidewall of region 1, restricted to
layer 1 }

LINE TO
{ continue the perimeter of region 1 with modified boundary conditions }
TO CLOSE
REGION 2
SURFACE 1
s(2,1) { BC's on surface 1, restricted to region 2 }

80 FlexPDE 6 : User Guide

SURFACE 2
s(2,2) { BC's on surface 2, restricted to region 2 }

START(,) { -- begin the perimeter of region m }
w(2,..) { BC's on following segments of sidewall of region 2 on all layers }

LAYER 1
w(2,1){ BC's on following segments of sidewall of region 2, restricted to layer
1}
LAYER 2
w(2,2){ BC's on following segments of sidewall of region 2, restricted to layer
2}
LINE TO
{ segments of the base plane boundary with above BC's }
LAYER 1
w(2,1) { new BC's on following segments of sidewall of region 2, restricted
to layer 1}
LINE TO ...
{ continue the perimeter of region 2 with modified boundary conditions }
TO CLOSE

Remember that, as in 2D, REGIONS appearing later in the script will overlay and cover up portions of
earlier regions in the base plane. So the real extent of REGION 1 is that part of the base plane within the
perimeter of REGION 1 which is not contained in any later REGION.

For an example of how this works, suppose we want to apply a fixed temperature "Tcan" to the surface of
the canister of our previous example. The canister portion of the domain has three surfaces, the bottom,
the top, and the sidewall.

The layer dividing SURFACES that define the bottom and top of the canister are named 'Can Bottom' and
'Can Top'. The part we want to assign is that part of the surfaces which lies above region 2 of the base
plane. We therefore put a boundary condition statement inside of the region 2 definition, together with a
SURFACE qualifier.

The sidewall of the canister is the extrusion of the bounding line of REGION 2, restricted to that part
contained in the layer named 'Can'. So we add a boundary condition to the bounding curve of REGION 2,
with a LAYER qualifier.

The modified BOUNDARIES section then looks like this:

BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
REGION 2 'blob' { the embedded blob }
SURFACE 'Can Bottom' VALUE(Phi)=Tcan
SURFACE 'Can Top' VALUE(Phi)=Tcan
{ parameter redefinition in the 'Can' layer only: }
LAYER 2 k = 0.001
START 'ring' (R,0)
{ boundary condition in the 'Can’ layer only: }

User Guide : Using FlexPDE in Three-Dimensional Problems 81

LAYER 'Can’ VALUE(Phi)=Tcan
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

2.6.10 Shaped Layer Interfaces

We have stated that the layer interfaces need not be planar. But FlexPDE makes some assumptions about
the layer interfaces, which places some restrictions on the possible figures.

Figures must maintain an extruded shape, with sidewalls and layer interfaces (the sidewalls cannot
grow or shrink)

Layer interface surfaces must be continuous across region boundaries. If a surface has a vertical jump,
it must be divided into layers, with a region interface at the jump boundary and a layer spanning the

jump. (Notthis: = L_ butthis: __ [)
Layer interface surfaces may merge, but may not invert. Use a MAX or MIN function in the surface
definition to block inversion.
Using these rules, we can convert the canister of our example into a sphere by placing spherical caps on
the cylinder.
The equation of a spherical end cap is
Z = Zcenter + sqrt(RN"2 — x"2 - y"N2)
Or,
Z = Ztop - R + sqrt(R"2 — x"2 - yN2)
To avoid grazing contact of this new sphere with the top and bottom of our former box, we will extend
the extrusion from —1 to 1.
To avoid arithmetic errors, we will prevent negative arguments of the sqrt.

Our modified script now looks like this:

TITLE 'Heat flow around an Insulating Sphere'
COORDINATES
Cartesian3
VARIABLES
Phi { the temperature }
DEFINITIONS
K=1 { default conductivity }
R =0.5 { sphere radius }
{ shape of hemispherical cap: }
Zsphere = sqrt(max(R"2-x"~2-y"~2,0))
EQUATIONS
Div(-k*grad(phi)) = 0
EXTRUSION
SURFACE 'Bottom' z=-1
LAYER 'underneath'
SURFACE 'Sphere Bottom' z = -max(Zsphere,0)
LAYER 'Can'
SURFACE 'Sphere Top' z = max(Zsphere,0)
LAYER 'above'
SURFACE 'Top' z=1
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)

82 FlexPDE 6 : User Guide

VALUE(Phi)=1LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
LIMITED REGION 2 'blob' { the embedded blob }
LAYER 2 K = 0.001
START 'ring' (RSphere,0)
ARC(CENTER=0,0) ANGLE=360
TO CLOSE
PLOTS
GRID(y,z) on x=0
CONTOUR(Phi) on x=0
VECTOR(-k*grad(Phi)) on x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0)
END

Cut-away and cross-section images of the LAYER x REGION compartment structure of this layout looks
like this:

The contour plot looks like this:

User Guide : Using FlexPDE in Three-Dimensional Problems 83

Heat flow around an Insulating Sphere 22:52:06 11/6/08
. . A . . . 7 FlexPDE 6.00

Phi

on x=0
0.9 F

max 1.00

u: 1.00

t: 0.95
m s 0.90
0.6 $

W
1 t

0.3 B

-0.3 B

|

OOO0CO00000000000
Qoo NNWWEBUINO D
SOoTomooTonO MmO

JuoToQa® *Q@ I A TS

0.9 T

-0.9 -0.6 -0.3 0. 0.3 0.6 0.9
Y

3ex4: Grid#1 P2 Nodes=12132 Cells=7893 RMS Err= 9.2e-4
Integral= 1.999999

Notice that because of the symmetry of the 3D figure, this plot looks like a rotation of the 2D contour plot
in "Putting It All Together".

2.6.11 Surface-Generating Functions

FlexPDE version 6 includes three surface-generation functions (PLANE, CYLINDER and SPHERE) to
simplify the construction of 3D domains (See Surface Functions/1781in the Problem Descriptor Reference)

With the SPHERE command, for example, we could modify the Zsphere definition above as

{ shape of hemispherical cap: }
Zsphere = SPHERE((0,0,0), R)

We can also build a duct with cylindrical top and bottom surfaces using the following script fragments:

DEFINITIONS
RO=1 { cylinder radius }
Len =3 { cylinder length }
theta = 45 { axis direction in degrees }
c = cos(theta degrees) { direction cosines of the axis direction }
s = sin(theta degrees)
x0 = -(len/2)*c { beginning point of the cylinder axis }
y0 = -(len/2)*s
zoff = 10 { a z-direction offset for the entire figure }

{ The cylinder function constructs the top surface of a cylinder with azis along z=0.5. The
positive and negative values of this surface will be separated by a distance of one unit at
the diameter. }

84 FlexPDE 6 : User Guide

zs = CYLINDER((x0,y0,0.5), (x0+Len*c,yO+Len*s, 0.5), RO)

EXTRUSION
SURFACE z = zoff-zs { the bottom half-surface }
SURFACE z = zoff+zs { the top half-surface }
BOUNDARIES
REGION 1

START (x0,y0)
LINE TO (x0+R0*c,y0-R0O*s)
TO (x0+Len*c+R0*c,y0+Len*s-R0*s)
TO (x0+Len*c-R0*c,y0+Len*s+R0*s)
TO (x0-RO*c,y0+RO0*s)
TO CLOSE

The constructed figure looks like this:

115

>
PRy
i
>®

AT6T®

See the example problem "Samples | Usage | 3D_Domains | 3D_Cylspec.pde"” for the complete cylinder
script.

2.6.12 Integrals in Three Dimensions

In three-dimensional problems, volume integrals may be computed over volume compartments selected by
region and layer.

¢ Result = VOL_INTEGRAL(<integrand>)
Computes the integral of the integrand over the entire domain.

e Result = VOL_INTEGRAL(<integrand>, <region name>)
Computes the integral of the integrand over all layers of the specified region.

¢ Result = VOL_INTEGRAL(<integrand>, <layer name>)

User Guide : Using FlexPDE in Three-Dimensional Problems 85

Computes the integral of the integrand over all regions of the specified layer.

¢ Result = VOL_INTEGRAL(<integrand>, <region name>, <layer name>)
Computes the integral of the integrand over the compartment specified by the region and layer
names.

¢ Result = VOL_INTEGRAL(<integrand>, <region number>, <layer number>)
Computes the integral of the integrand over the compartment specified by the region and layer
numbers.

Surface integrals may be computed over selected surfaces. From the classification of various qualifying
names, FlexPDE tries to infer what surfaces are implied in a surface integral statement. In the case of
non-planar surfaces, integrals are weighted by the actual surface area.

e Result = SURF_INTEGRAL(<integrand>)
Computes the integral of the integrand over the outer bounding surface of the total domain.

¢ Result = SURF_INTEGRAL(<integrand>, <surface name> {, <layer_name>})
Computes the integral of the integrand over all regions of the named extrusion surface. If the
optional <layer_name> appears, it will dictate the layer in which the computation is performed.

¢ Result = SURF_INTEGRAL(<integrand>, <surface name>, <region name> {,
<layer_name>})
Computes the integral of the integrand over the named extrusion surface, restricted to the named
region. If the optional <layer_name> appears, it will dictate the layer in which the computation is
performed.

¢ Result = SURF_INTEGRAL(<integrand>, <region name>, <layer name>)
Computes the integral of the integrand over all surfaces of the compartment specified by the region
and layer names. Evaluation will be made inside the named compartment.

¢ Result = SURF_INTEGRAL(<integrand>, <boundary name> {, <region_name>})

Computes the integral of the integrand over all layers of the sidewall generated by the extrusion of
the named base-plane curve. If the optional <region name> argument appears, it controls on
which side of the surface the integral is evaluated. Portions of the surface that do not adjoin the
named layer will not be computed.

e Result = SURF_INTEGRAL(<integrand>, <boundary name>, <layer name> {,
<region_name>})
Computes the integral of the integrand over the sidewall generated by the extrusion of the named
base-plane curve, restricted to the named layer. If the optional <region name> argument appears,
it controls on which side of the surface the integral is evaluated. Portions of the surface that do not
adjoin the named layer will not be computed.

Note: The example problem "Samples | Usage | 3D_Integrals.pdel+12" demonstrates several forms of
integral in a three-dimensional problem.

Let us modify our Canister problem to contain a heat source, and compare the volume integral of the
source with the surface integral of the flux, as checks on the accuracy of the solution:

TITLE 'Heat flow from an Insulating Canister

86 FlexPDE 6 : User Guide

COORDINATES
Cartesian3
VARIABLES
Phi { the temperature }
DEFINITIONS
K=1 { default conductivity }
R =0.5 { blob radius }
S=0
EQUATIONS
Div(-k*grad(phi)) = S
EXTRUSION
SURFACE 'Bottom' z=-1/2
LAYER 'underneath'
SURFACE 'Can Bottom' z=-1/4
LAYER 'Can'
SURFACE 'Can Top' z=1/4
LAYER 'above'
SURFACE 'Top' z=1/2
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
REGION 2 'blob" { option: could be LIMITED }
LAYER 2 k = 0.001 { the canister only }
S=1 { still the canister }
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS
GRID(y,z) on x=0
CONTOUR(Phi) on x=0
VECTOR(-k*grad(Phi)) on x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0)
SUMMARY
REPORT(Vol_Integral(S,'blob’,'can’)) AS 'Source Integral’
REPORT(Surf_Integral(NORMAL(-k*grad(Phi)),'blob’,'can’))
AS 'Can Heat Loss'
REPORT(Surf_Integral(NORMAL(-k*grad(Phi))))
AS 'Box Heat Loss'’
REPORT(Vol_Integral(S,'blob’,'can’
)-Surf_Integral(NORMAL(-k*grad(Phi))))
AS 'Energy Error'
END

The contour plot is as follows:

User Guide : Using FlexPDE in Three-Dimensional Problems 87

Heat flow from an Insulating Canister 21:51:39 11/6/08
. 7) . . . 7 FlexPDE 6.00
Phi
on x=0
0.99 r
max 26.0
z: 25.0
y 24.0
X 23.0
0.6 - W 22.0

0.3 B

-0.3 B

-0.6 L

30MTOQ0 Q@S TTTA T3S 0TO
OO=2NWAOID N QO 2 - b b
cooo0DoooOO O TNYWRUIIG
S00056606006000000000

-0.9 -0.6 -0.3 0. 0.3 0.6 0.9
Y

3ex5: Grid#3 P2 Nodes=20159 Cells=14020 RMS Err= 0.0016
Integral= 7.395459

The summary page shows the integral reports:

SUMMARY
Source Integral= 0.392690
Can Heat Loss= 0387963

Box Heat Loss= 0.384317
Energy Error=-1.626284e-3

Note: The "Integral” reported at the bottom of the contour plot is the default Area_Integral(Phi)
reported by the plot processor.

2.6.13 More Advanced Plot Controls

We have discussed the specification of plots on cut planes in 3D. You can, if you want, apply restrictions to
the range of such plots, much like the restrictions of integrals.

You can also specify plots on extrusion SURFACES (layer interface surfaces), even though these surfaces
may not be planar.

The basic control mechanism for plots is the ON <thing> statement.
For example, the statement

CONTOUR(Phi) ON 'Sphere Top' ON 'Blob'

requests a contour plot of the potential Phi on the extrusion surface named 'Sphere Top', restricted to the
region 'Blob'.

88 FlexPDE 6 : User Guide

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob' ON 'Can'

requests a contour plot of the normal component of the heat flux on the top part of the sphere, with
evaluation to be made within layer 'Can’, i.e., inside the sphere.

¢ In general, the qualifier ON <name> will request a localization of the plot, depending on the type of
object named by <name>.

e The qualifier ON REGION <number> selects a region by number, rather than by name.

e The qualifier ON SURFACE <number> selects a layer interface surface by number, rather than by
name.

e The qualifier ON LAYER <number> selects a layer by number, rather than by name.

As an example, let us request a plot of the heat flux on the top of the sphere, as shown above. We will add
this command to the PLOTS section, and also request an integral over the same surface, as a cross check.
The plot generator will automatically compute the integral over the plot grid. This computation should give
the same result as the SURF_INTEGRAL, which uses a quadrature on the computation mesh.

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob' ON 'Can'
REPORT(SURF_INTEGRAL(NORMAL(-k*GRAD(Phi)),'Sphere Top','Blob','Can"))
AS 'Surface Flux'

The result looks like this:

Heat flow around an Insulating Sphere 22:52:06 11/6/08
L L L L 1 FlexPDE 6.00
NORMAL(-K*GRAD(Phi))
ON Sphere Top
ON Blob
0.4 | ON Can
max 7.12
o 7.00
B: 6.50
A 6.00
z 5.50
0.2 -
N 1.50
> 0 q 1.00
p 0.50
o 0.00
n -0.50
m -1.00
I 4150
J Lk 2,00
0.2 i 2150
i -3.00
h: 350
g: -4.00
f: 450
e: -5.00
J L d: 550
-04 c: -6.00
b: 650
a: -7.00
min -7.17
T T T T T _E.
0.4 0.2 0. 0.2 04 Scale = B-4
X

3ex4: Grid#1 P2 Nodes=12132 Cells=7893 RMS Err= 9.2e-4
Surface Flux=-5.216031e-8 Surf_Integral= -6.490344e-5

Since in this case the integral is a cancellation of values as large as 7e-4, the reported "Surface Flux" value
of -5.2e-8 is well within the default error target of ERRLIM=0.002. The automatically generated plot grid
integral, "Surf_Integral", shows greater error at -6.49e-5, due to poorer resolution of integrating the
area-weighted function in the plot plane.

User Guide : Complex Variables 89

2.7

Complex Variables

In previous versions of FlexPDE, it has been possible to treat complex variables and equations by declaring
each component as a VARIABLE and writing a real PDE for each complex component.

In version 6, FlexPDE understands complex variables and makes provision for treating them conveniently.
The process starts by declaring a variable to be COMPLEX, and naming its components:

VARIABLES
C = COMPLEX(Cr,Ci)

Subsequently, the complex variable C can be referenced by name, or its components can be accessed

independently by their names.

In the EQUATIONS section, each complex variable can be given an equation, which will be interpreted as
dealing with complex quantities. The complex equation will be processed by FlexPDE and reduced to two
real component equations, by taking the real and imaginary parts of the resulting complex equation.

For example, the time-harmonic representation of the heat equation can be presented as

EQUATIONS
C: DIV(k*GRAD(C)) - COMPLEX(0,1)*C =0
Alternatively, the individual components can be given real equations:

EQUATIONS
Cr: DIV(k*GRAD(Cr) +Ci=0
Ci: DIV(k*GRAD(Ci))-Cr=0

In a similar way, boundary conditions may be assigned either to the complex equation or to each
component equation individually:

VALUE(C) = COMPLEX(1,0) assigns 1 to the real part and O to the imaginary part of C
or

VALUE(Cr) = 0 NATURAL(Ci) =0

Any parameter definition in the DEFINITIONS section may be declared COMPLEX as well:

DEFINITIONS
complexname = COMPLEX(realpart, imaginarypart)

FlexPDE recognizes several fundamental complex operators|135;

REAL (complex) Extracts the real part of the complex number.

IMAG (complex) Extracts the imaginary part of the complex number.

CARG (complex) Computes the Argument (or angular component) of the complex number,
implemented as CARG(complex(x,y)) = Atan2(y,x).

CONJ (complex) Returns the complex conjugate of the complex number.

CEXP (complex) Computes the complex exponential of the complex number, given by

CEXP(complex(x,y)) = exp(x+iy) = exp(x)*(cos(y)+i*sin(y)).

COMPLEX quantities can be the arguments of PLOT commands, as well. Occurrence of a complex
quantity in a PLOT statement will be interpreted as if the real and imaginary parts had been entered
separately in the PLOT command.

20 FlexPDE 6 : User Guide

ELEVATION(C) FROM ATO B

will produce a plot with two traces, the real and imaginary parts of C.

2.7.1 The Time-Sinusoidal Heat

Suppose we wish to discover the time-dependent behavior of our example Cartesian blob! 42" due to the
application of a time-sinusoidal applied temperature.

The time-dependent heat equation is Div(K*Grad(Phi)) = Cp*dt(Phi)
If we assume that the boundary values and solutions can be represented as
Phi(x,y,t) = Cphi(x,y)*exp(i*omega*t)

Substituting in the heat equation and dividing out the exponential term, we are left with a complex
equation

Div(K*Grad(Cphi)) - Complex(0,1)*Cphi = 0

The time-varying temperature Phi can be recovered from the complex Cphi simply by multiplying by the
appropriate time exponential and taking the real part of the result.

The modified script becomes:

TITLE 'Heat flow around an Insulating blob'

VARIABLES
Phi = Complex(Phir,Phii) { the complex temperature amplitude }
DEFINITIONS
K=1 { default conductivity }
R=0.5 { blob radius }
EQUATIONS
Phi: Div(-k*grad(phi)) - Complex(0,1)*Phi = 0
BOUNDARIES

REGION 1 'box'
START(-1,-1)
VALUE(Phi)=Complex(0,0) LINE TO (1,-1)

NATURAL(Phi)=Complex(0,0) LINE TO (1,1)
VALUE(Phi)=Complex(1,0) LINE TO (-1,1)
NATURAL(Phi)=Complex(0,0) LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
k = 0.01 { change K for prettier pictures }
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS
CONTOUR(Phir) CONTOUR(Phii)
VECTOR(-k*grad(Phir))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phir))) ON 'ring'
END

Running this script produces the following results for the real and imaginary components:

User Guide : Complex Variables

Time Sinusoidal Heat flow around an Insulating blob 22:36:39 11/7/08
L L L L L L L FlexPDE 6.00
. Phir
0.99 r max 1.00
W 1.00
\ 0.95
u 0.90
t 0.85
0.6 3
P 0.65
o 0.60
4 L : 0.55
03 m 0.50
B 045
k: 0.40
.
> 07 T 0.25
g: 0.20
f: 0.15
o 0.0
-0.31 roc 0.00
b: -0.05
a: -0.10
min -0.11
-0.6- 3
-0.9- F
08 06 03 0. 03 06 0.9
X
ex10: Grid#4 P2 Nodes=4821 Cells=2378 RMS Err= 6.8e-5
k= 1.000000 INTEGRAL(Phir, 'blob'y= 0.068905 Integral= 1.533706
Time Sinusoidal Heat flow around an Insulating blob 22:36:39 11/7/08
L 1 L L L L L FlexPDE 6.00
Phii
0.9 r max 0.03
m: 0.00
[E 0.03
0.6 Lo 012
h: 015
g: -0.18
f: -0.21
't 037
03] o -0.30
b: -0.33
a: 036
min -0.37
> 0.1 3
-0.3- 3
0.6+ 3
-0.9- L

ex10: Grid#4 P2 Nodes=4821 Cells=2378 RMS Err= 6.8e-5
k= 1.000000 INTEGRAL(Phii, 'blob')=-0.115794 Integral=-0.473407

The ELEVATION trace through the center shows:

92 FlexPDE 6 : User Guide

Time Sinusoidal Heat flow around an Insulating blob 12:46:02 11/8/08
FlexPDE 6.00
Phi
d FROM (0,-1
09)to (0,1
1: Re(Phi)
0.6
=
o 0.3
0 — |
\\ /
1_.
-0.3
1 2
-0.9 -0.6 -0.3 0. 0.3 0.6 0.9
Y

ex10: Grid#4 P2 Nodes=4821 Cells=2378 RMS Err= 6.8e-5
Integral(a)= 0.506903 Integral(b)=-0.158257

2.7.2 Interpreting Time-Sinusoidal Results

Knowledge of the real and imaginary parts of the complex amplitude function is not very informative.
What we really want to know is what the time behavior of the temperature is. We can investigate this with
the help of some other facilities of FlexPDE 6.

We can examine distributions of the reconstructed temperature at selected times using a REPEAT
statement

PLOTS
REPEAT tx=0 BY pi/2 TO 2*pi
SURFACE(Phir*cos(tx)+Phii*sin(tx)) as "Phi at t="+$[4]tx
ENDREPEAT

We can also reconstruct the time history at selected positions using ARRAYS/ 156 The ARRAY facility
allows us to declare arbitrary arrays of values, manipulate them and plot them.

We will declare an array of time points at which we wish to evaluate the temperature, and compute the sin
and cos factors at those times. We also define an ARRAY-valued function to return the time history at a

point:
DEFINITIONS
ts = ARRAY (0 BY pi/20 TO 2*pi) { An array of 40 times }
fr = cos(ts) fi = sin(ts) { the arrays of trigonometric factors }
poft(px, py) = EVAL(phir,px,py)*fr + EVAL(phii,px,py)*fi
PLOTS

ELEVATION(poft(0,0), poft(0,0.2), poft(0,0.4), poft(0,0.5)) VS ts
AS "Histories"

User Guide : Complex Variables

Two of the plots produced by the addition of these script lines are:

Time Sinusoidal Heat flow around an Insulating blob 12:46:02 11/8/08

FlexPDE 6.00
Phiatt= 1.57
viewpoint(-0.57,-1.39, 30.)

max 0.03

0.03

Phi at t

min -0.37

A0

ex10: Grid#4 P2 Nodes=4821 Cells=2378 RMS Err= 6.8e-5
Integral= -0.473407

Time Sinusoidal Heat flow around an Insulating blob 12:46:02 11/8/08
FlexPDE 6.00
0.9

%_\ 4: poft

03

—
[Vilam:
/

Histories
o

N

0. 1. 2. 3.

IS
o
o

ts

ex10: Grid#4 P2 Nodes=4821 Cells=2378 RMS Err= 6.8e-5
Integral(a)= 2.775558e-17 Integral(b)= 1.144917e-16 Integral(c)= -6.938894e-17 Integral(d)= -1.110223e-16

94 FlexPDE 6 : User Guide

2.8

Vector Variables

FlexPDE version 6 supports the definition of VECTOR variables. Each VECTOR variable is assumed to
have a component in each of the three spatial coordinates implied by the COORDINATES /1551 section in
the script, regardless of the number of dimensions represented in the computation domain.

For example, you can construct a one-dimensional spherical model of three vector directions. Values will
be assumed to vary only in the radial direction, but they can have components in the polar and azimuthal
directions, as well.

The use of VECTOR variables begins by declaring a variable to be a VECTOR [157}, and naming its
components:

VARIABLES
V = VECTOR(Vx,Vy,Vz)

The component directions are associated by position with the directions implicit in the selected
COORDINATES. In YCYLINDER (R,Z,Phi) coordinates, the vector components will be (Vr,Vz,Vphi).

Components may be omitted from the right, in which case the missing components will be assumed to have
zero value.

A component may be explicitly declared to have zero value, by writing a 0 in its component position, as in

V = VECTOR(0,0,Vphi)
This will construct a one-variable model, in which the variable is the azimuthal vector component.

Subsequently, the vector variable V can be referenced by name, or its components can be accessed
independently by their names.

In the EQUATIONS section, each vector variable can be given an equation, which will be interpreted as
dealing with vector quantities. The vector equation will be processed by FlexPDE and reduced to as many
real component equations as are named in the declaration, by taking the corresponding parts of the
resulting vector equation.

For example, the three dimensional cartesian representation of the Navier-Stokes equations can be
presented as

EQUATIONS
V: dens*DOT(V,GRAD(V)) + GRAD(p) - visc*DIV(GRAD(V)) =0

Alternatively, the individual components can be given real equations:

EQUATIONS

Vx: dens*(Vx*DX(Vx)+Vy*DY(Vx)+Vz*DZ(Vx)) + DX(p) - visc*DIV(GRAD(Vx))
Vy: dens*(Vx*DX(Vy)+Vy*DY(Vy)+Vz*DZ(Vy)) + DY(p) - visc*DIV(GRAD(Vy))
Vz: dens*(Vx*DX(Vz)+Vy*DY(Vz)+Vz*DZ(Vz)) + DZ(p) - visc*DIV(GRAD(Vz))

0
0
0

In a similar way, boundary conditions may be assigned either to the complex equation or to each
component equation individually:

VALUE(V) = VECTOR(1,0,0)
or

VALUE(VX) = 0 NATURAL(VY) = 0

User Guide : Vector Variables 95

Any parameter definition in the DEFINITIONS section may be declared VECTOR as well:

DEFINITIONS
vectorname = VECTOR(xpart,ypart,zpart)

VECTOR quantities can be the arguments of PLOT commands, as well. Occurrence of a vector quantity in

a PLOT statement will be interpreted as if the component parts had been entered separately in the PLOT
command.

ELEVATION(V) FROM ATO B

will produce a plot with as many traces as are active in the COORDINATES definition.

Examples:
Samples | Usage | Vector_Variables | Vector_Variables.pde 525

2.8.1 Curvilinear Coordinates

An aspect of vector variables in curvilinear coordinates that is sometimes overlooked is that the derivative
of a vector is not necessarily the same as the vector of derivatives of the components. This is because in
differentiating a vector, the unit vectors in the coordinate space must also be differentiated.

In cylindrical (R,Phi,Z) coordinates, for example, the radial component of the Laplacian of a vector V is
DEL2(Vr) - Vr/R"2 - 2*DPHI(Vphi)/R"2
The extra 1/R” 2 terms have arisen from the differentiation of the unit vectors.

FlexPDE performs the correct expansion of the differential operators in all supported coordinate systems.

2.8.2 Magnetic Vector Potential

Our Cylindrical torus problem|s0 can easily be converted to a model of a current-carrying torus inside a
box.

The geometry is unchanged, but we now solve for the magnetic vector potential A. We will also move the
location slightly outward in radius to avoid the singularity at R=0.

Maxwell's equation for the magnetic field can be expressed in terms of the magnetic vector potential as
Curl(Curl(A)/mu) =]
Here J is the vector current density and mu is the magnetic permeability.

The script becomes

TITLE 'Magnetic Field around a Current-Carrying Torus'
COORDINATES YCYLINDER { implicitly R,Z,Phi }
VARIABLES

A = VECTOR(0,0,Aphi)
DEFINITIONS

J = VECTOR(0,0,0) <{ default current density }

mu =1

Rad = 0.5 { blob radius (renamed)?}
EQUATIONS

96 FlexPDE 6 : User Guide

A: CURL(CURL(A)/mu)) =]
BOUNDARIES
REGION 1 'box'
START(1,-1)
VALUE(A)=VECTOR(0,0,0)
LINE TO (3,-1) TO (3,1) TO (1,1) TO CLOSE
REGION 2 'blob' { the torus }
J = VECTOR(0,0,1) { current in the torus }
START 'ring' (2,Rad)
ARC(CENTER=2,0) ANGLE=360 TO CLOSE
PLOTS
CONTOUR(Aphi) as "Vector Potential”
VECTOR(CURL(A)) as "Magnetic Induction"
ELEVATION(Aphi) ON 'ring'
END

The resulting plots are:

Magnetic Vector Potential around a Current-Carrying Rod

0.9

0.6

0.3

-0.3

-0.6

-0.9

T T T T T T T
09 1.2 1.5 1.8 21 24 27 3.
R

ex11: Grid#3 P2 Nodes=2982 Cells=1449 RMS Err= 5.8e-5
Vol_Integral= 2.478625

Vector Potential

21:30:36 11/8/08
FlexPDE 6.00

max

NPmoom

30TO0Q0 QST TTA T3S 0T T 0 e <

124
o

oooooo
[EERENINTIT

0000000000 OOODOOOOOOOOO

D000 O = = =
SOIINNOPERATHOULVDRODOO O —~

User Guide : Vector Variables 97

Magnetic Vector Potential around a Current-Carrying Rod 21:30:36 11/8/08
L I L 1 1 1 1 FlexPDE 6.00
Magnetic Induction
o9 | IIIITIIT DIl e 030
PP, 0.30
i /////////%W@R‘\\\\\\\ SV 029
] A Y 0.28
NV 0.27
0.6 - NNt - 0.26
j j RN 8-%2
VA [:
! EER .
| t L 0.21
03 Tt 0.20
Tt 8'12
1 } ; ; 0.17
0.16
N0 trror 0.15
, Prtt 0.14
| i 012
0.11
0.3 rrtt L 010
It 0.08
) NN 0.07
061 N § B A A] L 882
| iy \\\\\\\w//// VAP AV AV 0:04
VoA \\\\\\\\ﬂ_)—)——)ﬂ/vﬂ// A A 0.03
NN PR 0.02
NN PR 0.01
0.9 o F 0.00
T min Te-4
0.9 12 15 18 21 24 27 3.
R
ex11: Grid#3 P2 Nodes=2982 Cells=1449 RMS Err= 5.8e-5
Magnetic Vector Potential around a Current-Carrying Rod 22:01:20 11/8/08
62 102 FlexPDE 6.00
-1 Aphi
ON ring
1: Aphi
9.9

Aphi
©
(&
—
~

8.7 A\

%

2 3 4 1
0. 05 1. 1.5 2. 25 3.

Distance

ex11: Grid#3 P2 Nodes=2982 Cells=1449 RMS Err= 5.8e-5
Surf_Integral= 3.630098

29 Variables Inactive in Some Regions

FlexPDE 6 supports the ability to restrict some variables and equations to act only in specified REGIONS.
This feature is controlled by declaring variables to be INACTIVE in some regions.

98 FlexPDE 6 : User Guide

VARIABLES
varl, var2 {,...}
BOUNDARIES
REGION 1
INACTIVE(varl, var2 {,...})

In solving the EQUATIONS for these variables, it will be as if the INACTIVE regions had not been
included in the domain definition. Boundaries between regions in which the variables are active and those
in which they are inactive will be treated as exterior boundaries for these variables. Boundary conditions
may be placed on these boundaries as if they were the exterior boundary of the system.

2.9.1 A Chemical Beaker

As an example of Regionally Inactive Variables, let us use the Cartesian Blob |42 test problem, and modify
it to represent a chemical beaker immersed in a cooling bath.

Inside the beaker we will place chemicals A and B that react to produce heat. Temperature will be allowed
to diffuse throughout the beaker and into the cooling bath, but the chemical reactions will be confined to
the beaker. The cooling bath itself is insulated on the outer wall, so no heat escapes the system. The
modified script is as follows:

TITLE "A Chemical Beaker"

VARIABLES

Phi(0.1) { the temperature }

A(0.1), B(0.1) { the chemical components }
DEFINITIONS

Kphi =1 { default thermal conductivity }

Ka = 0.01 Kb = 0.001 <{ chemical diffusivities }

H=1 { Heat of reaction }

Kr = 1+exp(3*Phi) { temperature dependent reaction rate }

Cp=1 { heat capacity of mixture }

R =0.5 { blob radius }

A0 =1 BO =2 { initial quantities of chemicals }
INITIAL VALUES

A=A0

B = B0
EQUATIONS

Phi: Div(kphi*grad(phi)) + H*kr*A*B = Cp*dt(phi)
A: Div(ka*grad(A)) - kr*A*B = dt(A)
B: Div(kb*grad(B)) - kr*A*B = dt(B)
BOUNDARIES
REGION 1 'box'
INACTIVE(A,B) { inactivate chemicals in the outer region }
START(-1,-1)
NATURAL(Phi)=0
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE
REGION 2 'blob' { the embedded blob }
kphi = 0.02
START 'ring' (R,0)
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
TIME 0 TO 40
PLOTS

User Guide : Variables Inactive in Some Regions 99

FOR t=0.1, 0.2, 0.3, 0.5, 1, 2, 5, 10, 20, ENDTIME
SURFACE(Phi)
SURFACE(A)
HISTORY(Phi) AT (0,0) (0,0.4) (0,0.49) (0,0.6)
REPORT integral(Phi)/integral(1) AS "Average Phi"
REPORT integral(B,'blob")/integral(1,'blob') as "Residual B"

END
A Chemical Beaker 10822 112008 THiS plot of temperature shows diffusion
. FePPES® heyond the boundaries of the beaker.
viewpoint(-0.57,-1.39, 30.)
max 0.96
1.00
E 2
.90
.85
.80
— .75
.70
.65
.60
.55
.50
.45
.40
.35
.30
.25
.20
.15
.10
.05
.00
min 0.02
ex12: Cycle=46 Time= 0.3000 dt=0.0267 P2 Nodes=2297 Cells=1118 RMS Err= 4.5e-4
Integral= 0.704216
A Chemical Beaker 10822112008 L NS plot of concentration A shows
FlexPDE 6.00 . . .
A depression in the center where higher
viewpoint(-0.57,-1.39, 30.) . .
—— temperature increases the reaction rate. No
038 chemical diffuses beyond the beaker

boundary.

S8 3R BRABIBBOINBRODNBOOIN

coooo0000000000000000000
gttt o

ex12: Cycle=46 Time=0.3000 dt=0.0267 P2 Nodes=2297 Cells=1118 RMS Err= 4.5e-4
Integral= 0.079722

100 FlexPDE 6 : User Guide

A Chemical Beaker 150822112008 LHis plot of temperature history shows an
FlexPDE 6.00 .
. HISTORY average value of 0.196348. This agrees
J: Phi favorably with the energy conservation

value of H*pi*Rad”2/(Cp*Box”"N2) =

° 0.196350. The residual quantity of B is
correct at 1.0.

04 \

0. ////

ex12: Cycle=78 Time=5.0000 dt=0.3743 P2 Nodes=1561 Cells=750 RMS Err= 1.2e-4
Average Phi= 0.196348 Residual B= 0.999968

210 Moving Meshes

FlexPDE supports methods for moving the domain boundaries and computation mesh during the course of
a problem run.

The mechanisms for specifying this capability are simple extensions of the existing script language. There
are three parts to the definition of a moving mesh:

¢ Declare a surrogate variable for each coordinate you wish to move:
VARIABLES
Xm = MOVE(x)
e Write equations for the surrogate variables:
EQUATIONS
dt(xm) = umesh
e Write boundary conditions for the surrogate variables:
BOUNDARIES
START (0,0) VELOCITY(xm) = umesh

The specification of ordinary equations is unaffected by the motion of the boundaries or mesh.
EQUATIONS are assumed to be presented in Eulerian (Laboratory) form. FlexPDE symbolically applies
motion correction terms to the equations. The result of this approach is an Arbitrary Lagrange/Eulerian
(ALE) model, in which user has the choice of mesh velocities:

e Locking the mesh velocity to a fluid velocity results in a Lagrangian model. (FlexPDE has no mechanism
for reconnecting twisted meshes, so this model is discouraged in cases of violent motion).

¢ Specifying a mesh velocity different from the fluid velocity preserves mesh integrity while still allowing
deformation of the bounding surfaces or following bulk motion of a fluid.

e If no mesh motion is specified, the result is an Eulerian model, which has been the default in previous
versions of FlexPDE.

EULERIAN and LAGRANGIAN EQUATIONS

User Guide : Moving Meshes 101

The EQUATIONS section is assumed to present equations in the Eulerian (Laboratory) frame.

The EQUATIONS section can optionally labeled LAGRANGIAN EQUATIONS, in which case
FlexPDE will apply no motion corrections to the equations. The user must then provide equations that
are appropriate to the moving nodes.

For clarity, the section label EULERIAN EQUATIONS can be used to specify that the equations are
appropriate to the laboratory reference frame. This is the default interpretation.

2.10.1 Mesh Balancing

A convenient method for distributing the computation mesh smoothly within a moving domain boundary
is simply to diffuse the coordinates or the mesh velocities.

For example, suppose we change our basic example problem to model a sphere of oscillating size Rm=0.5
+ 0.25*cos(t).

Diffusing Mesh Coordinates

We define surrogate coordinates for X and Y:

VARIABLES
Phi
Xm = MOVE(x)
Ym = MOVE(y)

For the EQUATIONS of the mesh coordinates, we will use simple diffusion equations to distribute the
positions smoothly in the interior, expecting the actual motions to be driven by boundary conditions:

Div(Grad(Xm)) = 0
Div(Grad(Ym)) =0
We can apply the boundary velocities directly to the mesh coordinates on the blob surface using the time

derivative of R and geometric rules:

VELOCITY(Xm) = -0.25*sin(t)*x/r
VELOCITY(Ym) = -0.25*sin(t)*y/r

Diffusing Mesh Velocities

Alternatively, we can define mesh velocity variables as well as the surrogate coordinates for X and Y:

VARIABLES
Phi
Xm = MOVE(x)
Ym = MOVE(y)
Um
Vm

The EQUATIONS for the mesh coordinates are simply the velocity relations:

dt(Xm) = Um
dt(Ym) = Vm

For the mesh velocities we will use a diffusion equation to distribute the velocities smoothly in the interior:

102 FlexPDE 6 : User Guide

div(grad(Um)) = 0
div(grad(Vm)) =0

The boundary conditions for mesh velocity on the blob are as above:

VALUE(Um) = -0.25*sin(t)*x/r
VALUE(Vm) = -0.25*sin(t)*y/r

Since the finite element equations applied at the boundary nodes are averages over the cells, we must also
apply the hard equivalence of velocity to the mesh coordinates on the blob boundary

VELOCITY(Xm) = Um
VELOCITY(Ym) = Vm

2.10.2 The Pulsating Blob

Using the position balancing form from the preceding paragraph, the modified script for our example
problem becomes:

TITLE 'Heat flow around an Insulating blob'
VARIABLES
Phi { the temperature }
Xm = MOVE(x) { surrogate X }
Ym = MOVE(y) { surrogate Y }

DEFINITIONS

K=1 { default conductivity }

RO = 0.75 { initial blob radius }
EQUATIONS

Phi: Div(-k*grad(phi)) =0
Xm: div(grad(Xm)) =0
Ym: div(grad(Ym)) =20
BOUNDARIES
REGION 1 'box'
START(-1,-1)
VALUE(Phi)=0 VELOCITY(Xm)=0 VELOCITY(Ym)=0
LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE
REGION 2 'blob' { the embedded blob }
k = 0.001
START 'ring' (R,0)
VELOCITY(Xm) = -0.25*sin(t)*x/r
VELOCITY(Ym) = -0.25*sin(t)*y/r
ARC(CENTER=0,0) ANGLE=360 TO CLOSE
TIME 0 TO 2*pi
PLOTS
FOR T = pi/2 BY pi/2 TO 2*pi
GRID(X,Y)
CONTOUR(Phi)
VECTOR(-k*grad(Phi))

User Guide : Moving Meshes 103

ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
END

The extremes of motion of this problem are shown below. See Help system or online documentation for an
animation.

P o P

T
e
KRR O
OO O
E |

PV

b
N
[=
Pt
¥
A3
Y
' %}'ﬂf
B
A
b
.

Ly
YAV
Yava
VA
7
1™

T‘ i
<

ol

iy
s

v

a2
i
|
¥,

YA
N AT
PAeTAY
S
et
i i"@, :

£
S
o
s
i
Vi

]

i
S

The position and velocity forms of this problem can be seen in the following examples:
Samples | Usage | Moving_Mesh | 2D_ Position_Blob.pde [495)

Samples | Usage | Moving_Mesh | 2D_Velocity_Blob.pde 49

Three-dimensional forms of the problem can be seen in the following examples:
Samples | Usage | Moving_Mesh | 3D_Position_Blob.pde 4951

Samples | Usage | Moving_Mesh | 3D_Velocity_Blob.pde/sof

2.11 Controlling Mesh Density

There are several mechanisms available for controlling the cell density in the mesh created by FlexPDE.

Implicit Density

The cell density of the created mesh will follow the spacing of points in the bounding segments. A very
small segment in the boundary will cause a region of small cells in the vicinity of the segment.

104 FlexPDE 6 : User Guide

Maximum Density

The global command

SELECT NGRID = <number>

controls the maximum cell size. The mesh will be generated with approximately NGRID cells in the largest
dimension, and corresponding size in the smaller dimension, subject to smaller size requirements from
other criteria.

Explicit Density Control

Cell density in the initial mesh may be controlled with the parameters MESH_SPACING /1731 and
MESH_DENSITY/75. MESH_SPACING controls the maximum cell dimension, while MESH_DENSITY
is its inverse, controlling the minimum number of cells per unit distance. The mesh generator examines
many competing effects controlling cell size, and accepts the smallest of these effects as the size of a cell.
The MESH_SPACING and MESH_DENSITY controls therefore have effect only if they are the smallest of
the competing influences, and a large spacing request is effectively ignored.

The MESH_SPACING and MESH_DENSITY controls can be used with the syntax of either defined
parameters or boundary conditions.

Used as defined parameters, these controls may appear in the DEFINITONS section or may be redefined
in subsequent regional redefinition sections. In this use, the controls specify the volume or area mesh
density over a region or over the entire domain.

For controlling the cell density along boundary segments, the controls MESH_SPACING and
MESH_DENSITY may be used with the syntax of boundary conditions, and may appear wherever a
boundary condition statement may appear. In this usage, the controls specify the cell spacing on the
boundary curve or surface.

The value assigned to MESH_SPACING or MESH_DENSITY controls may be functions of spatial
coordinate. In the example of the chapter "Generating a Mesh"[399, we could write:

REGION 2 'blob' { the embedded 'blob' }
MESH_DENSITY = 50*EXP(-50*(x"~"2+y~2))
START(1/2,0)

ARC(CENTER=0,0) ANGLE=360

This results in the following initial mesh:

User Guide : Controlling Mesh Density 105

See also the example problems
"Samples | Usage | Mesh_Control | Mesh_Spacing.pde" 4901
"Samples | Usage | Mesh_Control | Mesh_ Density.pde" 49}

Adaptive Mesh Refinement

Once the initial mesh is constructed, FlexPDE will continue to estimate the solution error, and will refine
the mesh as necessary to meet the target accuracy. In time dependent problems, an adaptive refinement
process will also be applied to the initial values of the variables, to refine the mesh where the variables
undergo rapid change. Whereas cells created by this adaptive refinement process can later be re-merged,
cells created by the initial explicit density controls are permanent, and cannot be un-refined.

Note: The adaptive refinement process relies on evaluation of the various sources and derivatives at
discrete points within the existing mesh. Sources or other effects which are of extremely small extent,
such as thin bands or point-like functions, may not be discernible in this discrete model. Any effects
of small extent should be brought to the attention of the gridder by explicitly placing gridding
features at these locations. Use REGIONS or FEATURES |187) wherever something interesting is
known to take place in the problem.

See also the FRONT /194 and RESOLVE 195 statements for additional controls.

212 Post-processing with FlexPDE

FlexPDE can be used to import both data and mesh structure from a previous run's TRANSFER [168 and
perform post-processing without gridding or solving any equations.

This is easily accomplished in a step-wise process:

e Make a copy of the script that generated the exported data. This will ensure that you have the same
domain structure in your post-processing script as you did in the exporting script.

e Remove the VARIABLES/541 and EQUATIONS [1741 sections. This is how FlexPDE will know not to try
and solve any equations.

e Remove any boundary conditions stated in the BOUNDARIES |18 section. Since the variables have been
removed, any boundary condition statements will generate a parse error.

e Add the TRANSFERMESH [1691 statement in the DEFINITIONS 1581 section. This will read in the
exported mesh and data.

e Add any new PLOTSs/197) that you desire. Now you can easily add plots that were not requested in the
initial run, without having to rerun the original script. This is especially useful when you have a
computation that takes a lot of time.

Note: The domain structure must exactly match that of the exporting problem.

Examples:
"Samples | Usage | Import-Export | Post_Processing.pde" [4s7)
"Samples | Usage | Import-Export | 3D_Post_Processing.pde" (474

106 FlexPDE 6 : User Guide

213 Exporting Data to Other Applications

FlexPDE supports several mechanisms for exporting data to other applications or visualization software.

The EXPORT Qualifier

The simplest method is to append the modifier "EXPORT" (or "PRINT") to a plot command. In this case,
the plot data will be written to a text file in a predefined format suitable for importing to another FlexPDE
problem using the TABLE input function. For ELEVATIONS or HISTORIES, the output will consist of a
list of the times or X-, Y- or Z- coordinates of the data followed by a list of the data values (see the
description of the TABLE input function). For 2D plots, a regular rectangular grid will be constructed, and
the data written in TABLE input format.

The FORMAT String

The format of the text file created by the EXPORT modifier may be controlled by the inclusion of the
modifier FORMAT "string".

If this modifier appears together with the EXPORT or PRINT modifier, then the file will contain one text
line for each data point in the grid. The contents of the line will be exactly that specified by the string.

o All characters except "#" will be copied literally into the output line.

o "#" will be interpreted as an escape character, and various options will be selected by the character
following the "#":

#x, #y, #z and #t will print the value of the spatial coordinates or time of the data point;

#1 through #9 will print the value of the corresponding element of the plot function list;

#b will write a tab character;

#r will cause the remainder of the format string to be repeated for each plot function in the plot list;
#1 inside a repeated string will print the value of the current element of the plot function list.

In all cases of FORMATTED export, a header will be written containing descriptive information about the
origin of the file. This header will be delimited by "{" and "}". In 2D grids, table points which are outside
the problem domain will also be bracketed by "{" and "}" and marked as "exterior". If these commenting
forms are unacceptable to the importing application, then the data files must be manually edited before
import.

TABLE Output

The TABLE 1661 plot command may also be used to generate tabular export. This command is identical to a
CONTOUR command with an EXPORT qualifier, except that no graphical output is generated. The
FORMAT "string" qualifier may also be used with TABLE output.

Transferring Data to another FlexPDE problem

FlexPDE supports the capability of direct transfer of data defined on the Finite Element mesh. The
TRANSFER output function writes the current mesh structure and the requested data values to an ASCII
text file. Another FlexPDE problem can read this file with the TRANSFER input function. The transferred
data will be interpolated on the output mesh with the Finite Element basis of the creating problem. The
TRANSFER input mesh need not be the same as the computation mesh, as long as it spans the necessary
area.

The data format of the TRANSFER file is similar to the TECPLOT file described below. The TRANSFER
file, however, maintains the quadratic or cubic basis of the computation, while the TECPLOT format is

User Guide : Exporting Data to Other Applications 107

converted to linear basis. Since this is an ASCII text file, it can also be used for data transfer to
user-written applications. The format of the TRANSFER file is described in the Problem Descriptor
Reference chapter "Transfer File Format/1761"

Output to Visualization Software

FlexPDE can export solution data to third-party visualization software. Data export is requested by what is
syntactically a PLOT command, with the type of plot (such as CONTOUR) replaced by the format selector.
Two formats are currently supported, CDF and TECPLOT.

CDF

CDF(argl [,arg2,...]) selects output in netCDF version 3 format. CDF stands for "common data
format", and is supported by several software products including SlicerDicer (www.visualogic.com).
Information about CDF, including a list of software packages supporting it, can be viewed at the website
www.unidata.ucar.edu/packages/netcdf .

CDF data are constrained to be on a regular rectangular mesh, but in the case of irregular domains, parts
of the rectangle can be absent. This regularity implies some loss of definition of material interfaces, so
consider using a ZOOMed domain to resolve small features.

The CDF "plot" statement can be qualified by ZOOM or "ON SURFACE" modifiers, and its density can be
controlled by the POINTS modifier. For global control of the grid size, use the statement "SELECT
CDFGRID=n", which sets all dimensions to n. The default gridsize is 50.

Any number of arguments can be given, and all will be exported in the same file. The output file is by
default "<problem>_ <sequence>.cdf", but specific filenames can be selected with the FILE modifier.

TECPLOT

TECPLOT(argl [,arg2,...]) selects output in TecPlot format. TecPlot is a visualization package which

supports finite element data format, and so preserves the material interfaces as defined in FlexPDE. No

ZOOM or POINTS control can be imposed. The full computation mesh is exported, grouped by material
number. TecPlot can selectively enable or disable these groups. Any number of arguments can be given,
and all will be exported in the same file. The output file is by default "<problem>_ <sequence>.dat", but

specific filenames can be selected with the FILE modifier.

Information about TecPlot can be viewed at www.amtec.com .

VTK

VTK(argl [,arg2,...]) selects output in Visual Tool Kit format. VTK is a freely available library of
visualization software, which is beginning to be used as the basis of many visualization packages. The file
format can also be read by some visualization packages that are not based on VTK, such as VisIt (
www.lInl.gov/visit). The format preserves the mesh structure of the finite element method, and so
preserves the material interfaces as defined in FlexPDE. No ZOOM or POINTS control can be imposed.
The full computation mesh is exported. Particular characteristics of the visualization system are outside
the control of FlexPE. Any number of arguments can be given, and all will be exported in the same file.
The output file is by default "<problem>_ <sequence>.vtk", but specific filenames can be selected with the
FILE modifier.

The VTK format supports quadratic finite element basis directly, but not cubic. To export from cubic-basis

108 FlexPDE 6 : User Guide

computations, use VTKLIN.

VTKLIN(argl [,arg2,...]) produces a VTK format file in which the native cells of the FlexPDE
computation have been converted to a set of linear-basis finite element cells.

Information about VTK can be viewed at public.kitware.com/VTK/.
Examples:

Samples | Usage | Import-Export | Export.pde 477

Samples | Usage | Import-Export | Export_Format.pde/+77

Samples | Usage | Import-Export | Export_History.pde /478

Samples | Usage | Import-Export | Transfer_Export.pde|4ss

Samples | Usage | Import-Export | Transfer_Import.pde [485)

Samples | Usage | Import-Export | Table.pde /s

Note:

Reference to products from other suppliers does not constitute an endorsement by PDE Solutions Inc.

2.14 Importing Data from Other Applications

The TABLE 165 facility can be used to import data from other applications or from manually created data
lists.

Suppose that in our example problem| 421 we wish to define a thermal conductivity that varies with
temperature (called "Phi" in the example script). We could simply define a temperature-dependent
function for the conductivity. But if the dependency is derived from observation, there may be no simple
analytic relationship. In this case, we can use a TABLE to describe the dependency.

A table file describing conductivity vs temperature might look like this:

{ Conductivity vs temperature }
Phi 6

12102267 101

Data

0.01 0.02 0.05 0.11 0.26 3.8

Supposing that we have named this file "conductivity.tbl", our script will simply include the following
definition:

K = TABLE("conductivity.tbl")

Notice that within the table file, the name Phi is declared as the table coordinate. When FlexPDE reads the
table file, this name is compared to the names of defined quantities in the script, and the connection is
made between the data in the table and the value of "Phi" at any point in the computation where a value of
"K" is required.

User Guide : Importing Data from Other Applications 109

If the table file had defined the table coordinate as, say, "Temp", we could still use the table in our example
by over-riding the table file definition with a new dependency coordinate:

K = TABLE("conductivity.tbl", Phi)

This statement would cause FlexPDE to ignore the name given in the file itself and associate the table
coordinate with the local script value "Phi".

Other forms of TABLE command are available. See the Problem Descriptor Reference chapter "Table
Import Definitions" 165 for more information.

215 Using ARRAYS and MATRICES

FlexPDE version 6 includes expanded capabilities for using ARRAYS and MATRICES.

ARRAYS 1551 and MATRICES/+6h differ from other objects in FlexPDE, such as VARIABLES or VECTORS,
in that no assumptions are made about associations between the ARRAY or MATRIX and the geometry or
mesh structure of the PDE model. ARRAYS and MATRICES are simply lists of numbers which can be
defined, manipulated and accessed independently of any domain definition or coordinate geometry.
Typically, an ARRAY is created and filled with data using one of the available declaration statements, e.g.,

A = array(1,2,3,4,5,6,7,8,9,10)
B = array for x(0 by 0.1 to 10) : sin(x)+1.1

New ARRAYS can be created by performing arithmetic operations on existing arrays:

C = exp(A) { each element of C is the exponential of the corresponding element of
A}

D = C+A { each element of D is the sum of the corresponding elements of C and A }

E = 100*B{ each element of E is 100 times the corresponding element of B }

Elements can be accessed individually by indexing operations:
E[12] = B[3]+9

ARRAYS can be used in PLOT statements:
ELEVATION (D) VS A

Similarly, MATRICES can be created and filled with data using one of the available declaration statements,
e.g.,
M = MATRIX((1,2,3),(4,5,6),(7,8,9))
N = MATRIX FOR x(0 BY 0.1 TO 10)
FOR y(0 BY 0.1 TO 10) : sin(x)*sin(y)+1.1

New ARRAYS or MATRICES can be created by performing element-by-element arithmetic operations on
existing ARRAYS and MATRICES:

P =1/M { each element of matrix P is the reciprocal of the corresponding element of M

b
Q = P+M

The special operators ** and // are defined for specifying conventional matrix-array arithmetic:

110 FlexPDE 6 : User Guide

R = N**B { R is an ARRAY representing the conventional matrix-array multiplication of B
by N }

S = B//N { S is the solution of the equation N**S=B (i.e., S is the result of multiplying
B by the inverse of N) }

Elements of MATRICES can be accessed individually by indexing operations:
U = N[3,9]

ARRAYS and MATRICES may also be used to define domain boundaries. See "Boundary Paths"[182)in the
Problem Descriptor Reference.

All operations on ARRAYS and MATRICES are checked for compatible sizes, and incompatibilities will be
reported as errors.

Note: You must remember that the FlexPDE script is not a procedural program. Objects in the script
describe the dependencies of quantities, and are not "current state" records of values that can be
explicitly modified by subsequent redefinition or looping.

Examples:
See the example folder "Samples | Usage | Arrays+Matrices" [446)

216 Solving Nonlinear Problems

FlexPDE automatically recognizes when a problem is nonlinear and modifies its strategy accordingly. The
solution method used by FlexPDE is a modified Newton-Raphson iteration procedure. This is a "descent"
method, which tries to fall down the gradient of an energy functional until minimum energy is achieved
(i.e. the gradient of the functional goes to zero). If the functional is nearly quadratic, as it is in simple
diffusion problems, then the method converges quadratically (the relative error is squared on each
iteration). The default strategy implemented in FlexPDE is frequently sufficient to determine a solution
without user intervention. But in cases of strong nonlinearities, it may be necessary for the user to help
guide FlexPDE to a valid solution. There are several techniques that can be used to help the solution
process.

Time-Dependent Problems

In nonlinear time-dependent problems, the default behavior is to take a single Newton step at each
timestep, on the assumption that any nonlinearities will be sensed by the timestep controller, and that
timestep adjustments will guarantee an accurate evolution of the system from the given initial conditions.
In this mode, the derivatives of the solution with respect to the variables is computed once at the beginning
of the timestep, and are not updated.

Steady-State Problems

In the case of nonlinear steady-state problems, the situation is somewhat more complicated. We are not
guaranteed that the system will have a unique solution, and even if it does, we are not guaranteed that
FlexPDE will be able to find it.

e Start with a Good Initial Value
Providing an initial value which is near the correct solution will aid enormously in finding a solution.
Be particularly careful that the initial value matches the boundary conditions. If it does not, serious
excursions may be excited in the trial solution, leading to solution difficulties.

User Guide : Solving Nonlinear Problems 111

¢ Use STAGES to Gradually Activate the Nonlinear Terms
You can use the staging facility of FlexPDE to gradually increase the strength of the nonlinear terms.
Start with a linear or nearly linear system, and allow FlexPDE to find a solution which is consistent
with the boundary conditions. Then use this solution as a starting point for a more strongly nonlinear
system. By judicious use of staging, you can creep up on a solution to very nasty problems.

¢ Use artificial diffusion to stabilize solutions
Gibbs phenomena are observed in signal processing when a discontinuous signal is reconstructed from
its Fourier components. The characteristic of this phenomenon is ringing, with overshoots and
undershoots in the recovered signal. Similar phenomena can be observed in finite element models
when a sharp transition is modeled with an insufficient density of mesh cells. In signal processing, the
signal can be smoothed by use of a "window function". This is essentially a low-pass filter that
removes the high frequency components of the signal. In partial differential equations, the diffusion
operator Div(grad(u)) is a low-pass filter that can be used to smooth oscillations in the solution. See
the Technical Note "Smoothing Operators in PDE's|2771" for technical discussion of this operator. In
brief, you can use a term eps*Div(Grad(u)) in a PDE to smooth oscillations of spatial extent D by
setting eps=D”2/pi” 2 in steady state or eps=2*D*¢/pi in time dependence (where c is the signal
propagation velocity). The term should also be scaled as necessary to provide dimensional consistency
with the rest of the terms of the equation. Use of such a term merely limits the spatial frequency
components of the solution to those which can be adequately resolved by the finite element mesh.

e Use CHANGELIM to Control Modifications
The selector CHANGELIM [1471limits the amount by which any nodal value in a problem may be
modified on each Newton-Raphson step. As in a one-dimensional Newton iteration, if the trial
solution is near a local maximum of the functional, then shooting down the gradient will try to step an
enormous distance to the next trial solution. FlexPDE applies a backtracking algorithm to try to find
the step size of optimal residual reductions, but it also limits the size of each nodal change to be less
than CHANGELIM times the average value of the variable. The default value for CHANGELIM is 0.5,
but if the initial value (or any intermediate trial solution) is sufficiently far from the true solution, this
value may allow wild excursions from which FlexPDE is unable to recover. Try cutting CHANGELIM
to 0.1, or in severe cases even 0.01, to force FlexPDE to creep toward a valid solution. In combination
with a reasonable initial value, even CHANGELIM=0.01 can converge in a surprisingly short time.
Since CHANGELIM multiplies the RMS average value, not each local value, its effect disappears when
a solution is reached, and quadratic final convergence is still achieved.

e Watch Out for Negative Values
FlexPDE uses piecewise polynomials to approximate the solution. In cases of rapid variation of the
solution over a single cell, you will almost certainly see severe under-shoot in early stages. If you are
assuming that the value of your variable will remain positive, don't. If your equations lose validity in
the presence of negative values, perhaps you should recast the equations in terms of the logarithm of
the variable. In this case, even though the logarithm may go negative, the implied value of your actual
variable will remain positive.

¢ Recast the Problem in a Time-Dependent Form
Any steady-state problem can be viewed as the infinite-time limit of a time-dependent problem.
Rewrite your PDE's to have a time derivative term which will push the value in the direction of
decreasing deviation from solution of the steady-state PDE. (A good model to follow is the
time-dependent diffusion equation DIV(K*GRAD(U)) = DT(U). A negative value of the divergence
indicates a local maximum in the solution, and results in driving the value downward.) In this case,
"time" is a fictitious variable analogous to the "iteration count” in the steady-state N-R iteration, but
the time-dependent formulation allows the timestep controller to guide the evolution of the solution.

112 FlexPDE 6 : User Guide

2.17 Using Multiple Processors

FlexPDE version 6 uses multi-threaded computation to support modern multi-core and multi-processor
hardware configurations. Only shared-memory multi-processors are supported, not clusters.

Each opened problem runs in its own computation thread, and can use up to eight additional computation
threads. A single main thread controls the graphic interface and screen display.

Matrix construction, residual calculations and linear system solvers are all multi-threaded. Mesh
generation and plot functions are not, although graphics load is shared between the problem thread and
the main graphics thread.

Individual Problem Control
Each individual script can declare the number of worker threads to be used in the computation:

SELECT THREADS = <number>

requests that <number> worker threads be used, in addition to the main graphics thread and the
individual problem thread.

Setting the Default

The default number of worker threads can be set by manually editing the configuration file "flexpde6.ini"
in the "flexpde6user” folder. This folder resides in the "My Documents" folder under Windows, and the
user's "home" folder under Linux and MacOSX. Edit the line:

[THREADS] 1

to reflect the desired default number of worker threads.

Command-Line Control
If you run FlexPDE6 from a command line and include the switch -T<number>, the default thread count
will be set to <number>. For example, the command line

flexpde6 -T4 problem
will set the default to 4 threads and load the script file "problem.pde". The selected thread count will be
written to the flexpde6.ini file on conclusion of the flexpde6 session.

Speed Effects of Multiple Processors
There are many factors that will influence the timing of a multi-thread run.

e The dominant factor is the memory bandwidth. If the memory cannot keep up with the processor speed,
then more threads will run slower due to the overhead of constructing and synchronizing threads and
merging data.

o The size of the problem will also affect the speedup, because with a larger problem a smaller proportion
of data can be held in cache memory. The memory bandwidth limitation will therefore be greater with a
larger problem.

e Graphics construction is not multi-threaded in FlexPDE V6. Too many complex plots will therefore drive
the performance to 1-thread levels. (Graphic redraw is handled in a separate thread).

The following chart shows our experience with speeds in versions 5 and 6. These tests were run on a 4-core
AMD Phenom with 667 MHz 128-bit memory. Notice that the Black_Qil problem is significantly faster in
version 6, even though it is taking many more timesteps. This timestep count indicates that the timestep
control in V6 is more pessimistic than V5. The speedup with V6 1 thread is partly due to the fact that
graphic redraws are run in a separate thread in V6 but not in V5.

User Guide : Using Multiple Processors 113

Notice that in this machine, the memory saturates at 3 threads, so that the fourth thread produces no
significant speed improvement (and in fact may be slower).

Black_Oil.pde 3D_FlowBox.pde
Version|[Threads| CPU time timesteps CPU time
5 1 14:37 534 8:15
5 2 12:17 540 6:09
6 1 10:21 688 8:06
6 2 6:58 684 4:14
6 3 6:16 696 3:30
6 4 7:13 703 3:22

2.18 Running FlexPDE from the Command Line

When FlexPDE is run from a command line or as a subtask from another application, there are some
command-line switches that can be used to control its behavior:

Run the file which is named on the command line. Do not enter edit mode.
View the file which is named on the command line. Do not enter edit mode.
Exit FlexPDE when the problem completes.

Run in "minimized" mode (reduced to an icon).

Run "quietly". Combines -R -X -M.

Run "silently". -Q with all error reports suppressed.

Set the default thread count. Append the number : -T6 will use six threads.

License FlexPDE. For Internet Key, append A for activate, R for release, then serial number :
-LA668668886. For local or network dongle, append D or N : -LD or -LN.

For example, the command line

flexpde6 -R problem

will load and run the script file "problem.pde".

114 FlexPDE 6 : User Guide

219 Running FlexPDE Without A Graphical Interface

Starting in version 6.30, there is a FlexPDE executable that does not use any graphical interface. This is
necessary for users to run FlexPDE on systems that do not provide interactive graphics. The executable is
suffixed with 'n' (for "no graphics") to distinguish it from the graphical version.

The graphics-less FlexPDE must be run from a command line. For example, the command line
flexpde6n problem

will load and run the script file "problem.pde".

The run can be interrupted by typing 'Q'. The user is then prompted whether to interrupt or not. Type 'Y' to
complete the interrupt.

2.20 Getting Help

We're here to help.

Of course, we would rather answer questions about how to use FlexPDE than about how to do the
mathematical formulation of your problem.

FlexPDE is applicable to a wide range of problems, and we cannot be experts in all of them.

If you have what appears to be a malfunction of FlexPDE, or if it is doing something you don't understand
or seems wrong,

¢ Send us an Email describing the problem.

e Attach a descriptor file that demonstrates the difficulty, and explain clearly what you think is wrong.
¢ The more concise you can make your question, the more promptly we will be able to answer.

o Tell us what version of FlexPDE you are using; your problem may have been solved in a later release.
Send your enquiry to support@pdesolutions.com and we will answer as soon as we can, usually within a
day or two.

Part

Problem
Descriptor
Reference

116 FlexPDE 6 : Problem Descriptor Reference

3

3.1

Problem Descriptor Reference

This section presents a detailed description of the components of FlexPDE problem descriptors. No
attempt is made here to give tutorial explanations of the use of these components. See Part I Getting
Started| 2" for user interface information and Part IT User Guide/ 30 for tutorial guidance in the use of
FlexPDE.

Introduction

FlexPDE is a script-driven system. It reads a description of the equations, domain, auxiliary definitions
and graphical output requests from a text file referred to as a "problem descriptor" or "script”.

The problem descriptor file can be created either with the editor facility in FlexPDE, or with any other
ASCII text editor. A word processor can be used only if there is an optional "pure text" output, in which
formatting codes have been stripped from the file.

Problem descriptors use an easy to learn natural language originally developed by Robert G. Nelson for use
in the PDS2 system at Lawrence Livermore National Lab and later in the PDEase2 system from Macsyma,
Inc. The language is also described in Dr. Gunnar Backstrom's book, "Simple Fields of Physics by Finite
Element Analysis".

As FlexPDE has evolved, a number of extensions have been added to extend its processing capabilities.
The language as currently implemented in FlexPDE is described in this document.

While similar in some ways to a computer programming language, FlexPDE scripting language is more
natural, and is oriented to the description of PDE systems. Most intermediate level college students,
engineers, and scientists who have had at least an introductory course in partial differential equations can
quickly master the language well enough to prepare simple problem descriptor files and begin solving
problems of their own devising.

The FlexPDE problem descriptor language can be viewed as a shorthand language for creating Finite
Element models. The statements of the descriptor provide the information necessary for FlexPDE to
assemble a numerical process to solve the problem.

It is important to understand that the language of FlexPDE problem descriptors is not a procedural one.
The user describes how the various components of the system relate to one another. He does not describe a
sequence of steps to be followed in forming the solution, as would be done in a procedural programming
language such as C or FORTRAN. Based on the relations between problem elements, FlexPDE decides on
the sequence of steps needed in finding the solution.

FlexPDE makes various assumptions about the elements of the problem descriptor.

For example, if a variable is named in the VARIABLES section, it is assumed that:

the variable is a scalar or vector field which takes on values over the domain of the problem,

o it will be approximated by a finite element interpolation between the nodes of a computation mesh,
o the values of the variable are continuous over the domain, and

¢ apartial differential equation will be defined describing the behavior of the variable.

If a definition appears in the DEFINITIONS section, it is assumed that the named quantity
¢ isancillary to the PDE system,
¢ may be discontinuous over the domain,
¢ does not (necessarily) obey any PDE.

Problem Descriptor Reference : Introduction 117

In the chapters that follow, we describe in detail the rules for constructing problem descriptors.

3.1.1 Preparing a Descriptor File

Problem descriptor files for use with FlexPDE are most easily prepared and edited using FlexPDE's built-in
editor, which uses syntax highlighting to enhance the readability of the user's script. Recognized
grammatical keywords are displayed in red, comments in green, and text strings in blue.

To begin a new descriptor file, simply click "File | New Script" from the FlexPDE main menu bar.
To edit an existing descriptor, click "File | Open Script" instead.

A convenient way to create a new descriptor is to start with a copy of an existing descriptor for a similar
problem and to modify it to suit the new problem conditions.

FlexPDE's built-in editor is similar to the Windows Notepad editor and produces a pure ASCII text file
without any imbedded formatting characters. Descriptor files can also be prepared using any ASCII text
editor or any editor capable of exporting a pure ASCII text file. Descriptor files prepared with word
processors that embed formatting characters in the text will cause FlexPDE to report parsing errors.

3.1.2 File Names and Extensions

A problem descriptor file can have any name which is consistent with the host operating system. Even
though permitted by some operating systems, names with imbedded blank characters should be avoided.
It is best to choose a name that is descriptive of the problem.

Problem descriptor files must have the extension ".pde'. When saving a file using the built-in editor,
FlexPDE will automatically add the extension '.pde'. When using a separate or off-line editor, be sure to
give the file a .pde' extension instead of the default extension.

Windows operating systems by default hide the file name extension. FlexPDE script files can still be

recognized by the JR icon. Alternatively, Windows can be configured to display file extensions.
See also "FlexPDE Working Files".| 3"

3.1.3 Problem Descriptor Structure

Problem descriptors organize a problem by breaking it into sections of related items.
Each section is headed by a proper name followed by one or more statements which define the problem.

The permitted section names are:

TITLE - defines the problem title

SELECT - sets various options and controls
COORDINATES - defines the coordinate system
VARIABLES - names the problem variables
DEFINITIONS - defines ancillary quantities and parameters

INTIAL VALUES - sets initial values of variables

118 FlexPDE 6 : Problem Descriptor Reference

EQUATIONS - defines the partial differential equation system

CONSTRAINTS - defines optional integral constraints

EXTRUSION - extends the domain to three dimensions

BOUNDARIES - describes the 2D or projected 3D domain

RESOLVE - optionally supplements mesh refinement control

FRONT - optionally supplements mesh refinement control for
advancing fronts

TIME - defines the time domain

MONITORS - selects interim graphic display

PLOTS - selects final graphic display

HISTORIES - selects time-summary displays

END - identifies the end of the descriptor

The number of sections used in a particular problem descriptor can vary, subject only to the requirement
that all files must contain a BOUNDARIES section and an END section.

While some flexibility exists in the placement of these sections, it is suggested that the user adhere to the
ordering described above.

DEFINITIONS and SELECT can appear more than once.

Because descriptors are dynamically processed from top to bottom, they cannot contain forward
references. Definitions may refer to variables and other defined names, provided these variables and
names have been defined in a preceding section or previously in the same section.

3.1.4 Problem Descriptor Format

While not strictly required, we suggest use of the following indentation pattern for all problem descriptors:

section 1
statement

section 2
statement 1

statement 2
*

*

section 3
statement 1

statement 2
*

*

This format is easy for both the person preparing the file and for others to read and understand.

3.1.5 Case Sensitivity

With the exception of quoted character strings, which are reproduced exactly as they appear in a problem
descriptor, words, characters and other text items used in problem descriptors are NOT case sensitive.

Upper case letters and lower case letters are equivalent.

Problem Descriptor Reference : Introduction 119

The text items variables, VARIABLES, Variables and mixed case text like VaRiAbles are all
equivalent.

Judicious use of capitalization can improve the readability of the script.

3.1.6 "Include" Files

FlexPDE supports the C-language mechanism of including external files in the problem descriptor. The
statement

#INCLUDE "filename"

will cause the named file to be included bodily in the descriptor in place of the #INCLUDE "filename"
statement.

If the file does not reside in the same folder as the descriptor, the full path to the file must be given.

An include statement can be placed anywhere in the descriptor, but for readability it should be placed on
its own line.

This facility can be used to insert common definition groups in several descriptors.

Note: Although FlexPDE is not case sensitive, the operating system which is being asked for the
included file may be case sensitive. The quoted file name must conform to the usage of the operating
system.

3.1.7 A Simple Example

As a preview example to give the flavor of a FlexPDE descriptor file, we will construct a model of heatflow
on a square domain.

The heatflow equation is
div(K*grad(Temp)) + Source = 0
If K is constant and Source = 4*K, the heat equation will be satisfied by the function
Temp = Const - X2 - yN2.

We define a square region of material of conductivity K = 1, with a uniform heat source of 4 heat units per
unit area.

We further specify the boundary value
Temp =1 - x"N2 - yN2

Since we know the analytic solution, we can compare the accuracy of the FlexPDE solution.

120 FlexPDE 6 : Problem Descriptor Reference

The text of the descriptor is as follows:
{ 3k 3k 3k 3k 3K 3k 3K 3K 3K 5K 3K 3Kk 3K 3k 3K 3K 3k 3K 3K 5K 3Kk 3K 3k 3k 3K 3K 3K 3K 3K 3K 3K 3K 3k 3k 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3k 3K 3K 3K 3K 3K 3K 3K K K 3K 3K 5K 5k 3K 3K Kk K kK Kk Kk
SIMPLE.PDE
This sample demonstrates the simplest application of FlexPDE to

heatflow problems.
3k 3k 3K 3k 3K 3k 3K 3K 3K 5K 3K 3Kk 3K 3k 3k 3k 3k 3K 3K 5K 3Kk 3K 3K 3k 3k 3k 3K 3K 3K 3K 3K 3K 3k 3k 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3k 3K 3K 3K 3K 3K 3K 3K 3K K 3K 3K 3K 5k 3k 5K 3k K kK >k kK >k }

TITLE "Simple Heatflow"

VARIABLES
temp { Identify "Temp" as the system variable }
DEFINITIONS
k=1 { declare and define the conductivity }
source = 4 { declare and define the source }

texact = 1-x~2-y”~2 { exact solution for reference }

INITIAL VALUES
temp =0 { unimportant in linear steady-state problems,
but necessary for time-dependent or nonlinear
systems }

EQUATIONS { define the heatflow equation :}
div(k*grad(temp)) + source = 0

BOUNDARIES { define the problem domain: }
REGION 1 { ... only one region }
{ specify Dirichlet boundary at exact solution: }
VALUE(temp)=texact

START(-1,-1) { specify the starting point }
LINE TO (1,-1) { walk the boundary }
TO (1,1)
TO (-1,1)
TO CLOSE { bring boundary back to starting point }
MONITORS

CONTOUR(temp) { show the Temperature during solution }
PLOTS { write these plots to disk at completion: }

CONTOUR(temp) { show the solution }
SURFACE(temp) { show a surface plot as well }
{ display the solution error :}
CONTOUR(temp-texact) AS "Error"
{ show a vector flow plot: }
VECTOR(-dx(temp),-dy(temp)) AS "Heat Flow"

END { end of descriptor file }

Problem Descriptor Reference : The Elements of a Descriptor 121

3.2 The Elements of a Descriptor

The problem descriptors or 'scripts’ which describe the characteristics of a problem to FlexPDE are made
up of a number of basic elements, such as names and symbols, reserved words, numeric constants, etc.
These elements are described in the sections that follow.

3.2.1 Comments

Problem descriptors can be annotated by adding comments.

Multi-line comments can be placed anywhere in the file. Multi-line comments are formed by enclosing the
desired comments in either curly brackets { and } or the paired symbols /* and */. Comments can be
nested, but comments that begin with a curly bracket must end with a curly bracket and comments that
begin with '/*' must end with '*/'.

Example:
{ this is a comment
so is this.

b

End-of-line comments are introduced by the exclamation mark !. End-of-line comments extend from the !
to the end of the line on which they occur. Placing the line comment symbol ! at the beginning of a line
effectively removes the whole line from the active portion of the problem descriptor, in a manner similar to
'rem' at the beginning of a line in a DOS batch file or "//" in C++.

Example:

I this is a comment
this is not

Comments can be used liberally during script development to temporarily remove lines from a problem
descriptor. This aids in localizing errors or focusing on specific aspects of a problem.

3.2.2 Reserved Words and Symbols

FlexPDE assigns specific meanings and uses to a number of predefined 'reserved’ words and symbols in
descriptors.

Except when they are included as part of a comment or a literal string, these words may only be used for
their assigned purpose.

The following parser keywords are highlighted by the FlexPDE editor:

ACUMESH ALIAS ALIGN_MESH
AND ANGLE ANTIPERIODIC
ARC ARRAY AS

AT

BATCH BEVEL BLOCK
BOUNDARIES BY

CDF CENTER CLOSE
COMPLEX CONST CONSTRAINTS

CONTACT CONTOUR COORDINATES

122

FlexPDE 6 : Problem Descriptor Reference

CYLINDER

DEBUG
DELAY
DIRECTION

ELEVATION
ENDLABEL
EQUATIONS
EVAL
EXTRUSION

FEATURE
FINALLY
FOR
FREEZE

GLOBAL
GLOBALMAX_Y
GLOBALMIN_X
GRID

HALT
IF
JUMP

LABEL
LAYER
LEVELS
LINE

MAP
MESH_DENSITY
MONITORS

NATURAL
NODE

OFF

PERIODIC
POINT
POINT_VALUE
PRINT

RADIANS
REGION
REPORT

SCALAR
SIZEOF

DEFINITIONS
DELTAT

ELSE
ENDREPEAT
ERRWEIGHT
EXCLUDE

FILE
FINISH
FORMAT
FROM

GLOBALMAX
GLOBALMAX_Z
GLOBALMIN_Y
HISTORIES

INACTIVE

LAGRANGIAN
LAYERED
LIMIT

LIST

MATRIX
MESH_SPACING
MOVE

NEUMANN

ON

PLANE
POINT_LOAD

POINT_VELOCITY

PRINTONLY

RADIUS
REGIONS
RESOLVE

SELECT
SMOOTH

DEGREES
DIR

END
EQUATION
EULERIAN
EXPORT

FILLET
FIXED

FRAME
FRONT

GLOBALMAX_X
GLOBALMIN
GLOBALMIN_Z
HISTORY

INITIAL

LAMBDA
LAYERS
LIMITED
LOAD

MERGE
MODE
NOBC
NOT
OR

PLOTS

POINT_NATURAL

POINTS

RANGE
REPEAT
ROTATE

SIMPLEX
SPHERE

Problem Descriptor Reference : The Elements of a Descriptor 123

SPLINE SPLINETABLE SPLINETABLEDEF
STAGE STAGED START

SUM SUMMARY SURFACE
TABLE TABLEDEF TABULATE
TECPLOT TENSOR THEN

TIME TITLE THRESHOLD

TO TRANSFER TRANSFERMESH
TRANSFERMESHTIME

UNORMAL USE

VAL VALUE VALUES
VARIABLES VECTOR VELOCITY
VERSUS VIEWANGLE VIEWPOINT
VOID VOLJ VS

VTK VTKLIN

WINDOW

Z00M

The following names of built-in functions are not recognized by the FlexPDE editor's syntax highlighter, but
may be used only for their assigned purpose:

ABS AINTEGRAL ARCCOS
ARCSIN ARCTAN AREA_INTEGRAL
ATAN2

BESSI BESSJ BESSK

BESSY BINTEGRAL

CARG CEXP CLOG

CONJ COS COSH

CROSS CURL

DEL2 DIFF DIV

DOT

ENDTIME ERF ERFC

EXPINT EXP

FEATURE_INDUCTIO FIT

N

GAMMAF GLOBALMAX GLOBALMAX_X
GLOBALMAX_Y GLOBALMAX_Z GLOBALMIN
GLOBALMIN_X GLOBALMIN_Y GLOBALMIN_Z
GRAD

IMAG INTEGRAL INTEGRATE

JACOBIAN

124 FlexPDE 6 : Problem Descriptor Reference

LINE_INTEGRAL LN LOG10
LUMP

MAGNITUDE MAX MIN
MOD

NORMAL

PARTS PASSIVE PI

RAMP RANDOM REAL
SAVE SIGN SIN
SINH SINTEGRAL SQRT
SURF_INTEGRAL SWAGE

TAN TANGENTIAL TANH
TIME_INTEGRAL TIME_MAX TIME_MIN
TIMEMAX TIMEMAX_T TIMEMIN
TIMEMIN_T TINTEGRAL

UPULSE UPWIND URAMP
USTEP

VINTEGRAL VOL_INTEGRAL

XBOUNDARY XCOMP XXCOMP
XYCOMP XZCOMP YBOUNDARY
YCOMP YXCOMP YYCOMP
YZCOMP ZBOUNDARY ZCOMP
ZXCOMP ZYCOMP ZZCOMP

3.2.3 Separators
White Space

Spaces, tabs, and new lines, frequently referred to as "white space", are treated as separators and may be
used freely in problem descriptors to increase readability. Multiple white spaces are treated by FlexPDE as
a single white space.

Commas

Commas are used to separate items in a list, and should be used only where explicitly required by the
descriptor syntax.

Semicolons

Semicolons are not significant in the FlexPDE grammar. They are treated as equivalent to commas.

Problem Descriptor Reference : The Elements of a Descriptor 125

3.2.4 Literal Strings

Literal strings are used in problem descriptors to provide optional user defined labels, which will appear on
softcopy and hardcopy outputs.

The label that results from a literal string is reproduced on the output exactly (including case) as entered in
the corresponding literal string.

Literal strings are formed by enclosing the desired label in either single or double quote marks . Literal
strings that begin with a double quote mark must end in a double quote mark, and literal strings that begin
with a single quote mark must end in a single quote mark.

A literal string may consist of any combination of alphanumeric characters, separators, reserved words,
and/or symbols including quote marks, provided only that strings that begin with a double quote mark
may contain only single quote marks and strings that begin with a single quote mark may contain only
double quote marks.

Example:

TITLE "This is a literal 'string' used as a problem title"

3.2.5 Numeric Constants
Integers

Integers must be of the form XXXXXX where X is any decimal digit from O to 9. Integer constants can
contain up to 9 digits.

Decimal Numbers

Decimal numbers must be of the form XXXXX.XXX where X is any decimal digit from O to 9 and ".' is the
decimal separator. Decimal numbers must not include commas ','. Using the European convention of a
comma ', as a decimal separator will result in an error. Commas are reserved as item separators. Decimal
numbers may include zero to nine digits to the left of the decimal separator and up to a total of 308 digits
total. FlexPDE considers only the first fifteen digits as significant.

Engineering Notation Numbers

Engineering notation numbers must be of the form XXXXXEsYYY where X is any digit from 0 to 9 or the
decimal separator ., Y is any digit from 0O to 9, E is the exponent separator, and s is an optional sign
operator. Engineering notation numbers must not include commas ','. Using the European convention of a
comma ', as a decimal separator will result in an error. Commas are reserved as item separators. The
number to the left of the exponent separator is treated as a decimal number and the number to the right of
the exponent separator is treated as an integer and may not contain a decimal separator or more than 3
digits. The range of permitted engineering notation numbers is 1e-307 to 1e308.

3.2.6 Built-in Functions
Functions and Arguments

All function references must include at least one argument. Arguments can be either numerical constants
or expressions that evaluate to numerical values. The following functions are supported in problem
descriptors:

126

FlexPDE 6 : Problem Descriptor Reference

3.2.6.1

Analytic Functions

The following analytic functions are supported by FlexPDE:

Function Comments

ABS(x) Absolute value

ARCCOS(x) Inverse cosine (returns radians)
ARCSIN(x) Inverse sine (returns radians)

ARCTAN(x) Inverse tangent (returns radians)
ATAN2(y,x) Arctan(y/x) with numerically safe implementation
BESSI(order,x) Modified Bessel function I for real x
BESSJ](order,x) Bessel Function J

BESSK(order,x) Modified Bessel function K for real x
BESSY(order,x) Bessel Function Y

COS(x) cosine of x (angle in radians)*

COSH(x) Hyperbolic cosine

ERF(x) Error Function

ERFC(x) Complementary Error Function

EXP(x) Exponential function

EXPINT(x) Exponential Integral Ei(x) for real x>0 **
EXPINT(n,x) Exponential Integral En(x) for n>=0, real x>0 **
GAMMAF(x) Gamma function for real x>0
GAMMAF(a,x) Incomplete gamma function for real a>0, x>0
LOG10(x) Base-10 logarithm

LN(x) Natural logarithm

SIN(x) sine of x (angle in radians)*

SINH(x) Hyperbolic sine

SQRT(x) Square Root

TAN(x) tangent of x (angle in radians)*

TANH(x) Hyperbolic tangent

* Use for example COS(x DEGREES) to convert arguments to radians.
** as defined in Abramowitz & Stegun, "Handbook of Mathematical Functions".

Examples:
Samples | Usage | Standard_Functions.pde/3of)

3.2.6.2 Non-Analytic Functions
The following non-analytic functions are supported in FlexPDE:
MAX(argil,arg2)

The maximum function requires two arguments. MAX is evaluated on a point by point basis and is
equal to the larger of the two arguments at each point.

MIN(argl,arg2)

The minimum function requires two arguments. MIN is evaluated on a point by point basis and is equal
to the lessor of the two arguments at each point.

Problem Descriptor Reference : The Elements of a Descriptor 127

MOD(argl,arg2)

The modulo function requires two arguments. MOD is evaluated on a point by point basis and is equal
to the remainder of (argl/arg2) at each point.

GLOBALMAX(arg)

The global maximum function requires one argument. GLOBALMAX is equal to the largest value of the
argument over the problem domain. GLOBALMAX is tabulated, and is re-evaluated only when
components of the argument change.

GLOBALMAX_X(arg)
GLOBALMAX_Y(arg)
GLOBALMAX_Z(arg)

Returns the specified coordinate of the associated GLOBALMAX. Global searches are tabulated by
argument expression, and repeated calls to GLOBALMAX and its related coordinates do not cause
repeated evaluation.

GLOBALMIN(arg)

The global minimum function requires one argument. GLOBALMIN is equal to the smallest value of the
argument over the problem domain. GLOBALMIN is tabulated, and is re-evaluated only when
components of the argument change.

GLOBALMIN_X(arg)
GLOBALMIN_Y(arg)
GLOBALMIN_2Z(arg)

Returns the specified coordinate of the associated GLOBALMIN. Global searches are tabulated by
argument expression, and repeated calls to GLOBALMIN and its related coordinates do not cause
repeated evaluation.

RANDOM(arg)

The random function requires one argument. The result is a pseudo-random number uniformly
distributed in (0,arg). The only reasonable application of the RANDOM function is in initial values.
Use in other contexts will probably result in convergence failure.

SIGN(arg)

The sign function requires one argument. SIGN is equal to 1 if the argument is positive and -1 if the
argument is negative.

TIMEMAX(arg)

The time maximum function requires one argument. TIMEMAX is equal to the largest value of the
argument over the time span of the problem. TIMEMAX is tabulated, and is re-evaluated only when
components of the argument change.

TIMEMAX_T(arg)

Returns the time at which the associated TIMEMAX of the argument occurs. Time searches are
tabulated by argument expression, and repeated calls to TIMEMAX and its related times do not cause
repeated evaluation.

128 FlexPDE 6 : Problem Descriptor Reference

TIMEMIN(arg)

The time minimum function requires one argument. TIMEMIN is equal to the smallest value of the
argument over the time span of the problem. TIMEMIN is tabulated, and is re-evaluated only when
components of the argument change.

TIMEMIN_T(arg)

Returns the time at which the associated TIMEMIN of the argument occurs. Time searches are tabulated

by argument expression, and repeated calls to TIMEMIN and its related times do not cause repeated
evaluation.

3.2.6.3 Unit Functions

The following unit-valued functions are supported in FlexPDE:

USTEP(arg)

The unit step function requires one argument. USTEP is 1 where the argument is positive and O where
the argument is negative. For example, USTEP(x-x0) is a step function at x=x0.

UPULSE(arg1,arg2)

The unit pulse function requires two arguments. UPULSE is 1 where arg1l is positive and arg2 is
negative and 0 everywhere else. UPULSE(t-t0, t-t1)is a pulse from tO to t1 if t1>t0. [Note: because
instantaneous switches cause serious trouble in time dependent problems, the UPULSE function
automatically ramps the rise and fall over 1% of the total pulse width.]

URAMP(argl,arg2)

The unit ramp function requires two arguments. URAMP is like UPULSE, except it builds a ramp
instead of a rectangle. URAMP is 1 where argl and arg2 are both positive, linearly interpolated
between 0 and 1 when arg1 is positive and arg2 is negative, and 0 everywhere else.

Examples:
Samples | Usage | Unit_Functions.pde/so7

3.2.6.4 String Functions
FlexPDE provides support for dynamically constructing text strings.
$number (i.e. <dollar> number)

This function returns a text string representing the integer value of number. number may be a
literal value, a name or a parenthesized expression. If number has integral value, the string will have
integer format. Otherwise, the string will be formatted as a real number with a default length of 6
characters.

$[width]number
This form acts as the form above, except that the string size will be width.

These functions may be used in conjunction with the concatenation operator "+" to build boundary or
region names or plot labels. For example

Problem Descriptor Reference : The Elements of a Descriptor 129

REPEAT i=1 to 4 do
START "LOOP"+$i (x,y)
{ path_info ... }
ENDREPEAT

This is equivalent to

START "LOOP1" (x,y) <path_info> ...
START "LOOP2" (x,y) <path_info> ...
START "LOOP3" (x,y) <path_info> ...
START "LOOP4" (x,y) <path_info> ...

Example:
See "Samples | Usage | Repeat.pde”
3.2.6.5 The FIT Function

The following two forms may be used to compute a finite-element interpolation of an arbitrary argument:
result = FIT(expression)

computes a Finite Element fit of the given expression using the current computational mesh and basis.
Nodal values are computed to return the correct integral over each mesh cell.

result = FIT(expression, weight)

as with FIT(expression), but with a smoothing diffusion with coefficient equal to weight (try 0.1 or 1.0
, and modify to suit).

weight may be an arbitrary expression, involving spatial coordinates, time, or variables of the
computation. In this way it can be used to selectively smooth portions of the mesh. The value of weight
has a well-defined meaning: it is the spatial wavelength over which variations are damped: spatial
variations with wavelength much smaller than weight will be smoothed, while spatial variations with
wavelength much greater than weight will be relatively unmodified.

Note: FIT() builds a continuous representation of the data across the entire domain, and connot
preserve discontinuities in the fitted data. In some cases, multiplying the data by an appropriate
material parameter can result in a continuous function appropriate for fitting. An exception to this
rule is in the case of CONTACT boundaries, where the mesh nodes are duplicated, and discontinuities
can be preserved in FIT functions.

FIT() may be used to smooth noisy data, to block ill-behaved functions from differentiation in the
derivative computation for Newton's method, or to avoid expensive re-computation of complex functions.

See also the SAVE 137 function, in which nodal values are directly computed.

Example:
Samples | Usage | fit+weight.pde/ss2)

130 FlexPDE 6 : Problem Descriptor Reference

3.2.6.6 The LUMP Function

The LUMP function creates a field on the finite element mesh, and saves a single value of the argument
expression in each cell of the finite element mesh. The value stored for each cell is the average value of the
argument expression over the cell, and is treated as a constant over the cell.

The LUMP function may be used to block ill-behaved functions from differentiation in the derivative
computation for Newton's method, or to avoid expensive re-computation of complex functions.

The normal use for LUMP is in the DEFINITIONS section, as in

name = LUMP (expression)

Note: This definition of LUMP(F) is NOT the same as the "lumped parameters" frequently referred to
in finite element literature.

Example:
Samples | Usage | Lump.pde/ssh

3.2.6.7 The RAMP Function

The RAMP function is a modification of the URAMP /128 function, intended to make the usage more nearly
like an IF..THEN [143) statement.

It has been introduced to provide an alternative to discontinuous functions like USTEP 1281 and the
discontinuous IF..THEN/43) construct.

Discontinuous switching can cause serious difficulties, especially in time dependent problems, and is
strongly discouraged. FlexPDE is an adaptive system. Its procedures are based on the assumption that by
making timesteps and/or cell sizes smaller, a scale can be found at which the behavior of the solution is
representable by polynomials. Discontinuities do not satisfy this assumption. A discontinuity is a
discontinuity, no matter how close you look. Instantaneous turn-on or turn-off introduces high-frequency
spatial or temporal components into the solution, including those which are far beyond the physical limits
of real systems to respond. This makes the computation slow and possibly physically meaningless.

The RAMP function generates a smooth transition from one value to another, with the transition taking
place as "expression” changes by and amount "width". It can be thought of as a "fuzzy IF", and has a usage
very similar to an IF.. THEN, but without the harsh switching characteristics.
The form is:

value = RAMP(expression, left_value, right_value, width)
This expression is logically equivalent to

value = IF expression < 0 THEN left_value ELSE right_value

except that the transition will be linear over width. If the left and right values are functions, then you may
not get a straight line as the ramp. The result will be a linear combination of the two functions.

See the SWAGE /132 function for a similar function with both smooth value and derivative.

Problem Descriptor Reference : The Elements of a Descriptor 131

Example:
see "Samples | Usage | Swage_ test.pde" (3931 for a picture of the SWAGE and RAMP transitions and their
derivatives.

3.2.6.8 The SAVE Function

The SAVE function creates a field on the finite element mesh, and saves the values of the argument
expression at the nodal points for subsequent interpolation. SAVE builds a continuous representation of
the data within each material region, and can preserve discontinuities in the saved data.

The SAVE function may be used to block ill-behaved functions from differentiation in the derivative
computation for Newton's method, or to avoid expensive re-computation of complex functions.

The normal use for SAVE is in the DEFINITIONS section, as in

name = SAVE (expression)

Note: SAVE() builds a continuous representation of the data across the entire domain, and cannot
preserve discontinuities in the fitted data. In some cases, multiplying the data by an appropriate
material parameter can result in a continuous function appropriate for saving. An exception to this
rule is in the case of CONTACT boundaries, where the mesh nodes are duplicated, and discontinuities
can be preserved in SAVE functions.

Example:
"Samples | Usage | Save.pde"[3s6)

See the FIT()[129) function for a similar function with integral conservation and variable smoothing
capabilities.

3.2.6.9 The SUM Function

The SUM function produces the sum of repetitive terms. The form is:
value = SUM(name, initial, final, expression)

The expression argument is evaluated and summed for name = initial, initial+1, initial+2,...final.

For example, the statement:
source = SUM(i,1,10,exp(-i))

forms the sum of the exponentials exp(-1)+exp(-2)+...+exp(-10).

The SUM function may be used with data ARRAYSs, as in

DEFINITIONS
A = ARRAY(1,2,3,4,5,6,7,8,9,10)
source = SUM(i,1,10,A[i])

132 FlexPDE 6 : Problem Descriptor Reference

Example:
Samples | Usage | Sum.pde 392

3.2.6.10 The SWAGE Function

The SWAGE function has been introduced to provide an alternative to discontinuous functions like USTEP
1281 and the discontinuous IF..THEN /1431 construct. Discontinuous switching can cause serious difficulties,
especially in time dependent problems, and is strongly discouraged.

FlexPDE is an adaptive system. Its procedures are based on the assumption that by making timesteps
and/or cell sizes smaller, a scale can be found at which the behavior of the solution is representable by
polynomials. Discontinuities do not satisfy this assumption. A discontinuity is a discontinuity, no matter
how close you look. Instantaneous turn-on or turn-off introduces high frequency spatial or temporal
components into the solution, including those which are far beyond the physical limits of real systems to
respond. This makes the computation slow and possibly physically meaningless.

The SWAGE function generates a smooth transition from one value to another. The slope at the center of
the transition is the same as a RAMP /1301 of the given width, but the curve extends to five times the given
width on each side, approaching the end values asymptotically. It also has smooth derivatives. It can be
thought of as a "fuzzy IF", and has a usage very similar to an IF.. THEN, but without the harsh switching
characteristics.

The form is:

value = SWAGE(expression, left_value, right_value, width)

This expression is logically equivalent to
value = IF expression < 0 THEN left_value ELSE right_value

except that the transition will be smeared over width.

See the RAMP/130) function for a similar function which is smooth in value, but not in derivative.

Example:
see "Samples | Usage | Swage_ test.pde" (393 for a picture of the SWAGE and RAMP transitions and their
derivatives.

Wiktionary:

swage 1.(noun) A tool, variously shaped or grooved on the end or face, used by blacksmiths and other
workers in metals, for shaping their work. 2.(verb)To bend or shape using a swage.

3.2.6.11 The VAL and EVAL functions

There are two ways to evaluate an arbitrary expression at selected coordinates, VAL and EVAL.
value = VAL(expression, X, y)
value = VAL(expression, X, y, z)

The value of expression is computed at the specified coordinates. The coordinates must be constants.
The value is computed and stored at each phase of the solution process, allowing efficient reference in

Problem Descriptor Reference : The Elements of a Descriptor 133

many computations.

FlexPDE maintains a "scoreboard" of dependencies and re-evaluates the expression whenever the
dependency changes. If the expression depends on a variable, it will also create an implicit coupling
between the expression and its point of use, causing the value to be solved simultaneously during the
solution phase.

Expression can include derivative terms, but the VAL itself cannot be differentiated.

value = EVAL(expression, x, y)
value = EVAL(expression, X, y, z)

The value of expression is computed at the specified coordinates. The coordinates may be dynamically
variable. The value is recomputed at each reference, possibly leading to increased run time.

This form does NOT allow FlexPDE to compute implicit couplings between computation nodes referencing
and evaluating the value.

Derivative operators applied to EVAL will be passed through and applied to expression.

Note: The value returned from these functions must be scalar.

3.2.6.12 Boundary Search Functions

The functions XBOUNDARY, YBOUNDARY and ZBOUNDARY allow the user to search for the position of
a system boundary from an evaluation point:

XBOUNDARY("boundary name")
YBOUNDARY("boundary name")
ZBOUNDARY("surface name")
ZBOUNDARY (surface_number)

In each case, the function returns the X,Y or Z coordinate of the named boundary at the (Y,Z), (X,Z) or
(X,Y) coordinates of the current evaluation.

3.2.7 Operators
3.2.7.1 Arithmetic Operators

The following customary symbols can be use in arithmetic expressions:

Operator Action

Unary negate, Forms the negative of a single operand

+ 1

Binary add, Forms the sum of two operands
- Binary subtract, Forms the difference of two operands
* Binary multiply, Forms the product of two operands
/ Binary divide, Divides the first operand by the second
A

Binary power, Raises the first operand to the power of the second

134 FlexPDE 6 : Problem Descriptor Reference

These operators can be applied to scalars, arrays or matrices. When used with arrays or
matrices, the operations are applied element-by-element.

Special operators are defined to designate conventional matrix and array operations.

Operator Action

*%

Binary MATRIX multiply. Forms the product of two matrices or the product of a
MATRIX and an ARRAY. Applied to tensors, the result is the same as the DOT
operator.

1 Matrix "division". A1 = A2 // M produces the ARRAY A1 satisfying the equation
A2 = M**A1.

3.2.7.2 Complex Operators
The following operators perform various transformations on complex quantities.

REAL (complex)

Extracts the real part of the complex number.

IMAG (complex)

Extracts the imaginary part of the complex number.

CABS (complex)

Computes the magnitude of the complex number, given by
CABS(complex(x,y)) = sqrt(x~2 + yN2).

CARG (complex)

Computes the Argument (or angular component) of the complex number, implemented as
CARG(complex(x,y)) = Atan2(y,x).

CEXP (complex)

Computes the complex exponential of the complex number, given by
CEXP(complex(x,y)) = exp(x + iy) = exp(x)*(cos(y) + i*sin(y)).

CLOG (complex)

Computes the natural logarithm of the complex number, given by
CLOG(complex(x,y)) = In(x + iy) = In(sqrt(x~2 + y~2)) + i*arctan(y/x).

CONJ (complex)
Returns the complex conjugate of the complex number.
CSQRT (complex)
Computes the complex square root of the complex number, given by

CSQRT(complex(x,y)) = complex(sqrt((r + x)/2), sign(y)*sqrt((r - x)/2))
where r = CABS(x,y).

Problem Descriptor Reference : The Elements of a Descriptor 135

3.2.7.3 Differential Operators

Differential operator names are constructed from the coordinate names for the problem, either as defined
by the user, or as default names.

First derivative operators are of the form "D<name>", where <name> is the name of the coordinate.
Second-derivative operators are of the form "D<namel><name2>".

In the default 2D Cartesian case, the defined operators are "DX", "DY", "DXX", "DXY", and "DYY".

All differential operators are expanded internally into the proper forms for the active coordinate system of
the problem.

D<n> (arg)

First order partial derivative of arg with respect to coordinate <n>, eg. DX(arg).

D<n><m> (arg)

Second order partial derivative of arg with respect to coordinates <n> and <m>, eg. DXY(arg).

DIV (vector_arg)

Divergence of vector argument. Produces a scalar result.

DIV (argx, argy {, argz })

Divergence of the vector whose components are argx and argy (and possibly argz in 3D). This is the
same as DIV(vector(argx,argy,argz), and is provided for convenience.

DIV (tensor_arg)

Divergence of tensor argument. Produces a vector result. In curvilinear geometry,
DIV(GRAD(vector)) is NOT the same as the Laplacian of the components of the vector, because
differentiation of the unit vectors introduces additional terms. FlexPDE handles these expansions
correctly in all supported geometries.

GRAD (scalar_arg)

Gradient of scalar argument. Produces a vector result.

GRAD (vector_arg)

Gradient of vector argument. This operation produces a tensor result. In curvilinear geometry, this
creates additional terms due to the differentiation of the unit vectors. It is NOT equivalent to the
gradient of the vector components except in Cartesian geometry. FlexPDE handles these expansions
correctly in all supported geometries.

CURL (vector_arg)

Returns the vector result of applying the curl operator to vector_arg.

CURL (scalar_arg)

Curl of a scalar_arg (2D only). Assumes arg to be the magnitude of a vector normal to the
computation plane, and returns a vector result in the computation plane.

136 FlexPDE 6 : Problem Descriptor Reference

CURL (argx, argy {, argz })

Curl of a vector whose components in the computation plane are argx and argy (and possibly argz in
3D). This is the same as CURL(vector(argx,argy,argz)), and is provided for convenience.

DEL2 (scalar_arg)
Laplacian of scalar_arg. Equivalent to DIV(GRAD(scalar_arg)).

DEL2 (vector_arg)
Laplacian of vector_arg. Equivalent to DIV(GRAD(vector_arg)).

3.2.7.4 Integral Operators

Integrals may be formed over volumes, surfaces or lines. The specific interpretation of the integral
operators depends on the coordinate system of the current problem. Integral operators can treat only
scalar functions as arguments. You cannot integrate a vector field.

Examples

Samples | Applications | Heatflow | Heat_Boundary.pde/s3)
Samples | Usage | 3d_Domains | 3D_Integrals.pde 412
Samples | Usage | Constraints | Boundary_Constraint.pde /454
Samples | Usage | Constraints | 3D_Constraint.pde 4t
Samples | Usage | Constraints | 3D_Surf_Constraint.pde 4s3)
Samples | Usage | Tintegral.pde (395

3.2.7.4.1 Time Integrals

The operators TINTEGRAL and TIME_INTEGRAL are synonymous, and perform explicit time integration
of arbitrary scalar values from the problem start time to the current time:

TINTEGRAL (integrand)
TIME_INTEGRAL (integrand)

Note: This operator cannot be used to create implicit linkage between variables. Use a GLOBAL
VARIABLE instead.

3.2.7.4.2 Line Integrals

The operators BINTEGRAL and LINE_INTEGRAL are synonymous, and perform line integrations of
scalar integrands.

The integral is always taken with respect to distance along the line or curve.
The basic form of the LINE_INTEGRAL operator is:

BINTEGRAL (integrand, named_boundary)
LINE_INTEGRAL (integrand, named_boundary)

Problem Descriptor Reference : The Elements of a Descriptor 137

The boundary specification may be omitted, in which case the entire outer boundary is implied.

2D Line Integrals

In 2D Cartesian geometry, LINE_INTEGRAL is the same as SURF_INTEGRAL.

In 2D cylindrical geometry, SURF_INTEGRAL will contain the 2*pi*r weighting, while LINE_INTEGRAL
will not.

2D Line integrals may be further qualified by specifying the region in which the evaluation is to be made:
LINE_INTEGRAL (integrand, named_boundary, named_region)

named_region must be one of the regions bounded by the selected boundary.

3D Line Integrals

3D Line integrals may be computed only on extrusion surfaces of the 3D domain.

LINE_INTEGRAL (integrand, named_boundary, surface_number)
LINE_INTEGRAL (integrand, named_boundary, named_surface)

The named_boundary must exist in the named_surface (ie, it must not have been excluded by
LIMITED REGION commands).

3.2.7.4.3 2D Surface Integrals

The synonymous prototype forms of surface integral functions in 2D are:

SINTEGRAL (integrand, named_boundary)
SURF_INTEGRAL (integrand, named_boundary)

Here named_boundary may be specified by name, or it can be omitted, in which case the entire outer
boundary of the domain is implied.

In two-dimensional Cartesian problems, the surface element is formed by extending the two-dimensional
line element a single unit in the Z-direction, so that the surface element is dI*1. In this case, the surface
integral is the same as the line integral.

In two-dimensional cylindrical problems, the surface element is formed as 2*pi*r*dl, so the surface
integral is NOT the same as the line integral.

The region in which the evaluation is made can be controlled by providing a third argument, as in
SURF_INTEGRAL (integrand, named_boundary, named_region)

named_region must be one of the regions bounded by the selected surface.

138 FlexPDE 6 : Problem Descriptor Reference

3.2.7.4.4 3D Surface Integrals

In three-dimensional problems, there are several forms for the surface integral:

1. Integrals over extrusion surfaces are selected by surface name or number and qualifying region name or
number:

SINTEGRAL (integrand, surface, region)
SURF_INTEGRAL (integrand, surface, region)

If region is omitted, the integral is taken over all regions of the specified surface.
If both surface and region are omitted, the integral is taken over the entire outer surface of the
domain.

Integrals of this type may be further qualified by selecting the layer in which the evaluation is to be
made:

SURF_INTEGRAL (integrand, surface, region, layer)

layer must be one of the layers bounded by the selected surface.

2. Integrals over "sidewall" surfaces are selected by boundary name and qualifying layer name:

SINTEGRAL (integrand, named_boundary, named_layer)
SURF_INTEGRAL (integrand, named_boundary, named_layer)

If layer is omitted, the integral is taken over all layers of the specified surface.

Integrals of this type may be further qualified by selecting the region in which the evaluation is to be
made:

SURF_INTEGRAL(integrand, named_boundary, named_layer, named_region)

named_region must be one of the regions bounded by the selected surface.

3. Integrals over entire bounding surfaces of selected subregions are selected by region name and layer
name, as with volume integrals:

SINTEGRAL (integrand, named_region, named_layer)
SURF_INTEGRAL (integrand, named_region, named_layer)

If named_layer is omitted, the integral is taken over all layers of the specified surface.

3.2.7.4.5 2D Volume Integrals

The synonymous prototype forms of volume integral functions in 2D are:

INTEGRAL (integrand, region)
VOL_INTEGRAL (integrand, region)

Problem Descriptor Reference : The Elements of a Descriptor 139

Here region can be specified by number or name, or it can be omitted, in which case the entire domain is
implied.

In two-dimensional Cartesian problems, the volume element is formed by extending the two-dimensional
cell a single unit in the Z-direction, so that the volume integral is the same as the area integral in the
coordinate plane.

In two-dimensional cylindrical problems, the volume element is formed as 2*pi*r*dr*dz, so that the
volume integral is NOT the same as the area integral in the coordinate plane. For the special case of 2D
cylindrical geometry, the additional operator

AREA_INTEGRAL (integrand, region)

computes the area integral of the integrand over the indicated region (or the entire domain) without the
2*pi*r weighting.

3.2.7.4.6 3D Volume Integrals

The synonymous prototype forms of volume integral functions in 3D are:

INTEGRAL (integrand, region, layer)
VOL_INTEGRAL (integrand, region, layer)

Here layer can be specified by number or name, or it can be omitted, in which case the entire layer stack is
implied.

region can also be specified by number or name, or it can be omitted, in which case the entire projection
plane is implied.

If region is omitted, then layer must be specified by name or omitted. If both region and layer are
omitted, the entire domain is implied.

For example,
INTEGRAL(integrand, region, layer) means the integral over the subregion contained in the
selected region and layer.
INTEGRAL(integrand, named_layer) means the integral over all regions of the named layer.
INTEGRAL(integrand, region) means the integral over all layers of the selected region.
INTEGRAL(integrand) means the integral over the entire domain.

3.2.7.5 Relational Operators

The following operators may be used in constructing conditional expressions:

Relational Operators

Operator Definition

= Equal to

140 FlexPDE 6 : Problem Descriptor Reference

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Relational Combinations

Operator Definition

AND Both conditions true

OR Either condition true
NOT (Unary) reverses condition

Assignment Operator

In addition to its use as an equal operator, problem descriptors use the '=' symbol to assign (associate)
values functions and expressions with defined names.

3.2.7.6 String Operators

The following operators can be used in expressions that construct string constants:

Operator Action

+ Binary add, Forms the catenation of two text-string operands
3.2.7.7 Vector Operators

The following operators perform various transformations on vector quantities.

Vector quantities are assumed to have one component in each of the three coordinate directions implied by
the COORDINATES selection, whether the selected model geometry is one, two or three dimensional. For
example, a Vector can have a Z-component in a two-dimensional X,Y geometry. The restricted geometry
simply means that there is no computable variation of the solution in the missing directions. In the explicit
construction of Vectors, the third component may be omitted, in which case it is assigned a value of zero.

CROSS (vectorl, vector2)

Forms the cross product of two vectors and returns the resulting vector. In 2D geometries, the CROSS
product of two vectors lying in the computation plane returns a vector with a nonzero component only
in the direction normal to the problem plane. Where appropriate, FlexPDE will interpret this vector as a
scalar, suitable for arithmetic combination with other scalars.

DOT (vectorl, vector2)

Forms the dot product of two vectors and returns a scalar value equal to the magnitude of the vector
dot product.

MAGNITUDE (vector)

Returns a scalar equal to the magnitude of a vector argument.

MAGNITUDE (argx, argy {, argz })*

Returns a scalar equal to the magnitude of a vector whose components are argx and argy (and

Problem Descriptor Reference : The Elements of a Descriptor 141

possibly argz).

NORMAL (vector)
NORMAL (argx, argy {, argz})*

Returns a scalar equal to the component of a vector argument normal to a boundary. This operator
may be used only in boundary condition definitions or in boundary plots or integrals, where the
reference surface is clear from the context of the statement. (See also UNORMAL below).

TANGENTIAL(vector)
TANGENTIAL (argx, argy {, argz })*

Returns a scalar equal to the component of a vector argument tangential to a boundary. This operator
may be used only in boundary condition definitions or in boundary plots or integrals, where the
reference surface is clear from the context of the statement.

VECTOR (argx {, argy {, argz }})*

Constructs a vector whose components are the scalar arguments. Omitted arguments are assumed
ZETo.

XCOMP (vector)

Returns a scalar whose value is the first component of the vector argument (regardless of the names of
the coordinates).

YCOMP (vector)

Returns a scalar whose value is the second component of the vector argument (regardless of the names
of the coordinates).

ZCOMP (vector)

Returns a scalar whose value is the third component of the vector argument, if it exists (regardless of the
names of the coordinates).

The Special Function UNORMAL

UNORMAL is a built-in function which returns the unit-normal vector at the location of evaluation. It's use
is valid only in expressions computed on a system boundary. UNORMAL takes no arguments, as it's
arguments are implicitly the coordinates at the point of evaluation.

* Note: arguments in brackets {} are optional.

3.2.7.8 Tensor Operators

FlexPDE supports limited use of TENSOR quantities, to parallel the results of GRAD(vector).
A TENSOR is a vector of vectors, potentially 3 x 3 components.
TENSOR((T11,T12,T13), (T21, T22, T23), (T31, T32, T33))

142 FlexPDE 6 : Problem Descriptor Reference

This operator returns a TENSOR object with the indicated components. Each of the Tij may be any
scalar expression.

DOT(vector, tensor)

This operator returns a VECTOR with components ((V1*T11+V2*T21+V3*T31), (V1*T12
+V2*T224V3*T32), (V1*T134+V2*T23+V3*T33)).

DOT(tensor, vector)

This operator returns a VECTOR with components ((T11*V1+T12*V2+T13*V3), (T21*V1
+T22*V24T23*V3), (T31*V1+T32*V2+T33*V3)).

DOT(tensor, tensor)

This operator returns a TENSOR representing the matrix product of the tensors. The operator ** can
be used to produce the same result (i.e. tensor**tensor).

DIV(tensor)

This operator returns a VECTOR value whose components depend on the metric coefficients of the
selected problem geometry. In Cartesian geometry, the result is a VECTOR made up of the
divergences of the tensor columns.

TRANSPOSE(tensor)

This operator returns a TENSOR which is the transpose of the argument tensor.
vector * vector

produces a tensor of all combinations of component products.

XXCOMP (tensor)
XYCOMP (tensor)
XZCOMP (tensor)
YXCOMP (tensor)
YYCOMP (tensor)
YZCOMP (tensor)
ZXCOMP (tensor)
ZYCOMP (tensor)
ZZCOMP (tensor)

These operators returns a scalar whose value is the indicated component of the tensor argument (X
indicates the first coordinate component, Y the second and Z the third, regardless of the actual assigned
names of the coordinates).

3.2.8 Predefined Elements

The problem descriptor language predefines the following element:
PI 3.14159265358979

For Cartesian coordinates in which 'R’ is not specified as a coordinate name or a defined name, the
problem descriptor language predefines the following elements:

R R=SQRT(x"2 + y~2) radius vector length in 2D

Problem Descriptor Reference : The Elements of a Descriptor 143

R=SQRT(x"2 + y~2 + z~2) radius vector length in 3D
THETA THETA = ARCTAN(Y/X) azimuthal angle in 2D or 3D

Note: If "R" or "Theta" appear on the left side of a definition before any use in an expression, then the
new definition will become the meaning of the name, and the predefined meaning will be hidden.

In staged problems where "STAGES = integer" is declared in the SELECT section,
STAGE an internally declared index which increments from 1 to integer.

In modal analysis (eigenvalue and eigenfunction) problems where "MODES = integer" is declared in the
SELECT section,

LAMBDA an internally declared name which represents the various eigenvalues.
In time-dependent problems, the current timestep interval is available:

DELTAT an internally declared name which returns the size of the current timestep.

3.2.9 Expressions

Value Expressions

Problem descriptors are composed predominantly of arithmetic expressions made of one or more
operators, variables, defined values and pairs of parentheses that evaluate to numerical values. In
evaluating value expressions, FlexPDE follows the algebraic rules of precedence in which unary operators
are evaluated first, followed by binary operators in the following order:

power
multiplication and division

addition and subtraction

relational operators (<, <=, =, <>, >=, >)
relational combinations (AND, OR)

When included in expressions, subexpressions enclosed in pairs of parentheses are evaluated first, without
regard to the precedence of any operators which precede or follow them. Parentheses may be nested to any
level, with inner subexpressions being evaluated first and proceeding outward. Parentheses must always
be used in pairs.

Examples:
a = b*(c+d)
div(k*grad(u))

Conditional-Value Expressions
Problem descriptors can contain conditional expressions of the form

IF condition THEN subexpression ELSE subexpression .

This form selects one of the two alternative values as the value of the expression. It is used in expressions
like

144 FlexPDE 6 : Problem Descriptor Reference

y = IF a THEN b ELSE c
analogous to the expression "y = a ? b : ¢" in the C programming language.

It is not the procedural alternative construct
IF a THEN y=b ELSE y=c{ Wrong ! }
familiar in procedural programming languages.

The THEN or ELSE subexpressions my contain nested IF...THEN...ELSE expressions. Each ELSE will
bind to the nearest previous IF.

Conditional expressions used in material parameters can cause numerical trouble in the solution of a PDE
system, because they imply an instantaneous change in the result value. This instantaneous change
violates assumptions of continuity upon which the solver algorithms are based.

See URAMP/128), RAMP|1361and SWAGE 132 for switching functions that transition smoothly between
alternative values.

3.2.10 Repeated Text

The REPEAT..ENDREPEAT construct allows the repetition of sections of input text.

The syntax looks like a FOR loop in procedural languages, but we emphasize that in FlexPDE this feature
constitutes a textual repetition, not a procedural repetition.

The form of a repeat clause is

REPEAT name = initial TO final
REPEAT name = initial BY delta TO final

These statements specify that the following lines of descriptor text should be repeated a number of times.
The given name is defined as if it had appeared in the DEFINITIONS section, and is given the value
specified by initial.

The repeated section of text is terminated by the statement

ENDREPEAT

At this point, the value of name is incremented by delta (or by one, if no delta is given). If the new value
is not greater than final, the repeated text is scanned again with the new value in place of name. If delta
is negative, the value of name is decremented and the termination test is modified accordingly.

The REPEAT statement can appear in the following locations:

in BATCH file lists

in VARIABLE lists

in EXTRUSION lists

in INITIAL VALUE lists

anywhere the REGION, START or LINE keywords are legal.
around any plot command or group of plot commands.

around any DEFINITION or group of DEFINITIONS.

around any REPORT command or group of REPORT commands.
around AT points in a HISTORY list

Use of ARRAYS and the $integer string function can extend the power of the REPEAT loop.

Problem Descriptor Reference : The Elements of a Descriptor 145

Examples:

REPEAT xc=1/4 by 1/4 to 7/4
REPEAT yc=1/4 by 1/4 to 7/4
START (xc+rad,yc) ARC(CENTER=xc,yc) ANGLE=360 CLOSE
ENDREPEAT
ENDREPEAT

This double loop constructs a 7 x 7 array of circles, all part of the same REGION.

See the sample problems:

Samples | Usage | Repeat.pde|3s5)

Note: REPEAT..ENDREPEAT replaces the older FOR..ENDFOR facility used in earlier versions of
FlexPDE. The older facility is no longer supported, and will produce parsing errors.

3.3 The Sections of a Descriptor

The SECTIONS of a descriptor were outlined in the introduction. In the following pages we present a
detailed description of the function and content of each section.

3.3.1 Title

The optional TITLE section can contain one literal string.
When a TITLE is used, the literal string it contains is used as a title label for all MONITORS and PLOTS.

If TITLE is not specified, the plots will not have a title label.

Example:
TITLE "this is my first model"
3.3.2 Select

The SELECT section, which is optional, is used when it is necessary to override some of the default
selectors internal to the program.

Selectors are used to control the flow of the process used to solve a problem.

The SELECT section may contain one or more selectors and their associated values. The default selectors
have been chosen to optimize how FlexPDE handles the widest range of problem:s.

The SELECT section should be used only when the default behavior of FlexPDE is somehow inadequate.
Unlike the other elements used in program descriptors, the proper names used for the selectors are not

part of the standard language, are not reserved words, and are not meaningful in other descriptor sections.

The selectors implemented in FlexPDE are specific to a version of FlexPDE, and may not correspond to
those available in previous versions of FlexPDE or in other applications using the FlexPDE descriptor
language.

146 FlexPDE 6 : Problem Descriptor Reference

3.3.2.1 Mesh Generation Controls

The following controls can be used in the SELECT section to modify the behavior of the mesh generator.
¢ Logical selectors can be turned on by selector = ON, or merely mentioning the selector

e Logical selectors can be turned off by selector = OFF.

e Numeric selectors are set by selector = number.

ASPECT type: Numeric default: 2.0
Maximum cell aspect ratio for mesh generation in 2D problems and 3D surface meshes. Cells may be
stretched to this limit of edge-size ratio.

CURVEGRID type: Logical default: On
If ON, cells will be bent to follow curved boundaries, and a 3D mesh will be refined to resolve surface
curvature.

If OFF, neither of these modifications will be attempted, and the computation will proceed with
straight-sided triangles or flat-sided tetrahedra. (It may be necessary to turn this option OFF when
surfaces are defined by TABLES, because the curvature is infinite at table breaks.)

FEATURE_INDUCTION type: Numeric default: 2

In the initial domain layout, FlexPDE attempts to discover cell sizes necessary to resolve domain elements,
iterating to propagate the influence of small features. In complex domains this can become expensive. If
feature sizes are relatively uniform, or if the user controls the cell size manually, the iteration can be
bypassed by setting FEATURE_INDUCTION to 0.

GRIDARC type: Numeric default: 30 degrees
Arcs will be gridded with no cell exceeding this angle. Other factors may cause the sizes to be smaller.

GRIDLIMIT type: Numeric default: 8
Maximum number of regrids before a warning is issued. Batch runs stop at this limit.

INITGRIDLIMITtype: Numeric default: 5
Maximum number of regridding passes in the initial refinement to define initial values.
INITGRIDLIMIT=0 suppresses initial refinement.

MERGE type: Logical default: On
Allows merging of low-error mesh cells. Only cells which have previously been split can be merged.

MERGEDIST type: Numeric default: Automatic

In the initial domain layout, points closer than MERGEDIST will be coalesced into a single point. This
helps overcome the effects of roundoff and input number precision in generation of domains. A default
merge distance is computed during initial layout. MERGEDIST will over-ride this default value. Individual
values for X, Y and Z coordinates can be set with XMERGEDIST, YMERGEDIST and ZMERGEDIST
respectively. (These controls should be used only in unusual cases, when the default value performs
incorrectly.)

NGRID type: Numeric default: See below
Specifies the number of mesh rows in each dimension. Use this control to set the maximum cell size in
open areas. This is a convenient way to control the overall mesh density in a problem. Default values are

shown below:
1D 2D 3D
Professional 100 15 10
Student 50 10 5

NODELIMIT type: Numeric default: See below

Problem Descriptor Reference : The Sections of a Descriptor 147

Specifies the maximum node count. If mesh refinement tries to create more nodes than the limit, the
cell-merge threshold will be raised to try to balance errors across a mesh of the specified size. This control
cannot be used to reduce the size if the initial mesh construction, which is dictated by NGRID, user density
controls, and domain boundary feature sizes. Default values are shown below, although these limits will
likely not be reachable within the resources of most computers:

1D 2D 3D
Professional 1,000,000 10,000,000 50,000,000
Student 100 800 1600
REGRID type: Logical default: On

By default, FlexPDE implements adaptive mesh refinement. This selector can be used to turn it off and
proceed with a fixed mesh.

SMOOTHINIT type: Logical default: On
Implements a mild initial-value smoothing for time dependent problems, to help ameliorate discontinuous
initial conditions.

STAGEGRID type: Logical default: Off

Forces regeneration of mesh with each stage of a staged problem. FlexPDE attempts to detect stage
dependencies in the domain and regenerate the mesh, but this selector may be used to override the
automatic detection.

XMERGEDIST type: Numeric default: Automatic
See MERGEDIST.

YMERGEDIST type: Numeric default: Automatic
See MERGEDIST.

ZMERGEDIST type: Numeric default: Automatic
See MERGEDIST.

Note: See the "Mesh Control Parameters|173)" section in this manual and the "Controlling Mesh
Densityl1031" section in the User Guide for more discussion of mesh control.

3.3.2.2 Solution Controls

The following controls can be used in the SELECT section to modify the solution methods of FlexPDE.
¢ Logical selectors can be turned on by selector = ON, or merely mentioning the selector.

¢ Logical selectors can be turned off by selector = OFF.

e Numeric selectors are set by selector = number.

AUTOSTAGE type: Logical default: On

In STAGED problems, this selector causes all stages to be run consecutively without pause. Turning this
selector OFF causes FlexPDE to pause at the end of each stage, so that results can be examined before
proceeding.

CHANGELIM type: Numeric default: 0.5(steady state), 0.1(time dependent)
Steady state: Specifies the maximum change in any nodal variable allowed on any Newton iteration step
(measured relative to the variable norm). In severely nonlinear problems, it may be necessary to force a
slow progress toward the solution in order to avoid pathological behavior of the nonlinear functions.
Time dependent: Specifies the maximum change in one timestep of any nodal variable derived from a

148 FlexPDE 6 : Problem Descriptor Reference

steady-state equation. Changes larger than this amount will cause the timestep to be cut.

CUBIC type: Logical default: Off
Use cubic Finite Element basis (same as ORDER=3). The default is quadratic (ORDER=2). Cubic basis
creates a larger number of nodes, and sometimes makes the system more ill-conditioned.

ERRLIM type: Numeric default: 0.002

This is the primary accuracy control. Both the spatial error control XERRLIM the temporal error control
TERRLIM are set to this value unless over-ridden by explicit declaration.

[Note: ERRLIM is an estimate of the relative error in the dependent variables. The solution is not
guaranteed to lie within this error. It may be necessary to adjust ERRLIM or manually force greater mesh
density to achieve the desired solution accuracy.]

FIRSTPARTS type: Logical default: Off

By default, FlexPDE integrates all second-order terms by parts, creating the surface terms represented by
the Natural boundary condition. This selector causes first-order terms to be integrated by parts as well.
Use of this option may require adding terms to Natural boundary condition statements.

FIXDT type: Logical default: Off

Disables the automatic timestep control. The timestep is fixed at the value given in the TIME section. (In
most cases, this is not advisable, as it is difficult to choose a single timestep value that is both accurate and
efficient over the entire time range of a problem. Consider modifying the ERRLIM control instead.)

HYSTERESIS type: Numeric default: 0.5

Introduces a hysteresis in the decay of spatial error estimates in time-dependent problems. The effective
error estimate includes this fraction of the previous effective estimate added into the current instantaneous
estimate. This effect produces more stable regridding in most cases.

ICCG type: Logical default: On
Use Incomplete Choleski Conjugate-Gradient in symmetric problems. This method usually converges
much more quickly. If ICCG=O0FF or the factorization fails, then the Orthomin method will be used.

ITERATE type: Numeric default: 1000 (steady-state)

default: 500(time-dependent)
Primary conjugate gradient iteration limit. This is the count at which convergence-coercion techniques
begin to be applied. The actual hard maximum iteration count is 4*ITERATE.

LINUPDATE type: Numeric default: 5
In linear steady-state problems, FlexPDE repeats the linear system solution until the computed residuals
are below tolerance, up to a maximum of LINUPDATE passes.

MODES type: Numeric default: o
Selects the Eigenvalue solver and specifies the desired number of modes. The default is not to run an
Eigenvalue problem.

NEWTON type: Numeric default: (5/changelim)+40 (steady_state)
default: 1 (time-dependent)
Overrides the default maximum Newton iteration limit.

NONLINEAR type: Logical default: Automatic
Selects the nonlinear (Newton-Raphson) solver, even if the automatic detection process does not want it.

NONSYMMETRIC type: Logical default: Automatic
Selects the nonsymmetric Lanczos conjugate gradient solver, even if the automatic detection process does

Problem Descriptor Reference : The Sections of a Descriptor 149

not want it.

NOTIFY_DONE type: Logical default: Off
Requests that FlexPDE emit a beep and a "DONE" message at completion of the run.

NRMINSTEP type: Numeric default: 0.009

Sets the minimum fraction of the computed stepsize which will be applied during Newton-Raphson
backtracking. This number only comes into play in difficult nonlinear systems. Usually the computed step
is unmodified.

NRSLOPE type: Numeric default: 0.1
Sets the minimum acceptable residual improvement in Newton-Raphson backtracking of steady-state
solutions.

ORDER type: Numeric default: 2
Selects the order of finite element interpolation (2 or 3). The selectors QUADRATIC and CUBIC are
equivalent to ORDER=2 and ORDER =3, respectively.

OVERSHOOT type: Numeric default: 0.0005
Sub-iteration convergence control. Conjugate-Gradient solutions will iterate to a tolerance of
OVERSHOOT*ERRLIM. (Some solution methods may apply additional multipliers.

PRECONDITION type: Logical default: On
Use matrix preconditioning in conjugate-gradient solutions. The default preconditioner is the
diagonal-block inverse matrix.

PREFER_SPEED type: Logical default: On
This selector chooses parameters for nonlinear time-dependent problems that result in greatest solution
speed for well-behaved problems. Equivalent to NEWTON=1, REMATRIX=0ff.

PREFER_STABILITY type: Logical default: Off
This selector chooses parameters for nonlinear time-dependent problems that result in greatest solution
stability in ill-behaved problems. Equivalent to NEWTON=5, REMATRIX=0n.

QUADRATIC type: Logical default: On
Selects use of quadratic Finite Element basis. Equivalent to ORDER=2.

RANDOM_SEED type: Numeric default: random
Specifies the seed for random number generation. May be used to create repeatable solution of problems
using random numbers.

REINITIALIZE type: Logical default: Off
Causes each Stage of a STAGED problem to be reinitialized with the INITIAL VALUES specifications,
instead of preserving the results of the previous stage.

REMATRIX type: Logical default: Off

Forces a re-calculation of the Jacobian matrix for each step of the Newton-Raphson iteration in nonlinear
problems. The matrix is also recomputed whenever the solution changes appreciably, or when the
residual is large. Replaces NRMATRIX in previous version.

STAGES type: Numeric default: 1

Parameter-studies may be run automatically by selecting a number of Stages|t6#. Unless the geometric
domain parameters change with stage, the mesh and solution of one stage are used as a starting point for
the next.

150 FlexPDE 6 : Problem Descriptor Reference

SUBSPACE type: Numeric default: MIN(2*modes,modes+8)
If MODES has been set to select an eigenvalue problem, this selector sets the dimension of the subspace
used to calculate eigenvalues.

TERRLIM type: Numeric default: 0.002

This is the primary temporal accuracy control. In time dependent problems, the timestep will be cut if the
estimated relative error in time integration exceeds this value. The timestep will be increased if the
estimated temporal error is smaller than this value. TERRLIM is automatically set by the ERRLIM control.
Note: TERRLIM is an estimate of the relative error in the dependent variables. The solution is not
guaranteed to lie within this error. It may be necessary to adjust TERRLIM to achieve the desired
solution accuracy.

THREADS type: Numeric default: 1

Selects the number of worker threads to use during the computation. This control is useful in increasing
computation speed on computers with multiple shared-memory processors. FlexPDE does not support
clusters. See "Using Multiple Processors"[112for more information.

TNORM type: Numeric default: 4

Error averaging method for time-dependent problems. Timestep control is based on summed (2*TNORM
) power of nodal errors. Allowable values are 1-4. Use larger TNORM in problems with localized activity in
large mesh.

UPFACTOR type: Numeric default: 1
Multiplier on upwind diffusion terms. Larger values can sometimes stabilize a marginal hyperbolic system.

UPWIND type: Logical default: On
"Upwind" convection terms in the primary equation variable. In the presence of convection terms, this
adds a diffusion term along the flow direction to stabilize the computation.

VANDENBERG type: Logical default: Off

Use Vandenberg Conjugate-Gradient iteration (useful if hyperbolic systems fail to converge). This method
essentially solves (AtA)x = (At)b instead of Ax=b. This squares the condition number and slows
convergence, but it makes all the eigenvalues positive when the standard CG methods fail.

XERRLIM type: Numeric default: 0.002

This is the primary spatial accuracy control. Any cell in which the estimated relative spatial error in the
dependent variables exceeds this value will be split (unless NODELIMIT is exceeded). XERRLIM is set
automatically by the ERRLIM selector.

Note: XERRLIM is an estimate of the relative error in the dependent variables. The solution is not
guaranteed to lie within this error. It may be necessary to adjust XERRLIM or manually force greater
mesh density to achieve the desired solution accuracy.

3.3.2.3 Global Graphics Controls

The following controls can be used in the SELECT section to modify the behavior of the graphics
subsystem.

¢ Logical selectors can be turned on by selector = ON, or merely mentioning the selector.

¢ Logical selectors can be turned off by selector = OFF.

e Numeric selectors are set by selector = number.

In the usual case, these selectors can be over-ridden by specific controls in individual plot commands (see

Problem Descriptor Reference : The Sections of a Descriptor 151

Graphic Display Modifiers [2007).

ALIAS (coord) type: string default: Coordinate name
Defines an alternate label for the plot axes. Example: ALIAS(x)="distance".

AUTOHIST type: Logical default: On
Causes history plots to be updated when any other plot is drawn.

BLACK type: Logical default: Off
Draw all graphic output in black only. Use GRAY to select grayscale output.

CDFGRID type: Numeric default: 51
Specifies the default size of CDF output grid (ie, 51x51).

CONTOURGRID type: Numeric default: 51

Resolution specification for contour plots, in terms of the number of plot points along the longest plot
dimension. The actual plot grid will follow the computation mesh, with subdivision if the cell size is
greater than that implied by the CONTOURGRID control.

CONTOURS type: Numeric default: 15
Target number of contour levels. Contours are selected to give "nice" numbers, and the number of
contours may not be exactly as specified here.

ELEVATIONGRID type: Numeric default: 401

Elevation plot grid size used by From..To elevation plots. The actual plot grid will follow the computation
mesh, with subdivision if the cell size is greater than that implied by the EVATIONGRID control.
Elevations on boundaries ignore this number and use the actual mesh points.

FEATUREPLOT type: Logical default: Off
If this selector is ON, FEATURE boundaries will be plotted in gray.

FONT type: Numeric default: 2
Font=1 selects sans-serif font. Font=2 selects serif font.

GRAY type: Logical default: Off
Draws all plots with a gray scale instead of the default color palette.

HARDMONITOR type: Logical default: Off
Causes MONITORS to be written to the hardcopy (.pg6) file.

LOGLIMIT type: Numeric default: 15

The range of data in logarithmic plots is limited to LOGLIMIT decades below the maximum data value.
This is a global control which may be overridden by the local LOG(number) qualifier on the plot
command.

NOMINMAX type: Logical default: Off
Deletes "o" and "x" marks at min and max values on all contour plots.

NOTAGS type: Logical default: Off
Suppresses level identifying tags on all contour and elevation plots.

NOTIPS type: Logical default: Off
Plot arrows in vector plots without arrowheads. Useful for bi-directional stress plots.

152 FlexPDE 6 : Problem Descriptor Reference

PAINTED type: Logical default: Off
Draw color-filled contour plots. Plots can be painted individually by selecting PAINT in the plot modifiers.

PAINTGRID type: Logical default: On
Draw color-filled grid plots. Colors represent distinct materials, as defined by parameter matching.

PAINTMATERIALS type: Logical default: On
Synonymous with PAINTGRID, included for symmetry with individual PLOT modifiers.

PAINTREGIONS type: Logical default: Off
Sets PAINTGRID, but selects a different coloring scheme. Colors represent logical regions in 2D, or logical
(region x layer) compartments in 3D, instead of distinct material parameters.

PENWIDTH type: Numeric default: o
Sets the on-screen pen width for all plots. Value is an integer (0,1,2,3,...) which specifies the width of
the drawn lines, in thousandths of the pixel width (0 means thin).

PLOTINTEGRATE type: Logical default: On
Integrate all spatial plots. Default is volume and surface integrals, using 2*pi*r weighting in cylindrical
geometry. Histories are not automatically integrated, and must be explicitly integrated.

PRINTMERGE type: Logical default: Off
Send all stages or plot times of each EXPORT statement to a single file. By default, EXPORTS create a
separate file for each time or stage. Individual EXPORTS can be controlled by the plot modifier MERGE.

SPECTRAL_COLORS type: Logical default: Off
Sets the order of colors used in labeling plots. ON puts red at the bottom (lowest spectral color). OFF puts
red at the top (hot). This selector is the reverse of THERMAL_COLORS.

SURFACEGRID type: Numeric default: 51

Selects the minimum resolution for Surface plots, in terms of the number of plot points along the longest
plot dimension. The actual plot grid will follow the computation mesh, with subdivision if the cell size is
greater than that implied by the SURFACEGRID control.

TEXTSIZE type: Numeric default: 35
Controls size of text on plot output. Value is number of lines per page, so larger numbers mean smaller
text.

THERMAL_COLORS type: Logical default: On
Sets the order of colors used in labeling plots. ON puts red at the top (hot). OFF puts red at the bottom
(lowest spectral color). This selector is the reverse of SPECTRAL_COLORS.

VECTORGRID type: Numeric default: 41
Sets resolution of Vector plots. Arrows are placed on a regular grid with the selected number of points
along the longest plot dimension.

VIEWPOINT (x, y, angle) default: negative X&Y, 30
Defines default viewpoint for SURFACE plots and 3D GRID plots. Angle is in degrees. (In 3D cut plane
plots, this specifies a position in the cut plane coordinates)

Problem Descriptor Reference : The Sections of a Descriptor 153

3.3.3 Coordinates
The optional COORDINATES section defines the coordinate geometry of the problem.

Each geometry selection has an implied three-dimensional coordinate structure. In 2D and 1D geometries,
the solution if the PDE system is assumed to have no variation in one or two of the coordinate directions.
The finite element mesh is therefore constructed in the remaining space, and derivatives in the absent
coordinates are assumed to be zero.

In 3D geometry the X & Y coordinates are the projection plane in which a figure is constructed, and the Z
coordinate is the direction of extrusion.

The first coordinate in the order of listing is used as the horizontal axis in graphical output, while the
second is used as the vertical axis.

The basic form of the COORDINATES section is:
COORDINATES geometry

where geometry may be any of the following;:

Name Coordinate system Modeled Coordinates
CARTESIAN1 Cartesian (X,Y,Z) X

CYLINDER1 Cylindrical (R,Phi,Z) R

SPHERE1 Spherical (R,Theta,Phi) R

CARTESIAN2 Cartesian (X,Y,Z) XY

XCYLINDER Cylindrical (Z,R,Phi) Z,R

YCYLINDER Cylindrical (R,Z,Phi) R,Z

CARTESIAN3 Cartesian (X,Y,Z) X)Y,Z

If no COORDINATES section is specified, a CARTESIAN2 coordinate system is assumed.

Renaming Coordinates

A second form of the COORDINATES section allows renaming (aliasing) of the coordinates:
COORDINATES geometry ('Xname' [,'Yname' [,'Zname']])

In this case, the 'Xname' argument renames the coordinate lying along the horizontal plot axis,
and 'Yname' renames the coordinate lying along the vertical plot axis. 'Zname' renames the
extrusion coordinate. Names may be quoted strings or unquoted names. Renaming coordinates
does not change the fundamental nature of the coordinate system. In cylindrical geometries, for
example, the radial coordinate will continue to be the radial coordinate, even if you name it "Z".

In time-dependent problems, the time coordinate may be renamed using TIME (‘Tname') in the
COORDINATES section :

COORDINATES geometry TIME (‘'Tname')

154 FlexPDE 6 : Problem Descriptor Reference

This may be used in conjunction with the renaming of spatial coordinates.

Differential Operators

Renaming coordinates causes a redefinition of the differential operators. DX becomes D<Xname>, etc.

The DIV, GRAD, and CURL operators are expanded correctly for the designated geometry. Use of these
operators in the EQUATIONS section can considerably simplify problem specification.

Other Geometries

Since FlexPDE accepts arbitrary mathematical forms for equations, it is always possible to construct
equations appropriate to an arbitrary geometry.

For example, using the CARTESIAN2 coordinate system and renaming coordinates, one can write the heat
equation for cylindrical geometry as

COORDINATES cartesian2("R","Z")
VARIABLES u

EQUATIONS
u: dr(k*r*dr(u)) + r*dz(k*dz(u)) + r*source = 0

This equation derives from expanding the DIV and GRAD operators in cylindrical coordinates and

multiplying by the volume weighting factor "r", and is the same as the equation that FlexPDE itself will
construct in XCYLINDER geometry.

Coordinate Transformations

The function definition facility of FlexPDE can be used to simplify the transformation of arbitrary
coordinates to Cartesian (X,Y,Z) coordinates.

The example problem "Samples | Usage | polar_coordinates.pde" 384 uses this facility to pose equations in
polar coordinates:

DEFINITIONS
dr(f) = (x/r)*dx(f) + (y/r)*dy(f) { functional definition of polar derivatives... }
dphi(f) = (-y)*dx(f) + x*dy(f) {... in cartesian coordinates }

EQUATIONS { equation expressed in polar coordinates }

{ (and Multiplied by r~2 to clear the r=0 singularity) }
U: r*dr(r*dr(u)) + dphi(dphi(u)) + r¥r¥*s =0

Graphic output using this procedure is always mapped to the fundamental Cartesian coordinate system.

3.3.4 Variables

The VARIABLES section is used to define and assign names to all the primary dependent variables used in
a problem descriptor. The form of this section is

VARIABLES variable_name_1, variable_name_2,...

All names appearing in the VARIABLES section will be represented by a finite element approximation over

Problem Descriptor Reference : The Sections of a Descriptor 155

the problem mesh. Each variable is assumed to define a continuous field over the problem domain. It is
further assumed that each variable will be accompanied by a partial differential equation listed in the
EQUATIONS section.

Each variable_name may be followed by various qualifiers, which will be described in subsequent
sections. These qualifiers allow you to control mesh motion, declare complex and vector variables, declare
arrays of variables, and control some of the ways FlexPDE treats the variable.

In assigning names to the dependent variables, the following rules apply:
¢ Variable names must begin with an alphabetic character. They may not begin with a number or symbol.

e Variable names may be a single character other than the single character "t", which is reserved for the
time variable.

¢ Variable names may be of any length and any combination of characters, numbers and/or symbols other
than reserved words.

e Variable names may not contain any separators. Compound names can be formed with the '_' symbol
(e.g. temperature_ celsius).

¢ Variable names may not contain the character '-' which is reserved for the minus sign.

Example:

VARIABLES
u\v

3.3.4.1 The THRESHOLD Clause

An optional THRESHOLD clause may be associated with a variable name.

The THRESHOLD value determines the minimum range of values of the variable for which FlexPDE must
try to maintain the requested ERRLIM accuracy. In other words, THRESHOLD defines the level of
variation at which the user begins to lose interest in the details of the solution.

Error estimates are scaled to the greater of the THRESHOLD value or the observed range of the variable,
so the THRESHOLD value becomes meaningless once the observed variation of a variable in the problem
domain exceeds the stated THRESHOLD. If you make the THRESHOLD too large, the accuracy of the
solution will be degraded. If you make it too small, you will waste a lot of time computing precision you

don't need. So if you provide a THRESHOLD, make it a modest fraction of the expected range (max minus
min) of the variable.

The THRESHOLD clause has two alternative forms:

variable_name (THRESHOLD = number)
variable_name (number)

Note: In most cases, the use of THRESHOLD is meaningful only in time-dependent or nonlinear
steady-state problems with uniform initial values, or that ultimately reach a solution of uniform
value.

156 FlexPDE 6 : Problem Descriptor Reference

3.3.4.2 Complex Variables

You may declare that a VARIABLE name represents a complex quantity. The format of a complex
declaration is:

variable_name = COMPLEX (real_name , imaginary_name)

This declaration tells FlexPDE that variable_name represents a complex quantity, and assigns the
real_name and imaginary_name to the real and imaginary parts of variable_name. You may
subsequently assign EQUATIONS and boundary conditions either to the variable_name, or to its
components individually. Similarly, you can perform arithmetic operations or request graphical output of
either the variable_name itself, or its components individually.

Example:
VARIABLES
uv
C = COMPLEX(Cr,Ci)

3.3.4.3 Moving Meshes

FlexPDE can be configured to move the finite element mesh in time-dependent problems.

In order to do this, you must assign a VARIABLE as a surrogate for each coordinate you wish to modify.
This specification uses the form

variable_name = MOVE (coordinate_name)

This declaration assigns variable_name as a surrogate variable for the coordinate_name. You may
subsequently assign EQUATIONS and boundary conditions to the surrogate variable in the normal way,
and these equations and boundary conditions will be imposed on the values of the selected mesh
coordinate at the computation nodes.

Example:
VARIABLES
uv
Xm = MOVE(X)

See Moving Meshes|1771]ater in this document and the Moving Meshes chapter in the User Guide 100,
3.3.44 Variable Arrays

You may declare that a VARIABLE name represents an array of variables. The format of a variable array
declaration is:

variable_name = ARRAY [number]

This declaration tells FlexPDE that variable_name represents an array of variable quantities, each one a
scalar field on the problem domain. FlexPDE creates internal names for the elements of the array by
subscripting variable_name with "_" and the element number (e.g. U_7). You can access the
components either by this internal name or by an indexed reference variable_namel[index].

You may subsequently assign EQUATIONS and boundary conditions either to the individual
components, or in a REPEAT loop by indexed reference. Similarly, you can perform arithmetic operations
or request graphical output of either the indexed array name, or by the individual component names.

Problem Descriptor Reference : The Sections of a Descriptor 157

Example:

VARIABLES
A = ARRAY[10] { declares ten variables A_1 through A_10 }
{ also accessible as A[1] through A[10] }

See example problems:
Samples | Usage | Variable_Arrays | array_variables.pde/s2f

3.3.4.5 Vector Variables

You may declare that a VARIABLE name represents a vector quantity. The format of a vector declaration
is:

variable_name = VECTOR (componentl)
variable_name = VECTOR (componentl , component2)
variable_name = VECTOR (componentl , component2 ,component3)

This declaration tells FlexPDE that variable_name represents a vector quantity, and assigns the
component names to the geometric components of variable_name. You may subsequently assign
EQUATIONS and boundary conditions either to the variable_name, or to its components individually.
Similarly, you can perform arithmetic operations or request graphical output of either the
variable_name itself, or its components individually.

The three component names correspond to the coordinate directions as implied in the COORDINATES
section of the problem descriptor. You can declare any or all of the three component directions, even if
the model domain treats only one or two.

Any of the component names can be replace by "0" to indicate that this component of the vector is not to
be modeled by FlexPDE, but is to be assumed zero. Similarly, omitted names cause the corresponding
vector components to be assumed zero.

Example:
In XCYLINDER geometry, which has coordinates (Z,R,Phi), you can tell FlexPDE to model only the
Phi component of a vector quantity as follows:

VARIABLES
A = Vector(0,0,Aphi)

See example problems:

Samples | Usage | Vector_Variables|s2)

Samples | Applications | Fluids | 3d_Vector_Flowbox.pde 308
Samples | Applications | Fluids | Vector_Swirl.pde/s27

Samples | Applications | Magnetism | 3D_Vector_Magnetron.pde /347
Samples | Applications | Magnetism | Vector_Magnet_Coil.pde/3s61

3.3.5 Global Variables

The GLOBAL VARIABLES section is used to define auxiliary or summary values which are intricately
linked to the field variables.

Each GLOBAL VARIABLE takes on a single value over the entire domain, as opposed to the nodal finite
element field representing a VARIABLE.

158 FlexPDE 6 : Problem Descriptor Reference

GLOBAL VARIABLES differ from simple DEFINITIONS in that DEFINITIONS are algebraically
substituted in place of their references, while GLOBAL VARIABLES represent stored values which are
assigned a row and column in the master coupling matrix and are solved simultaneously with the finite
element equations.

The GLOBAL VARIABLES section must follow immediately after the VARIABLES section.

Rules for declaring GLOBAL VARIABLES are the same as for VARIABLES, and a GLOBAL VARIABLE
may have a THRESHOLD, and may be declared to be COMPLEX, VECTOR or ARRAY, as with
VARIABLES.

Each GLOBAL VARIABLE will be associated with an entry in the EQUATIONS section, with rules
identical to those for VARIABLES.

GLOBAL VARIABLES do not have boundary conditions. They may be either steady-state or
time-dependent, and may be defined in terms of integrals over the domain, or by point values of other
functions.

Examples:
Samples | Applications | Control | Control_Steady.pde (205
Samples | Applications | Control | Control_Transient.pde [29%)

Note: In previous versions of FlexPDE, Global Variables were referred to as SCALAR VARIABLES.
This usage is still allowed for compatibility, but the newer terminology is preferred.

3.3.6 Definitions

The DEFINTIONS section is used to declare and assign names to special numerical constants,
coefficients, and functions used in a problem descriptor.

In assigning names to the definitions, the following rules apply:
e Must begin with an alphabetic character. May not begin with a number or symbol.

e May be a single character other than the single character t, which is reserved for the time
variable.

e May be of any length and any combination of characters, numbers, and symbols other than
reserved words, coordinate names or variable names.

e May not contain any separators. Compound names can be formed with the '_' symbol
(e.g. temperature_celsius).

e May not contain the '-' which is reserved for the minus sign.
Normally, when a definition is declared it is assigned a value by following it with the assignment operator

'="and either a value or an expression. Definitions are dynamic elements and when a value is assigned, it
will be the initial value only and will be updated, if necessary, by the problem solution.

Problem Descriptor Reference : The Sections of a Descriptor 159

Example:
Viscosity = 3.02e-4*exp(-5*Temp)

Definitions are expanded inline in the partial differential equations of the EQUATIONS section. They are
not represented by a finite element approximation over the mesh, but are calculated as needed at various
times and locations.

Redefining Regional Parameters

Names defined in the DEFINITIONS section may be given overriding definitions in some or all of the
REGIONS of the BOUNDARIES section. In this case, the quantity may take on different region-specific
values. Quantities which are completely specified in subsequent REGIONS may be stated in the
DEFINITIONS section without a value.

Note: See the User Guide section "Setting Material Properties by Region"| 72\ for examples of
redefined regional parameters.

Defining Constant Values

Normally, DEFINITIONS are stored as the defining formulas, and are recomputed as needed. In rare
cases (as with RANDOM elements), this is inappropriate. The qualifier CONST() can be used to force the
storage of numeric values instead of defining formulas. Values will be computed when the script is parsed,
and will not be recomputed.

name = CONST (expression)

Note: Scripts with staged geometry|65 will reparse the script file and regenerate any CONST values.

3.3.6.1 ARRAY Definitions

Names may be defined as representing arrays or lists of values. ARRAY definition can take several forms:

name = ARRAY (value_1, value_2 ... value_n)
defines name to be an n-element array of values value_1 ... value_n.

name = ARRAY [number]
defines name to be an array of number elements. Values are as yet undefined, and must be supplied
later in the script.

name = ARRAY [number] (value_1, value_2 ... value_number)
defines name to be an array of number elements, whose values are value_1, value_2, etc.

name = ARRAY FOR param (initial BY step TO final) : expression
defines name to be an array of values generated by evaluating expression with param set to initial,
initial + step, initial + 2*step, and so forth up to param = final.

name = ARRAY FOR param (P1,P2 {,P3 ...}) : expression
defines name to be an array of values generated by evaluating expression with param set to P1, P2,
and so forth up to the end of the listed parameters.

160 FlexPDE 6 : Problem Descriptor Reference

The values assigned to ARRAY elements must evaluate to scalar numbers. They may contain coordinate or
variable dependencies, but must not be VECTOR, COMPLEX or TENSOR quantities.

Examples:

v = array(0,1,2,3,4,5,6,7,8,9,10)
w = array(0 by 0.1 to 10)
alpha =array for x(0 by 0.1 to 10) : sin(x)+1.

Referencing ARRAY values

Within the body of the descriptor, ARRAY values may be referenced by the form

name [index]

The value of the selected ARRAY element is computed and used as though it were entered literally in the
text.

ARRAY elements that have not been previously assigned may be given values individually by conventional
assignment syntax:

name [index] = expression

Arithmetic Operations on ARRAYS

Arithmetic operations may be performed on ARRAYS as with scalar values. Names defined as the result
of ARRAY arithmetic will be implicitly defined as ARRAYS. Arithmetic operations and functions on
ARRAYS are applied element-by-element.

ARRAYS may also be operated on by MATRICES 1% (q.v.)

Example:

beta = sin(w)+1.1 { beta is an ARRAY with the same data as alpha }
gamma = sin(v)+0.1 { gamma is an ARRAY with the dimension of v }

The SIZEOF operator

The operator SIZEOF may be used to retrieve the allocated size of an ARRAY.

Example:
n = SIZEOF(v) { returns 11, the allocates size of the example array "v" above }

ARRAYS of Constant Values

Normally, ARRAYS are stored as the defining formulas for the elements, and are recomputed as needed.

Problem Descriptor Reference : The Sections of a Descriptor 161

In rare cases (as with RANDOM elements), this is inappropriate. The qualifier CONST can be prepended
to the ARRAY definition to force the storage of numeric values instead of defining formulas. Elements will
be computed when the script is parsed, and will not be recomputed. For example:

name = CONST ARRAY (value_1, value_2 ... value_n)

Note: Scripts with staged geometry|65 will reparse the script file and regenerate any CONST 158
values.

See Also: "Using ARRAYS and MATRICES" [108)

3.3.6.2 MATRIX Definitions

Names may be defined as representing matrices or tables of values. MATRIX definition can take several
forms:

name = MATRIX ((value_11, value_12 ... value_1m),
... (value_n1, value_n2... value_nm))
defines name to be a matrix of values with n rows and m columns.

name = MATRIX [rows , columns]
defines name to be an matrix of elements with the stated dimensions. Values are as yet undefined,
and must be supplied later in the script.

name = MATRIX[n, m] ((value_11, value_12 ... value_1m),
... (value_n1, value_n2... value_nm))
defines name to be an array of number elements, whose values are as listed.

name = MATRIX FOR param1 (initiall BY step1 TO finall)
FOR param2 (initial2 BY step2 TO final2) : expression
defines name to be a matrix of values generated by evaluating expression with param1 and param?2
set to the indicated range of values. param?2 is cycled to create columns, and param1 is cycled to
create rows.

name = MATRIX FOR paraml1 (P11, P12 {, P13 ...})
FOR paraml1 (P21, P22 {, P23 ...}) : expression
defines name to be a matrix of values generated by evaluating expression with param1 and param2
set to the indicated range of values. param?2 is cycled to create columns, and param1 is cycled to
create rows.

The values assigned to MATRIX elements must evaluate to scalar numbers. They may contain coordinate
or variable dependencies, but must not be VECTOR, COMPLEX or TENSOR quantities.

Examples:
m1 = matrix((1,2,3),(4,5,6),(7,8,9))
m2 = matrix for x(0.1 by 0.1 to 5*pi/2) { a 79x79 diagonal matrix of amplitude 10
b

for y(0.1 by 0.1 to 5*%pi/2) : if(x=y) then 10 else 0

162 FlexPDE 6 : Problem Descriptor Reference

m3 = matrix for x(0.1 by 0.1 to 5*pi/2) { a 79x79 matrix of sin products }
for y(0.1 by 0.1 to 5*pi/2) ;o sin(x)*sin(y) +1

Referencing MATRIX values

Within the body of the descriptor, MATRIX values may be referenced by the form

name [row_index, column_index]

The value of the selected MATRIX element is computed and used as though it were entered literally in the
text.

MATRIX elements that have not been previously assigned may be given values individually by conventional
assignment syntax:

name [row_index, column_index] = expression

Arithmetic Operations on MATRICES

Arithmetic operations may be performed on MATRICES. Names defined as the result of MATRIX
arithmetic will be implicitly defined as MATRICES or ARRAYS, as appropriate to the operation.

e Standard arithmetic operations and functions on MATRICES are applied element-by-element.
o The special operator ** is defined for conventional matrix multiplication
Examples:

N = M1 * M2 { N is a MATRIX, each element of which is the product of corresponding elements
in M1 and M2}

S = sin(M) { S is a MATRIX, each element of which is the sine of the corresponding element
of M}
N = M1 ** M2 {NisaMATRIX, each element of which is the dot product of corresponding row

in M1 and column in M2 (ie, conventional matrix multiplication) }

Arithmetic Operations of MATRICES on ARRAYS

Arithmetic operations may be performed by MATRICES on ARRAYS. Names defined as the result of these
operations will be implicitly defined as ARRAYS, as appropriate to the operation. The MATRIX and
ARRAY appearing in such operations must agree in dimensions or the operation will be rejected.

e The special operator * * is defined for conventional (matrix x vector) multiplication, in which each
element of the result vector is the dot product of the corresponding matrix row with the argument vector.

e The special operator / / is defined for (vector / matrix) division. This operation is defined as
multiplication of the vector by the inverse of the argument matrix.

Examples:

Problem Descriptor Reference : The Sections of a Descriptor 163

V2 = M ** V1{V2isan ARRAY, each element of which is the dot product of the corresponding row
of M with the ARRAY V1 }

V2 = V1 // M {V2isan ARRAY that satisfies the equation M**V2 = V1}

The TRANSPOSE operator

The operator TRANSPOSE may be used to create the tranpose of a MATRIX.

The SIZEOF operator

The operator SIZEOF may be used to retrieve the allocated size of a MATRIX.

Example:
n = SIZEOF(v) { returns 11, the allocates size of the example array "v" above }

MATRICES of Constant Values

Normally, MATRICES are stored as the defining formulas for the elements, and are recomputed as
needed. In rare cases (as with RANDOM elements), this is inappropriate. The qualifier CONST can be
prepended to the MATRIX definition to force the storage of numeric values instead of defining formulas.
Elements will be computed when the script is parsed, and will not be recomputed. For example:

name = CONST MATRIX ((value_11, value_12 ... value_1m),
... (value_n1, value_n2... value_nm))

See Also: "Using ARRAYS and MATRICES" [108)

3.3.6.3 Function Definitions

Definitions can be made to depend on one to three explicit arguments, much as with a Function definition
in a procedural language. The syntax of the parameterized definition is

name (argname) = expression
name (argnamel, argname2) = expression
name (argnamel, argname2, argname3) = expression

The construct is only meaningful if expression contains references to the argnames. Names defined in
this way can later be used by supplying actual values for the arguments. As with other definitions in
FlexPDE, these actual parameters may be any valid expression with coordinate or variable dependences.
The argnames used in the definition are local to the definition and are undefined outside the scope of the
defining expression.

Note that it is never necessary to pass known definitions, such as coordinate names, variable names, or
other parameters as arguments to a parameterized definition, because they are always globally known and
are evaluated in the proper context. Use the parameterized definition facility when you want to pass values

164 FlexPDE 6 : Problem Descriptor Reference

that are not globally known.

Note: This construct is implemented by textual expansion of the definitions in place of the function
reference. It is not a run-time call, as in a procedural language.

Example:

DEFINITIONS
sq(arg) = arg*arg

EQ.L.J.ATIONS
div(a*grad(u)) + sq(u+1)*dx(u) +4 = 0;

In this case, the equation will expand to
div(a*grad(u)) + (u+1)*(u+1)*dx(u) + 4 = 0.

See also "Samples | Usage | Function_ Definition.pde" |38

3.3.6.4 STAGED Definitions

FlexPDE can perform automated parameter studies through use of the STAGE facility. In this mode,
FlexPDE will run the problem a number of times, with differing parameters in each run. Each STAGE
begins with the solution and mesh of the previous STAGE as initial conditions.

HISTORY [2091 plots can be used to show the variation of scalar values as the STAGES proceed.

Note: The STAGE facility can only be used on steady-state problems. It cannot be used with time
dependent problems.

The STAGES Selector

In the SELECT section, the statement

STAGES = number
specifies that the problem will be run number times. A parameter named STAGE is defined, which
takes on the sequence count of the staged run. Other definitions may use this value to vary parameter

values, as for example:

Voltage = 100*stage

STAGED Definitions

A parameter definition may also take the form:
param = STAGED (value_1, value_2, ... value_n))

In this case, the parameter param takes on value_1 in stage 1, value_2 in stage 2, etc.

If STAGED parameters are defined, the STAGES selector is optional. If the STAGES selector is not
defined, the length of the STAGED list will be used as the number of stages. If the STAGES selector is
defined, it overrides the length of the STAGED list. Commas are optional.

Problem Descriptor Reference : The Sections of a Descriptor 165

See the example "Samples | Usage | Stages.pde"[390).

STAGED Definitions by incrementation

Any value in the STAGED form above may be replaced by the incrementation form

value_i BY increment TO value_j

STAGED Geometry

If the geometric domain definition contains references to staged quantities, then the solution and mesh
will not be retained, but the mesh will be regenerated for the new geometry. History plots can still be
displayed for staged geometries.

See the example "Samples | Usage | Staged_Geometry.pde" 8.

FlexPDE attempts to detect stage dependence in the geometrical domain definition and automatically
regenerate the mesh. If for any reason these dependencies are undetected, the global selector

STAGEGRID can be used to force grid staging.

Note: Scripts with staged geometry will reparse the script file and regenerate any CONSTI158) values.
3.3.6.5 POINT Definitions
A name may be associated with a coordinate point by the construct
point_name = POINT(a,b)

Here a and b must be computable constants at the time the definition is made. They may not depend on
variables or coordinates. They may depend on stage number.

The name of the point can subsequently appear in any context in which the literal point (a,b) could
appear.

Individual coordinates of a named point can be extracted using the XCOMP, YCOMP or ZCOMP functions.

Movable Points

Named points that are used in boundary definitions in moving-mesh problems become locked to the mesh,
and will move as the mesh moves.

Such points can be used in "AT" selectors for histories to track values at points that move with the mesh.

3.3.6.6 TABLE Import Definitions

FlexPDE supports the import of tabular data in several script commands. In each case, the model assumes
that a text file contains data defining one or more functions of one, two or three coordinates. The
coordinates may be associated with any quantity known to FlexPDE, such as a spatial coordinate, a
variable, or any defined quantity. At each point of evaluation, whether of a plot or a quadrature

166 FlexPDE 6 : Problem Descriptor Reference

computation of coupling matrix, or any other context, the values of the declared coordinates of the table
are computed and used as lookup parameters to interpolate data from the table.

This feature is useful for modeling systems where experimental data is available and for interfacing with
other software programs.

The names of quantities to be used as table coordinates may be declared inside the table file, or they may
be imposed by the TABLE input statement itself.

Table coordinates must be in monotonic increasing order.

TABLE data are defined on a rectangular grid, and interpolated with linear, bilinear or trilinear
interpolation. Modifiers can be prepended to table definitions to create spline interpolation or histogram
interpretation, or to smooth the imported data.

Table import files are ASCII text files, and can be generated with any ASCII text editor, by user programs
designed to generate tables, or by FlexPDE itself, using the EXPORT plot modifier or the TABLE output
statement (see MONITORS and PLOTS/w7).

See TABLE File Format |18 for a definition of the table file format.
See Importing Data from other applications /108 for a discussion of TABLE usage.

3.3.6.6.1 The TABLE Input function

A single imported data function may be declared by one of the forms:

name = TABLE ('filename’')
name = TABLE ('filename’, coordl1 [,coord2...])

Both forms import a data table from the named file and associate the data with the defined name.

In the first form, the coordinates of the table must be named in the file.
In the second form, the coordinates are named explicitly in the command.
In either case, the declared coordinates must be names known to FlexPDE at the time of reading the file.

The format of the TABLE file describes a function of one, two or three coordinates. The

The TABLE statement must appear in a parameter definition (in the DEFINITIONS section or as a
regional parameter definition in a REGION clause), and the table data are associated with the given name.

Note: Unlike previous versions of FlexPDE, version 6 does not allow TABLE to be used directly in
arithmetic expressions.

When the parameter name is used in subsequent computations, the current values of the table coordinates
will be used to interpolate the value. For instance, if the table coordinates are the spatial coordinates X
and Y, then during computations or plotting, the named parameter will take on a spatial distribution
corresponding to the table data spread over the problem domain.

Note: The SPLINETABLE function used in previous versions of FlexPDE is still supported, but is
deprecated. Use the SPLINE modifier|ts"l instead.

Examples:
Samples | Usage | Import-Export | Table.pde /s

Problem Descriptor Reference : The Sections of a Descriptor 167

3.3.6.6.2 The TABLEDEF input statement

The TABLEDEF input statement is similar to the TABLE 15 input function, but can be used to directly
define one or several parameters from a multi-valued table file.

The format is

TABLEDEF('filename', namel {, name2, ... })

Whereas in the TABLE statement the additional arguments are coordinate reassignments, in the
TABLEDEF statement the additional arguments are the names to be defined and associated with the table
data. The TABLEDEF statement is not able to redefine the names of the table coordinates, and the names
in the table file must be those of values known to FlexPDE at the time of reading the table.

The TABLEDEF statement is syntactically parallel to the TRANSFER statement.

TABLEDEF may optionally be preceded by TABLE modifiers|+s7.

3.3.6.6.3 TABLE Modifiers

The default interpolation for table data is linear (or bilinear or trilinear) within the table cells. Alternative
treatments of the data can be specified by prefixes attached to the TABLE statement.

Modifier
SPLINE
BLOCK

BLOCK(fraction)

SMOOTH
(wavelength)

Examples:

Effect
A cubic spline is fit to the table data (one- and two-dimensional tables only)

Data points are assumed to denote the beginning of a histogram level. The
data value at a given point will apply uniformly to the coordinate interval
ending at the next coordinate point. A ramped transition will be applied to
the interpolation, transitioning from one level to the next in 1/10 of the
combined table cell widths.

Data are interpreted as with BLOCK, but fraction is used as the transition
width factor in place of the default 1/10.

A diffusive smoothing is applied to the TABLE data, in such a way that the
integral of the data is preserved, but sharp transitions are blurred. This can
result in more efficient solution times if the data are used as sources or
parameters in time-dependent problems.

Fourier components with spatial wavelengths less than wavelength will be
damped. (See Technical Note: Smoothing Operators in PDE's[277)).

Data = SMOOTH(0.1) TABLE("input_file")
Data = SPLINE TABLE("input_file")

168 FlexPDE 6 : Problem Descriptor Reference

3.3.6.6.4 TABLE File format

Data files for use in TABLE or TABLEDEF input must have the following form:

{ comments }
name_coordl datacountl

valuel_coordl value2_coordl value3_coordl ...
name_coord2 datacount2

valuel_coord2 value2_coord2 value3_coordl ...
name_coord3 datacount3

valuel_coord3 value2_coord3 value3_coord3 ..
data { comments }
datalll data211l data311 ...
datal21l data221 data321 ...
datal31 data231 data331 ...

datall2 data 212 data312 ..
datal22 data 222 data322 ...
datal32 data 232 data 332 ...

where

name_coordN isthe coordinate name in the N direction. Names must match defined names in
the importing script unless table coordinate redefinition is used.

valueN_coordM is the Nth value of the Mth coordinate. These must be in monotonic increasing

order.
datacountN is the number of data points in the N direction.
DatalJKL is the data at coordinate point (J,K,L)

ellipses indicate extended data lists, which may be continued over multiple lines.

Note that in presenting data, coord1 is cycled first, then coord1, then coord3.
Coordinate lists and data lists are free-format, and may be arbitrarily spaced, indented or divided into
lines.

Example:

{ this is an example table. }
X 6
-0.01246810.01
y 6
-0.01246810.01
data
1

=
AwWNR
NN NN
AWNPRF
Wwww
AWNF
Sl
AwWNR
v ;oo
AWNF
a0 o
AWNPRF

Problem Descriptor Reference : The Sections of a Descriptor 169

=
[e) 0|
NN
[e) 0|
W
[e) ¥
»P
[e) 0|
o
[e) ¥
oo
[e) 0|

3.3.6.7 TABULATE definitions

The TABULATE statement can be used to generate a TABLE internally from arithmetic expressions. The
result is a TABLE identical to one produced externally and read by the TABLE or TABLEDEF statements.

This facility can be used to tabulate parameters that are very expensive to compute, resulting in an
improvement in the efficiency of the system solution.

The TABULATE statement has a syntax identical to that of ARRAY and MATRIX definition, with the
addition of a possible third table dimension.

name = TABULATE FOR param1 (firstl BY step1 TO finall) : expression

name = TABULATE FOR param1 (firstl BY step1l TO finall)
FOR param?2 (first2 BY step2 TO final2) : expression

name = TABULATE FOR param1 (firstl BY step1l TO finall)
FOR param2 (first2 BY step2 TO final2)
FOR parama3 (first3 BY step3 TO final3) : expression

These statements define name to be a TABLE of values generated by evaluating expression at all
combinations of the specified parameters. param1, param?2 and param3 must be names already defined
in the script, and they become the coordinate values of the table.

As with MATRICES and ARRAYS, table points can be stated explicitly
name = TABULATE FOR param1l1 (p11, p12 {, p13 ...}) : expression

The two forms of coordinate definition can be mixed at will, as in

name = TABULATE FOR paraml (p1, p2, p3 BY step TO final, pN) :
expression

Interpretation of the resulting table can be modified as with the TABLE statement, by prefixing the
TABULATE clause by the modifiers SPLINE, BLOCK or SMOOTH.

3.3.6.8 TRANSFER Import Definitions

FlexPDE supports a TRANSFER facility for exchanging data between FlexPDE problem runs. The format
is unique to FlexPDE, and is not supported by other software products.

A TRANSFER file contains data defined on the same unstructured triangle or tetrahedral mesh as used in
the creating FlexPDE computation, and maintains the full information content of the original computation.
It also contains a description of the problem domain definition of the creating run.

The TRANSFER input statement has three forms

TRANSFER ('filename’', namel {, name2, ... })
TRANSFERMESH ('filename’', namel { ,name2,.. })
TRANSFERMESHTIME ('filename', namel { ,name2,.. })

170 FlexPDE 6 : Problem Descriptor Reference

The file specified in the transfer input function must have been written by FlexPDE using the TRANSFER
output function. The names listed in the input function will become defined as if they had appeared in a
"name=" definition statement. The names will be positionally correlated with the data fields in the
referenced output file.

With the TRANSFER form, the mesh structure of the imported file is stored independently from the
computation mesh, and is not influenced by refinement or merging of the computation mesh.

The TRANSFERMESH input statement not only imports data definitions stored on disk, but also
IMPOSES THE FINITE ELEMENT MESH STRUCTURE of the imported file onto the current problem,
bypassing the normal mesh generation process. In order for this imposition to work, the importing
descriptor file must have EXACTLY the same domain definition structure as the exporting file. Be sure to
use a copy of the exporting domain definition in your importing descriptor. You may change the boundary
conditions, but not the boundary positions and ordering.

The TRANSFERMESHTIME statement acts precisely as the TRANSFERMESH statement, except that the
problem time is imported from the transfer file as well as the mesh. This statement can be used to resume
a time-dependent problem from the state recorded in the transfer file.

Note: TRANSFER import does not restore the state of HISTORY plots.

Examples:
Samples | Usage | Import-Export | Transfer_Export.pde [485)

Samples | Usage | Import-Export | Transfer_Import.pde (485
Samples | Usage | Import-Export | Mesh_export.pde [479)
Samples | Usage | Import-Export | Mesh_import.pde [4s0)
Samples | Usage | Stop+Restart | Restart_export.pde [519)
Samples | Usage | Stop+Restart | Restart_import.pde 5201

3.3.6.8.1 TRANSFER File format

The format of a TRANSFER file is dictated by the TRANSFER output format, and contains the following
data.

The Header Section

1) A header containing an identifying section listing the FlexPDE version, generating problem name and
run time, and plotted variable name or function equation. This header is enclosed in comment brackets, {

.t
2) A file identifier "FlexPDE transfer file", and the problem title.
3) The number of geometric dimensions and their names.

4) The finite element basis identifier from 4 to 10, meaning;:
4 = linear triangle (3 points per cell)

5 = quadratic triangle (6 points per cell)

6 = cubic triangle (9 points per cell)

7 = cubic triangle (10 points per cell)

8 = linear tetrahedron (4 points per cell)

9 = quadratic tetrahedron (10 points per cell)

10 = cubic tetrahedron (20 points per cell)

5) The number of degrees of freedom (points per cell as above).

Problem Descriptor Reference : The Sections of a Descriptor 171

6) Current problem time and timestep (time-dependent problems only).
7) The number of output variables and their names

8) The number of domain joints (boundary break points) and their descriptions, including
¢ Joint number

Periodic image joint (or 0)

Associated global node number

Extrusion surface (or 0)

Active flag

9) The number of domain edges and their descriptions, including
Edge number

Associated base plane edge number

Beginning joint number

Ending joint number

Periodic image edge (or 0)

Extrusion surface (or 0)

Extrusion layer (or 0)

Active, Feature and Contact flags

Edge name

10) The number of 3D domain faces and their descriptions, including
Face number

Associated base plane face number

Left adjoining Region number

Right adjoining Region number

Periodic image face (or 0)

Shape selector

Layer or surface number

Active and Contact flags

Face name

11) The number of domain regions and their descriptions, including
¢ Region number
e Associated base plane region number
e Layer (or 0)
e Material number
e Active flag
e Region name

The Data Section

Each distinct material type in the exported problem is represented by a separate section in the TRANSFER
file. Material types are defined by matching parameter definitions. Each data section consists of:

1) The number of nodes

2) The nodal data, containing one line for each node with the following format:
e two or three coordinates and as many data values as specified in (7).
e acolon (3)

172 FlexPDE 6 : Problem Descriptor Reference

the global node index

the node type (o=interior; 1=joint; 2=edge; 3=face; 4=exterior)

the type qualifier (region number, joint number, edge number or face number)
the periodic node index

3) The number of cells.

4) The cell connectivity data, one line per cell, listing the following:
e the geometric basis (as in Header 4)
e the node numbers (local to the current material block) which comprise the cell. The
count of these node numbers is controlled by (Header 5).
a colon (3)
the global cell number
the logical region number
the material number

The node numbers are presented in the following order:

1 ;g —3 5, 24,
Linear Quadratic Cuhic
3 3
5 4
1 2 1 6 2
Linear Quadratic Cubic

4 4 Faces: 17,18, 19, 20
3 3
11
H
1) 1 7 13 2
Linear

Quadratic Cubic

3.3.6.9 The PASSIVE Modifier

Definitions may be specified as PASSIVE, in which case they will be blocked from differentiation with
respect to system variables in the formation of the global Jacobian matrix. In strongly nonlinear systems,
this sometimes prevents pathological behavior, at the expense of slower convergence.

Example:

Problem Descriptor Reference : The Sections of a Descriptor 173

Viscosity = Passive(3.02*exp(-5*Temp))

The derivative of Viscosity with respect to Temp will be forced to zero, instead of the true value (-5)*
3.02*exp(-5*Temp).

3.3.6.10 Mesh Control Parameters

FlexPDE uses an adaptive initial mesh generation procedure. Cell sizes are generated to conform with
local boundary feature sizes, and cell sizes will grow gradually from locales of small cell size to locales of
large cell size. Cells sides always match everywhere, and there is never a mismatch between adjacent cells.

It is possible, however, to override the default cell size logic by use of the controls MESH_SPACING and
MESH_DENSITY. These parameters have special meaning in controlling the initial mesh layout. They
may appear in the context of a parameter definition or redefinition (ie, in the DEFINITIONS section or in
a REGION), or in the context of a boundary condition. There may be more than one control active in any
locale, and the control (default or explicit) resulting in the smallest mesh cells will dominate.

MESH_SPACING dictates the desired spacing between mesh nodes.

MESH_DENSITY is the reciprocal of MESH_SPACING, and dictates the desired number of mesh nodes
per unit distance.

Appearing in the DEFINITIONS section, these parameters specify a global default mesh density function
in the volume of the domain.

Appearing in a REGION, these parameters specify a mesh density function in the volume of the current
region (in 3D they may be qualified by LAYER or SURFACE).

Appearing in the context of a boundary condition (ie, inside a path) they dictate the mesh density along the
curve or sidewall surface currently being defined. In 3D they may be qualified by LAYER or SURFACE to
restrict the application of the density function.

MESH_SPACING and MESH_DENSITY specifications may be any function of spatial coordinates (but
not of VARIABLES).

Examples:

MESH_DENSITY = exp(-(x*2+y~2+2/2)

This will create a Gaussian density distribution around (0,0,0), with spacing ultimately overridden by
the size limit implied by NGRID.

See the User Guide section "Controlling Mesh Density 1051 for more information.
See also

"Samples | Usage | Mesh_Control | Mesh_ Density.pde" 4961

"Samples | Usage | Mesh_Control | Mesh_Spacing.pde" 4901

"Samples | Usage | Mesh_Control | Boundary_Density.pde" 488

"Samples | Usage | Mesh_Control | Boundary_Spacing.pde"|4s8)

174 FlexPDE 6 : Problem Descriptor Reference

3.3.7 Initial Values
The INITIAL VALUES section is used to initialize the dependent variables.

When not specifically initialized, the dependent variables are initialized to zero.

For steady state problems the INITIAL VALUES section is optional.

For time dependent problems, the INITIAL VALUES section should include a value assignment statement
for each dependent variable.

Initial value statements are formed by following the dependent variable name with the assignment
operator '=" and either a constant, function, expression or previously defined definition.

Example:
INITIAL VALUES
U=1.0-x

Setting Initial Values from an imported table:

For syntactic reasons, initial values cannot be set directly from TABLE 1651 or TRANSFER |16\,
An intermediate name must be defined by the TABLE or TRANSFER command, and then assigned to the
initial value:
DEFINITIONS
TRANSFER("initial_U.xfr",U0)
INITIAL VALUES
U=uo

3.3.8 Equations

The EQUATIONS section is used to list the partial differential equations that define the dependent
variables of the problem.

There must be one equation for each dependent variable listed in the VARIABLES and GLOBAL
VARIABLES sections.

Each equation must be prefixed by variable_name: in order to associate the equation with a variable and
with boundary condition declarations. (If there is only a single equation, the prefix may be omitted.)

Equations are entered into a problem descriptor in much the same way as they are written on paper. In
their simplest form they can be written using the DIV (divergence), GRAD (gradient), CURL and DEL2
(Laplacian) operators. FlexPDE will correctly expand these operators in the coordinate system specified in
the COORDINATES section.

When it is necessary to enter partial differential terms, differential operators of the form D<name> or
D<namel><name2> may be used. Here <name> represents a coordinate name, such as X, Y or Z (or
other names chosen by the user in the COORDINATES section).

In the default 2D Cartesian geometry, the operators DX, DY, DXX, DXY, DYX and DYY are defined.

Similarly, in the default cylindrical geometries (XCYLINDER and YCYLINDER), the operators DR, DZ,
DRR, DRZ, DZR and DZZ are defined.

In 3D Cartesian geometry, the operators DZ, DZZ, DXZ, and DYZ are also defined.

Problem Descriptor Reference : The Sections of a Descriptor 175

Example:
EQUATIONS

u: div(k*grad(u)) + u*dx(u) =0

Complex and Vector Variables

Equations can be written using COMPLEX or VECTOR variables. In each case, FlexPDE will expand the
stated equation into the appropriate number of scalar equations for computing the components of the
COMPLEX or VECTOR variable.

Example:
VARIABLES

U = COMPLEX(Ur,Ui)
EQUATIONS
U: DIV(k*GRAD(U)) + COMPLEX(Ui,Ur) = 0

Third Order and Higher Order Derivatives

Equation definitions may contain spatial derivatives of only first or second order. Problems such as the
biharmonic equation which require the use of higher order derivatives must be rewritten using an
intermediate variable and equation so that each equation contains only first or second order derivatives.

3.3.8.1 Association between Equations, Variables and Boundary Conditions

In problems with a single variable, there is no ambiguity about the assignment of boundary conditions to
the equations.

In problems with more than one variable, FlexPDE requires that equations be explicitly associated with
variables by tagging each equation with a variable name. This process also allows optimal ordering of the
equations in the coupling matrix.

Example:
U: div(k*grad(u))+u*dx(u)= 0 { associates this equation with the variable U }

Boundary conditions are defined in the BOUNDARIES 185 section, and are associated with equations by
use of the variable name, which selects an equation through the association tag. VALUE(U)=0, for
example, will cause the nodal equations for the equation tagged U: to be replaced by the equation u=0
along the selected boundary .

Natural boundary conditions must be written with a sign corresponding to the sign of the generating terms
when they are moved to the left side of the equal sign. We suggest that all second-order terms should be
written on the left of the equal sign, to avoid confusion regarding the sign of the applied natural boundary
condition.

3.3.8.2 Sequencing of Equations
New in version 6 is the ability to sequence sets of equations.

The sets are defined using the THEN and FINALLY sections following the EQUATIONS section.

176 FlexPDE 6 : Problem Descriptor Reference

EQUATIONS
<set A>
THEN
<set B>
{ THEN
<setC> ..}
{ FINALLY
<set D> }

Any number of THEN equation sets may be designated and these sets along with the main EQUATIONS
section will be run sequentially and repetitively (including regrids) until the solution meets the normal
error criteria. Once the EQUATIONS and THEN sets are finished, the last set defined in the FINALLY
section will be solved.

Each set of equations is solved for the variables defined by the equations of that set, with the other
variables held constant at their current values. Solutions of the EQUATIONS set will be held constant
during the solution of the first THEN set, etc.

Each VARIABLE may be defined only once in the complete list of equations.

In time-dependent problems, the full set of equations is solved once during each timestep. The FINALLY
clause is ignored in time-dependent problems.

Note: This facility finds its greatest utility in steady-state problems and time-dependent problems
with one-way coupling. In time-dependent problems with two-way coupling, use of sequenced
equations may falsify propagation speeds, or lead to instability.

Example:

EQUATIONS

u: div(grad(u)) +s =0
THEN

v: div(grad(v)) +u=20

Examples:

Samples | Usage | Sequenced_Equations | Theneq.pde
Samples | Usage | Sequenced_Equations | Theneq+time.pde

3.3.8.3 Modal Analysis and Associated Equations

When modal analysis is desired, it must be declared in the SELECT section with the selector
MODES = integer

where integer is the number of modes to be analyzed.

The equation should then be written in the form

F(V) +LAMBDA*G(V) = H(X,Y)

Problem Descriptor Reference : The Sections of a Descriptor 177

Where F(V) and G(V) are the appropriate terms containing the dependent variable, and H(X,Y) is a
driving source term.

The name LAMBDA is automatically declared by FlexPDE to mean the eigenvalue, and should not be
declared in the DEFINITIONS section.

3.3.8.4 Moving Meshes

FlexPDE can support moving computation meshes in time-dependent problems. Use of this capability
requires:

e The assignment of a surrogate variable 1061 for each coordinate to be moved
¢ Definition of an EQUATION of motion for each such surrogate coordinate
¢ Suitable Boundary Conditions on the surrogate coordinate.

In some problems, the mesh positions may be driven directly. In others, there will be a variable defining
the mesh velocity. This may be the same as the fluid velocity, in which case the model is purely
Lagrangian, or it may be some other better-behaved motion, in which case the model is mixed
Lagrange/Eulerian (ALE).

FlexPDE 6 contains no provisions for re-connecting distorted meshes. Except in well-behaved problems,
pure Lagrangian computations are therefore discouraged, as severe mesh corruption may result.

Alternative Declaration Forms

EQUATIONS are always assumed to refer to the stationary Eulerian (Laboratory) reference frame.
FlexPDE automatically computes the required correction terms for mesh motion. .

Alternatively, the user can declare LAGRANGIAN EQUATIONS, and FlexPDE will not modify the user's
stated equations. In this case, the equations must be written correctly for the values at the moving nodes.

The declaration EULERIAN EQUATIONS can also be used for clarity, although this is equivalent to the
default EQUATIONS declaration.

Internal Mesh Redistribution

When the mesh is not tied directly to a fluid velocity, a convenient technique for maintaining mesh
integrity is to diffuse either the mesh coordinates or the mesh velocities in the problem interior.

For direct coordinate diffusion, we apply the diffusion equation to the surrogate coordinates:
DIV(GRAD(x_surrogate)) = 0

and apply the motion conditions to the coordinate boundary conditions with either VALUE or VELOCITY
conditions:

VELOCITY(x_surrogate) = x_velocity
or
VALUE(x_surrogate) = moving_positions

178 FlexPDE 6 : Problem Descriptor Reference

If the mesh is driven by a mesh velocity variable, we apply the diffusion equation to the velocity variables:

DIV(GRAD(x_velocity_variable)) = 0
DT(x_coordinate) = x_velocity_variable

At the boundaries, we apply the driving motions to the velocity variables and lock the surrogate coordinate
variable to its associated velocity

VALUE(x_velocity_variable) = x_velocity
VELOCITY(x_surrogate) = x_velocity

Note: See the User Guide section on Moving Meshes 100 and the example problems in the "Samples |
Moving_Mesh" folder.

Effect of Mesh Motion on EQUATION Specifications

EQUATIONS are always written in the Eulerian (Laboratory) reference frame, regardless of whether the
mesh moves or not. FlexPDE automatically computes the required correction terms for mesh motion.

3.3.9 Constraints

The CONSTRAINTS section, which is optional, is used to apply integral constraints to the system. These
constraints can be used to eliminate ambiguities that would otherwise occur in steady state systems, such
as mechanical and chemical reaction systems, or when only derivative boundary conditions are specified.

The CONSTRAINTS section, when used, normally contains one or more statements of the form

INTEGRAL (argument) = expression

CONSTRAINTS should not be used with steady state systems which are unambiguously defined by their
boundary conditions, or in time-dependent systems.

A CONSTRAINT creates a new auxiliary functional which is minimized during the solution process. If
there is a conflict between the requirements of the CONSTRAINT and those of the PDE system or
boundary conditions, then the final solution will be a compromise between these requirements, and may
not strictly satisfy either one.

CONSTRAINTS can be applied to any of the INTEGRAL operators /136,
CONSTRAINTS cannot be used to enforce local requirements, such as positivity, to nodal variables.

Examples:
Samples | Usage | Constraints | Constraint.pde 455

Samples | Usage | Constraints | Boundary_Constraint.pde /454
Samples | Usage | Constraints | 3D_Constraint.pde 4%
Samples | Usage | Constraints | 3D_Surf_Constraint.pde 4s3)
Samples | Applications | Chemistry | Reaction.pde/2o%

Problem Descriptor Reference : The Sections of a Descriptor 179

3.3.10 Extrusion

The layer structure of a three-dimensional problem is specified bottom-up to FlexPDE in the EXTRUSION

Section:
EXTRUSION
SURFACE '"Surface_name_1" Z = expression_1
LAYER '"Layer_name_1"
SURFACE '"Surface_name_2" Z = expression_2

LAYER '"Layer_name_2"
SURFACE '"Surface_name_n" Z = expression_n

The specification must start with a SURFACE and end with a SURFACE.
LAYERS correspond to the space between the SURFACES.

The Layer_names and Surface_names in these specifications are optional. The LAYER specifications
may be omitted if a name is not needed to refer to them.

o Surfaces need not be planar, and they may merge, but they must not cross. expression_1 is
assumed to be everywhere less than or equal to expression_2, and so on. Use a MIN or MAX
function when there is a possibility of crossover.

e Surface expressions can refer to regionally defined parameters, so that the surface takes on different
definitions in different regions. The disjoint expressions must, however, be continuous across region
interfaces. (see example "Samples | Usage | 3d_Domains | Regional_surfaces.pde" [432))

e If surface expressions contain conditional values (IF...THEN or MIN, MAX, etc), then the base plane
domain should include FEATURES to delineate the breaks, so they can be resolved by the gridder.

e Surfaces must be everywhere continuous, including across material interfaces. Use of conditionals or
regional definitions must guarantee surface continuity.

e Surface expressions can refer to tabular input data (see example "Samples | Usage | 3D_Domains |
Tabular_surfaces.pde” l433).

See the User Guide chapter Using FlexPDE in Three-Dimensional Problems|es1 for more information on
3D extrusions.

Shorthand form

Stripped of labels, the EXTRUSION specification may be written:
EXTRUSION Z = expression_1, expression_2 {, ...}

In this form layers and surfaces must subsequently be referred to by numbers, with surface numbers
running from 1 to n and layer numbers from 1 to (n-1). SURFACE #1 is Z=expression_1, and LAYER #1
is between SURFACE #1 and SURFACE #2.

Built-In Surface Generators

FlexPDE version 6 defines three surface generation functions

PLANE (pointl, point2 , point3 Defines a plane surface containing the three stated points.

)

180 FlexPDE 6 : Problem Descriptor Reference

CYLINDER (pointl, point2, Defines the top surface of a cylinder with axis along the line

radius) from point1 to point2 and with the given radius (see note
below). pointl and point2 must be at the same z
coordinate. Z-Tilted cylinders are not supported.

SPHERE (point, radius) Defines the top surface of a sphere of the given radius with
center at the specified center point (see note below).

Each point specification is a parenthesized coordinate double (xn , yn) ortriple (xn , yn, zn). If zn
is omitted, it is assumed zero.

These functions can be used to simplify the layout of extrusion surfaces.

CYLINDER and SPHERE construct the top surface of the specified figure (see note below). To generate
both the upper and lower halves of the CYLINDER and SPHERE, simply construct the figure at Z=0 and
add and subtract the surface function from the desired Z coordinate of the center or axis.

Example:
DEFINITIONS

Zsphere = SPHERE((0,0,0), 10)
EXTRUSION
Zcenter-Zsphere, Zcenter+Zsphere

Note: These functions generate surfaces defined throughout X,Y space. CYLINDER and SPHERE
include Z=constant skirts to extend the surface definitions. The diameters of the CYLINDER and
SPHERE, as well as the extent of the CYLINDER along its axis and of the PLANE must be provided by
REGION BOUNDARIES or FEATURES.

KN

ﬂiﬁ}\
SR

A
Ay

3.3.11 Boundaries

The BOUNDARIES section is used to describe the problem domain over which the specified equation
system is to be solved, and to specify boundary conditions along the outer surfaces of this domain.

Because of the history of FlexPDE, the discussion of boundaries has a strong two-dimensional orientation.
Three-dimensional figures are made up by extruding a two-dimensional domain into the third dimension.
One-dimensional domains are constructed by specializations of 2D techniques.

Every problem descriptor must have a BOUNDARIES section.

Problem Descriptor Reference : The Sections of a Descriptor 181

Problem BOUNDARIES are made up by walking the periphery of each material region on boundary paths
through a 2D Cartesian space.

In this way, the physical domain is broken down into REGION, FEATURE and EXCLUDE subsections.

Every problem descriptor must have at least one REGION subsection. FEATURE and EXLUDE
subsections are optional.

For concrete examples of the constructs described here, refer to the sample problems distributed with the
FlexPDE software.

3.3.11.1 Points

The fundamental unit used in building problem domains is the geometric POINT. POINTS in a FlexPDE

script are expressed as a parenthesized list of coordinate values, as in the two dimensional point (2.4,
3.72).

Since two- and three- dimensional domain definitions both begin with a two-dimensional layout, the use
for three-dimensional points is generally limited to ELEVATION PLOTS.

In one-dimensional systems, a POINT degenerates to a single parenthesized coordinate, such as (2.4).

3.3.11.2 Boundary Paths
A boundary path has the general form
START(a,b) segment TO (c,d) ...
where (a,b) and (c,d) are the physical coordinates of the ends of the segment, and segment is either
LINE, SPLINE or ARC.

The path continues with a connected series of segments, each of which moves the segment to a new point.
The end point of one segment becomes the start point of the next segment.

A path ends whenever the next input item cannot be construed as a segment, or when it is closed by
returning to the start point. The closing segment may simply end at the start point, or it can explicitly
reference CLOSE, which will cause the current path to be continued to meet the starting point:

... segment TO CLOSE.

or
... segment CLOSE.

Line Segments
Line segments take the form

LINE TO (x,y)

When successive LINE segments are used, the reserved word LINE does not have to be repeated, as in
the following:
LINE TO (x1,y1) TO (x2,y2) TO (x3,y3) TO ...

182 FlexPDE 6 : Problem Descriptor Reference

Spline Segments
Spline segments are syntactically similar to Line segments

SPLINE TO (x,y) TO (x2,y2) TO (x3,y3) TO ...

A cubic spline will be fit to the listed points. The first point of the spline will be either the
START point or the ending point of the previous segment. The last point of the spline will be
the last point stated in the chain of TO(,) points.

The fitted spline will have zero curvature at the end points, so it is a good idea to begin and
end with closely spaced points to establish the proper endpoint directions.

Arc Segments
Arc segments create either circular or elliptical arcs, and take one of the following the forms:

ARC TO (x1,y1) to (x2,y2)

ARC (RADIUS = R) to (x,y)

ARC (CENTER = x1,y1) to (x2,y2)
ARC (CENTER = x1,y1) ANGLE=angle

Here angle is an angle measured in degrees, and follows the convention that positive angles rotate
counter-clockwise and negative angles rotate clockwise. The coordinate point at the end of the arc is
determined by the radius swept out by the angle. To specify the angle in radians, follow the radian
value by the qualifier RADIANS.

Elliptical Segments
When the form ARC (CENTER = x1,y1) to (x2,y2) is used and the center (x1,y1) is not
equidistant from the start and end points, an elliptical arc segment is generated with major and minor
axes along the X and Y coordinate directions.

The orientation of the major and minor axes can be rotated with the ROTATE qualifier.
ARC (CENTER = x1,yl ROTATE = 30) TO (x2,y2)
The rotation angle is defined in degrees unless followed by the qualifier RADIANS.

The end point is not rotated by this command, and must be stated correctly to intercept the rotated
ellipse.

Named Paths

Names can be assigned to paths. When names are assigned to paths they take the form of a quoted
string and must be placed immediately after the reserved word START:

START "namedpath" (<x>, <y>)

Assigned path names are useful when boundary or line-related integrals are desired or for establishing
paths over which ELEVATION plots are desired.

Names can be assigned to portions of a path by entering a new START clause, or by overlaying a portion
of the boundary path by an independently declared FEATURE 187,

Paths Defined by ARRAYS and MATRICES

Paths may be defined by ARRAYS or MATRICES.

In the case of ARRAYS, two arrays of equal dimension are used to specify the coordinates in a LIST

Problem Descriptor Reference : The Sections of a Descriptor 183

boundary:

LINE LIST(Ax,Ay)
SPLINE LIST(Ax,Ay)

Here Ax and Ay are ARRAYS listing the X- and Y- coordinates of the path.
A 2-by-N MATRIX may also be used to specify a LINE or SPLINE LIST, with the syntax:

LINE LIST(Mxy)
SPLINE LIST(Mxy)

Examples:
Samples|Usage|Arrays+Matrices|Array_Boundary.pde/4$)

Samples|Usage|Arrays+Matrices|Matrix_Boundary.pde/448)

3.3.11.3 Regions

A REGION is a portion of a two-dimensional problem domain (or of the projection of a 3D problem
domain), bounded by boundary paths|tst, that encloses an area and contains a single material (but see
Regions in One Dimension 1841 for exceptions).

Each material property in the REGION has a single definition, although this definition may be arbitrarily
elaborate.

A REGION may consist of many disjoint areas.

Example:

REGION 1 { an outer box }
START(0,0)
LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

REGION 2 { two embedded boxes }
START(1,1)
LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE
START(5,5)
LINE TO (6,5) TO (6,6) TO (5,6) TO CLOSE

Overlaying regions:

RULE:
REGIONS DEFINED LATER OVERLAY AND OBSCURE REGIONS DEFINED EARLIER.
AREAS COMMON TO TWO REGIONS BECOME PART OF THE LATER DEFINED REGION.

So, in the example above, the two smaller boxes overlay the large box. The material parameters
assigned to the large box pertain only to the part of the large box not overlaid by the small boxes.

It is customary to make the first region define the entire outer boundary of the problem domain, and
then to overlay the parts of the domain which differ in parameters from this default region. If you
overlay all parts of the outer domain with subregions, then the outer region definition becomes
invisible. It may be useful to do this in some cases, since it allows a localization of boundary condition
specifications. Nevertheless, one of the subregions is superfluous, because it could be the default.

184 FlexPDE 6 : Problem Descriptor Reference

3.3.11.3.1 Reassigning Regional Parameters

Names previously defined in the DEFINITIONS section can be assigned a new value within a REGION by
adding one or more assignments of the form

name = new_expression

immediately following the reserved word REGION.

When definitions are reassigned new values in this manner, the new value applies only to the region in
which the reassignment occurs.

Example:

DEFINITIONS
K=1 { the default value }
REGION 1 { assumes default, since no override is given }
START(0,0) LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE
REGION 2
K=2 { both sub-boxes are assigned K=2 }
START(1,1) LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE
START(5,5) LINE TO (6,5) TO (6,6) TO (5,6) TO CLOSE
REGION 3 { again assumes the default }
START(3,3) LINE TO (4,3) TO (4,4) TO (3,4) TO CLOSE

3.3.11.3.2 Regions in One Dimension

In one-dimensional domains, the concept that a REGION bounds a finite area by closing on itself is no
longer true. In one dimension, it is sufficient to define a path from the start of a material region to its
finish. (Referencing CLOSE in a 1D bounding path will cause serious troubles, because the path will
retrace itself.)

For example, the statements

REGION 1
START(0) LINE TO (5)

are sufficient to define a region of material extending from location 0 to location 5 in the 1D coordinate
system.

In order to maintain grammatical consistency with two- and three- dimensional constructs, omitting the
parentheses is not permitted.

Other general characteristics of REGIONS remain in force in one-dimensional domains:
Later REGIONS overlay earlier REGIONS, material properties are defined following the REGION
keyword, and so forth.

Problem Descriptor Reference : The Sections of a Descriptor 185

3.3.11.3.3 Regions in Three Dimensions

The concept of a REGION in 3D domains retains the same character as for 2D domains.

The REGION is a partition of the 2D projection of the figure, and is extruded into the third dimension
according to the EXTRUSION specification.

A material compartment in 3D is uniquely defined by the REGION of the projection which bounds it, and
the LAYER of the extrusion in which it resides.

Extrusion of each 2D REGION therefore creates a stack of layers above it, each with possibly unique
material properties.

A question then arises as to when a component that exists in a given layer of the domain must be divided
into multiple regions. The rule can be stated as follows:

Rule: When two points in the projection plane see different stacks of materials above them in the
extrusion direction, then these two points must reside in different REGIONS of the domain layout.

In the presence of LIMITED REGIONS 85, the above rule can be interpreted to consider only the two
layers adjoining a given extrusion surface. If the materials above and below the surface differ between two
points, then there must be a REGION boundary separating the two points in the subject extrusion
surface. REGION boundaries are induced in surfaces by the presence of a REGION boundary in either
adjoining LAYER (subject to the overlay rule/1s3).

See the User Guide chapter Using FlexPDE in Three-Dimensional Problems| 69 for further discussion of
the construction of 3D domains.

3.3.11.3.4 Regional Parameter Values in 3D
In three-dimensional problems, a redefinition of a parameter inside a REGION causes the parameter to be

redefined in all layers of the layer stack above the region. To cause the parameter to be redefined only in a
selected layer, use the LAYER qualifier, as in

LAYER number name = new_expression
LAYER "layer_name" name = new_expression

The LAYER qualifier acts on all subsequent parameter redefinitions, until a new LAYER qualifier or a
functionally distinct clause breaks the group of redefinitions.

Example:
The following descriptor fragment shows the redefinition of a parameter K in various contexts:
DEFINITIONS
K=1 { defines the default value }
BOUNDARIES
LAYER 1 K=2 { (valid only in 3D) defines the value in layer 1 of all regions }
REGION 1
K=3 { redefines the value in region 1 only, in all layers of a 3D domain
b
LAYER 2 K=4 { (valid only in 3D) defines the value in layer 2 of region
1only }

START(0,0) LINE TO

186 FlexPDE 6 : Problem Descriptor Reference

3.3.11.3.5 Limited Regions in 3D

In three dimensional problems, many figures to not fit readily into the extrusion model. In particular, there
are frequently features that in reality exist only at very restricted positions in the extrusion dimension, and
which create poor meshes when extruded throughout the domain.

FlexPDE implements the concept of LIMITED REGIONS to accommodate this situation.

A LIMITED REGION is defined as one that is considered to exist only in specified layers or surfaces of
the domain, and is absent in all other layers and surfaces.

The LIMITED REGION will be constructed only in layers and surfaces specifically stated in the body of
the REGION definition.

An example of this type of structure might be a transistor, where the junction structure of the device is
present only in a very thin layer of the domain, while the substrate occupies the majority of the volume.

In earlier versions of FlexPDE, the shape of the junction structure was propagated and meshed throughout

the extrusion dimension. Since version 4, the structure can be restricted, or LIMITED, to a single layer or
a few layers.

For example, the following descriptor fragment defines a 3-unit cube with a 0.2-unit cubical structure in the
center. The small structure is present in the layer 2 mesh only.

EXTRUSION Z=0, 1.4, 1.6, 3
BOUNDARIES
REGION 1
START(0,0) LINE TO (3,0) TO (3,3) TO (3,0) TO CLOSE
LIMITED REGION 2
LAYER 2 K=9
START(1.4,1.4)
LINE TO (1.6,1.4) TO (1.6,1.6) TO (1.4,1.4) TO CLOSE

See the User Guide section "Limited Regions| 741" for a graphical example of this facility.

Examples:
Samples | Usage | 3D_Domains | 3D_Limited_Region.pde 414

3.3.11.3.6 Empty Layers in 3D

In three dimensional problems, it is sometimes necessary to define holes or excluded regions in the
extruded domain. This may be done using the VOID qualifier. VOID has the syntax of a parameter
redefinition.

For example, the following descriptor fragment defines a 3-unit cube with a 1-unit cubical hole in the
center:

EXTRUSION Z=0,1,2,3

Problem Descriptor Reference : The Sections of a Descriptor 187

BOUNDARIES
REGION 1
START(0,0) LINE TO (3,0) TO (3,3) TO (3,0) TO CLOSE
REGION 2
LAYER 2 VOID
START(1,1) LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE

Examples:
Samples | Usage | 3D_Domains | 3D_Void.pde/43f

3.3.11.4 Excludes

EXCLUDE subsections are used to describe closed domains which overlay parts of one or more REGION
subsections. The domain described by an exclude subsection is excluded from the system. EXCLUDE
subsections must follow the REGION subsections which they overlay

EXCLUDE subsections are formed in the same manner as REGION subsections and can use all the same
LINE and ARC segments.

3.3.11.5 Features

FEATURE subsections are used to describe non-closed entities which do not enclose a subdomain with
definable material parameters.

FEATURE subsections are formed in the same manner as REGION [183) subsections and can use all the
same LINE and ARC segments.

FEATURE subsections do not end with the reserve word CLOSE.
A FEATURE will be explicitly represented by nodes and cell sides.

FEATURE subsections are used when a problem has internal line sources; when it is desirable to calculate
integrals along an irregular path; or when explicit control of the grid is required.

In 3D problems, FEATURES should be used to delineate any sharp breaks in the slope of extrusion
surfaces. Unless mesh lines lie along the surface breaks, the surface modeling will be crude.
Example:
REGION 1 { an outer box }
START(0,0) LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

FEATURE { with a diagonal gridding line }
START(0,0) LINE TO (10,10)

3.3.11.6 Node Points

FlexPDE supports the ability to place mesh nodes at specific points in the problem geometry. This is done
with the statements

188 FlexPDE 6 : Problem Descriptor Reference

NODE POINT (x_value, y_value)
NODE POINT (x_value, y_value , z_value)

A mesh node will be placed at the specified location, and linked into the computation mesh.

NODE POINTS can be used to place POINT VALUE[1961 or POINT LOAD /196 boundary conditions (see
Caveat/190).

In moving mesh problems, NODE POINTS will move with the mesh; they will not be locked to the
specified location unless appropriate POINT VALUE boundary conditions are used to freeze the point.

In 3D geometries, specification of only two coordinates will cause a vertical meshing line to be placed
throughout the Z-coordinate range of the domain. A three-coordinate point will specify a single node.
Placing NODE POINTS in coincidence with EXTRUSION surfaces will have undefined effects, and may
lead to mesh generation failure.

An alternative way of forcing nodes is to run a FEATURE or REGION boundary to and through the desired
point.

3.3.11.7 Ordering Regions

While not strictly enforced, it is recommended that all REGION subsections be listed before any EXCLUDE
or FEATURE subsections and that all EXCLUDE subsections be listed before any FEATURE subsections.

It is further recommended that the first REGION subsection be formed by walking the outside boundary of
the problem thereby enclosing the entire domain of the problem.

Rule:

REGIONS defined later are assumed to overlay any previously listed REGIONSs, and any properties
assigned to a REGION will override properties previously assigned to the domains they overlay.

Regions in 3D Domains

In 3D domains, the above rule is applied in each extrusion surface.

3.3.11.8 Numbering Regions
REGION,EXCLUDE and FEATURE subsections can be assigned numbers and/or names.

When numbers are assigned they should be in ascending sequential order beginning with one. It is
recommended that numbers always be assigned.

When names are assigned they must take the form of a quoted string and must be placed immediately after
either the reserved word REGION, EXCLUDE, or FEATURE or any number assigned to the REGION,
EXCLUDE, or FEATURE. Assigned names must be unique to the REGION, EXCLUDE or FEATURE that
they name.

Assigned region names are useful when region-restricted plots or volume integrals are desired.
Example:

REGION 2 'Thing'

Problem Descriptor Reference : The Sections of a Descriptor 189

{3
PLOTS

contour(u) on 'Thing'

3.3.11.9 Fillets and Bevels
Any point in a path may be followed by one of the specifications

FILLET(radius)
BEVEL(length)

The point will be replaced by a circular arc of the specified radius, or by a bevel of the specified length.
FILLETS and BEVELS should not be applied to points which are the intersection of several segments, or
confusion may ensue.

Example:
LINE TO (1,1) FILLET(0.01)

Example problem:
"Samples | Usage | Fillet.pde[se™"

3.3.11.10 Boundary Conditions

The following forms of boundary condition specification may be applied to boundary segments:

VALUE (variable) = expression
NATURAL (variable) = expression
LOAD (variable) = expression
CONTACT (variable) = expression
VELOCITY (variable) = expression
NOBC (variable)

The variable designated in the boundary condition specification identifies (by explicit association) the
equation to which this boundary condition is to be applied.

Dirichlet (Value) Boundary Conditions
A VALUE segment boundary condition forces the solution of the equation for the associated variable to
the value of expression on a continuous series of one or more boundary segments. The expression
may be an explicit specification of value, involving only constants and coordinates, or it may be an
implicit relation involving values and derivatives of system variables.

Generalized Flux (Natural) Boundary Conditions
NATURAL and LOAD segment boundary conditions are synonymous. They represent a generalized
flux boundary condition derived from the divergence theorem. The expression may be an explicit
specification, involving only constants and coordinates, or it may be an implicit relation involving values
and derivatives of system variables. The Natural boundary condition reduces to the Neumann
boundary condition in the special case of the Poisson equation. See the User Guide chapter Natural
Boundary Conditions| 61 for information on the implementation of Natural boundary conditions.

Contact Resistance (Discontinuous Variable) Boundary Conditions
Interior boundaries can be defined to have a contact resistance using the CONTACT (variable)

190 FlexPDE 6 : Problem Descriptor Reference

boundary condition. See "Jump Boundaries /192" in the next section.

Velocity (Time Derivative) Boundary Conditions
This boundary condition imposes a specified time derivative on a boundary value (time-dependent
problems only). This condition is especially useful in specifying moving boundaries, by applying it to
the surrogate coordinate variable. If you have declared a velocity variable which is applied to a
coordinate, then you should lock the surrogate coordinate to the mesh velocity variable at the boundary
using a VELOCITY () boundary condition.

Terminating the current BC
Boundary conditions, once stated, remain in effect until explicitly changed or until the end of the path.
NOBC(VARIABLE) can be used to turn off a previously specified boundary condition on the current
path. Itis equivalent in effect to NATURAL(VARIABLE)=0 (the default boundary condition), except
that it will not lead to "Multiple Boundary Condition Specification" diagnostics.

Default Boundary Conditions
The default boundary condition for FlexPDE is NATURAL(VARIABLE)=0.

Note: The NEUMANN, DNORMAL and DTANGENTIAL boundary conditions supported in earlier
versions have been deleted due to unreliable behavior. They may be restored in later versions. In
most cases, derivative boundary conditions are more appropriately applied through the NATURAL
boundary condition facility.

3.3.11.10.1 Syntax of Boundary Condition Statements

Segment boundary conditions are added to the problem descriptor by placing them in the BOUNDARIES
section.

Segment boundary conditions must immediately precede one of the reserved words LINE or ARC and
cannot precede the reserved word TO.

A top-down system is used for applying segment boundary conditions to the equations. Following the
START point specification in each path definition, a segment boundary condition is set up for each
variable/equation. Itis recommended that a boundary condition be specified for each variable/equation.
If no other segment boundary condition is specified no error will occur and a NATURAL(VARIABLE) = 0
segment boundary condition is assumed.

Under the top-down system, as boundary segments occur, the previously specified segment boundary
condition for a variable will continue to hold until a new boundary condition is specified for that variable.

If the recommendation is followed that REGION 1 be formed by walking the outside boundary of the
problem, thereby enclosing the entire domain of the problem, then for most problems segment boundary
conditions need only be specified for the segments in REGION 1.

3.3.11.10.2 Point Boundary Conditions

POINT VALUE boundary conditions can be added by placing
POINT VALUE (variable) = expression

following a coordinate specification. The stated value will be imposed at the coordinate point immediately

Problem Descriptor Reference : The Sections of a Descriptor 191

preceding the specification.

POINT LOAD boundary conditions can be added by placing
POINT LOAD (variable) = expression

following a coordinate specification. The stated load will be imposed as a lumped source on the coordinate
point immediately preceding the specification.

A Caveat:
The results achieved by use of these specifications are frequently disappointing.

A diffusion equation, for example, div(grad(u))+s=0, can support solutions of the form
u=A-Br-Cr~ 2, where r is the distance from the point value and A, B and C are arbitrary constants. By
the superposition principle, FlexPDE is free to add such shapes to the computed solution in the vicinity
of the point value, without violating the PDE. A POINT VALUE condition usually leads to a sharp spike
in the solution, pulling the value up to that specified, but otherwise leaving the solution unmodified.

The POINT LOAD is not subject to this same argument, but since it is a load without scale, it will
frequently produce a dense mesh refinement around the point.

A better solution is to use a distributed load or an extended value boundary segment, ring or box.

3.3.11.10.3 Boundary conditions in 1D

The idea that a boundary condition applies along the length of a boundary segment, while meaningful in
two and three dimensions, is meaningless in one dimension, since it is the value along the segment that is
the object of the computation.

In one dimensional problems, therefore, it is necessary to use the Point boundary condition described in
the previous section for all boundary condition specifications.

Example:
BOUNDARIES
REGION 1
START(0) POINT VALUE(u)=1
LINE TO (5) POINT LOAD(u)=4

The node at coordinate O will have value 1, while that at coordinate 5 will have a load of 4.

3.3.11.10.4 Boundary Conditions in 3D

In three-dimensional problems, an assignment of a segment boundary condition to a region boundary
causes that boundary condition to be applied to the "side walls" of all layers of the layer stack above the
region. To selectively apply a boundary condition to the "side walls" of only one layer, use the LAYER
qualifier, as in

LAYER number VALUE(variable) = expression
LAYER "layer_name" VALUE(variable) = expression

The LAYER qualifier applies to all subsequent boundary condition specifications until a new LAYER
qualifier is encountered, or the segment geometry (LINE or ARC) statements begin.

192 FlexPDE 6 : Problem Descriptor Reference

The boundary conditions on the extrusion surfaces themselves (the slicing surfaces) can be specified by
the SURFACE qualifier preceding the boundary condition specification.

Consider a simple cube. The EXTRUSION and BOUNDARIES sections might look like this:

EXTRUSION z = 0,1
BOUNDARIES
SURFACE 1 VALUE(U)=0 {1}
REGION 1
SURFACE 2 VALUE(U)=1 {2}
START(0,0)
NATURAL(U)=0 {3}
LINE TO (1,0)
LAYER 1 NATURAL(U)=1 {4}
LINE TO (1,1)
NATURAL(U)=0 {5}
LINE TO (0,1) TO CLOSE

Line { 1 } specifies a fixed value of O for the variable U over the entire surface 1 (ie. the Z=0 plane).
Line { 2 } specifies a value of 1 for the variable U on the top surface in REGION 1 only.

Line { 3 } specifies an insulating boundary on the Y=0 side wall of the cube.

Line { 4 } specifies a flux (whose meaning will depend on the PDE) on the X=1 side wall in LAYER 1
only.

Line { 5 } returns to an insulating boundary on the Y=1 and X=0 side walls.

[Of course, in this example the restriction to region 1 or layer 1 is meaningless, because there is only one of
each.]

3.3.11.10.5 Jump Boundaries

In the default case, FlexPDE assumes that all variables are continuous across internal material interfaces.
This is a consequence of the positioning of mesh nodes along the interface which are shared by the cells
on both sides of the interface.

FlexPDE supports the option of making variables discontinuous at material interfaces (see the "
Discontinuous Variables|e41" in the User Guide for tutorial information).

This capability can be used to model such things as contact resistance, or to completely decouple the
variables in adjacent regions.

The key words in employing this facility are CONTACT and JUMP.

The conceptual model is that of contact resistance, where the difference in voltage V across the interface
(the JUMP) is given by
V2 - V1 = R*current

In the general case, the role of "current" is played by the generalized flux, or Natural boundary condition
1901, (See the User Guide for further discussion of Natural Boundary Conditions| 1) The CONTACT
boundary condition is a special form of NATURAL, which defines a flux but also specifies that FlexPDE
should model a double-valued boundary.

So the method of specifying a discontinuity is
CONTACT(V) = (1/R)*JUMP(V)

Problem Descriptor Reference : The Sections of a Descriptor 193

"CONTACT(V)", like "NATURAL(V)", means the outward normal component of the generalized flux as
seen from any cell. So from any cell, the meaning of "JUMP(V)" is the difference between the interior and
exterior values of V at a point on the boundary. Two cells sharing a boundary will then see JUMP values
and outward normal fluxes of opposite sign. "Flux" is automatically conserved, since the same numeric
value is used for the flux in both cells.

Specifying a CONTACT boundary condition at an internal boundary causes duplicate mesh nodes to be
generated along the boundary, and to be coupled according to the JUMP boundary condition statement.

Specifying a very small (1/R) value effectively decouples the variable across the interface.

Example Problems:

"Samples | Usage | Discontinuous_Variables | Thermal_Contact_Resistance.pde" 4%
"Samples | Usage | Discontinuous_Variables | Contact_Resistance_Heating.pde"[4601
"Samples | Usage | Discontinuous_Variables | Transient_Contact_Resistance_Heating.pde"[462)

3.3.11.10.6 Periodic Boundaries

FlexPDE supports periodic and antiperiodic boundary conditions in one, two or three dimensions.

Periodicity in the X-Y Plane

Periodicity in a two-dimensional problem, or in the extrusion walls of a three-dimensional problem, is
invoked by the PERIODIC or ANTIPERIODIC statement.

The PERIODIC statement appears in the position of a boundary condition, but the syntax is slightly
different, and the requirements and implications are more extensive.

The syntax is:

PERIODIC (X_mapping, Y_mapping)
ANTIPERIODIC (X_mapping, Y_mapping)

The mapping expressions specify the arithmetic required to convert a point (X,Y) in the immediate
boundary to a point (X',Y') on a remote boundary. The mapping expressions must result in each point
on the immediate boundary being mapped to a point on the remote boundary. Segment endpoints must
map to segment endpoints. The transformation must be invertible; do not specify constants as
mapped coordinates, as this will create a singular transformation.

The periodic boundary statement terminates any boundary conditions in effect, and instead imposes
equality of all variables on the two boundaries. It is still possible to state a boundary condition on the
remote boundary, but in most cases this would be inappropriate.

The periodic statement affects only the next following LINE or ARC path. These paths may contain

more than one segment, but the next appearing LINE or ARC statement terminates the periodic
condition unless the periodic statement is repeated.

Periodicity in 1D

Periodicity in a one-dimensional problem is invoked by the POINT PERIODIC or POINT
ANTIPERIODIC statement. All other aspects are similar to the description above for X-Y periodicity.

194 FlexPDE 6 : Problem Descriptor Reference

Periodicity in the Z-Dimension

Periodicity In the extruded dimension is invoked by the modifier PERIODIC or ANTIPERIODIC before
the EXTRUSION statement, for example,

PERIODIC EXTRUSION Z=0,1,2

In this case, the top and bottom extrusion surfaces are assumed to be conformable, and the values are
forced equal (or sign-reversed) along these surfaces.

Restrictions

Each node in the finite element mesh can have at most one periodic image. This means that two-way
or three-way periodicity cannot be directly implemented. Usually it is sufficient to introduce a small gap
in the periodic boundaries, so that each corner is periodic with only one other corner of the mesh.

Example Problems:

"Samples | Usage | Periodicity | periodic.pde" [516)

"Samples | Usage | Periodicity | azimuthal_periodic.pde" (508}
"Samples | Usage | Periodicity | antiperiodic.pde" [son
"Samples | Usage | Periodicity | 3d_xperiodic.pde"|505)
"Samples | Usage | Periodicity | 3d_zperiodic.pde" 507
"Samples | Usage | Periodicity | 3d_antiperiodic.pde" (504

3.3.11.10.7 Complex and Vector Boundary Conditions

Boundary conditions for COMPLEX or VECTOR VARIABLES may be declared for the complex or vector
variable directly, or for the individual components.

If Cis a COMPLEX VARIABLE with components Cr and Ci, the following boundary condition declarations
are equivalent:

VALUE(C) = Complex(a,b)
VALUE(Cr) =a VALUE(Ci)=b

If Visa VECTOR VARIABLE with components VX and Vy, the following boundary condition declarations
are equivalent:

NATURAL(V) = Vector(a,b)
NATURAL(Vx) =a NATURAL(Vy)=b

The component form allows the application of different boundary condition forms (VALUE or NATURAL)
to the components, while the root variable form does not.

3.3.12 Front

The FRONT section is used to define additional criteria for use by the adaptive regridder. In the normal
case, FlexPDE repeatedly refines the computational mesh until the estimated error in the approximation of
the PDE's is less than the declared or default value of ERRLIM. In some cases, where meaningful activity is
confined to some kind of a propagating front, it may be desirable to enforce greater refinement near the

Problem Descriptor Reference : The Sections of a Descriptor 195

front. In the FRONT section, the user may declare the parameters of such a refinement.

The FRONT section has the form:
FRONT (criterion, delta)

The stated criterion will be evaluated at each node of the mesh. Cells will be split if the values at the nodes
span a range greater than (-delta/2, delta/2) around zero.

That is, the grid will be forced to resolve the criterion to within delta as it passes through zero.

Example:
Samples | Usage | Mesh_Control | Front.pde[4sd

3.3.13 Resolve

The RESOLVE section is used to define additional criteria for use by the adaptive regridder. In the
normal case, FlexPDE repeatedly refines the computational mesh until the estimated error in the
approximation of the PDE's is less than the declared or default value of ERRLIM. In some cases, this can
be achieved with a much less dense mesh than is necessary to make pleasing graphical presentation of
derived quantities, such as derivatives of the system variables, which are much less smooth than the
variables themselves. In the RESOLVE section, the user may declare one or more additional functions
whose detailed resolution is important. The section has the form:

RESOLVE (specl), (spec2), (spec3) {...}

Here, each spec may be either an expression, such as "(shear_stress)", or an expression followed by a
weighting function, as in "(shear_stress, x~2)".

In the simplest form, only the expressions of interest need be presented. In this case, for each stated
function, FlexPDE will

e form a Finite Element interpolation of the stated function over the computational mesh

¢ find the deviation of the interpolation from the exact function

e split any cell where this deviation exceeds ERRLIM times the global RMS value of the function.

Because the finite element interpolation thus formed assumes continuous functions, application of
RESOLVE to a discontinuous argument will result in dense gridding at the discontinuity. An exception to
this is at CONTACT 192 boundaries, where the finite element representation is double valued.

In the weighted form, an importance-weighting function is defined, possibly to restrict the effective
domain of resolution. The splitting operation described above is modified to multiply the deviation at each
point by the weight function at that point. Areas where the weight is small are therefore subjected to a less
stringent accuracy requirement.

Example:
Samples | Usage | Mesh_Control | Resolve.pde 4ot

196 FlexPDE 6 : Problem Descriptor Reference

3.3.14 Time

The TIME section is used in time dependent problem descriptors to specify a time range over which the
problem is to be solved. It supports the following alternative forms:

FROM timel TO time2
FROM timel BY increment TO time2
FROM timel TO time2 BY increment

Where:
timel is the beginning time
time2 is the ending time.

increment is an optional specification of the initial time step
for the solution. (the default initial time step is
1e-4*(time2-time1)).

All time dependent problem descriptors must include statements which define the time range.

While the problem descriptor language supports alternate methods of specifying a time range, it is
recommended that all time dependent problems include the TIME section to specify the total time domain
of the problem.

Halting Execution
The time range specification may optionally be followed by a HALT statement:

HALT minimum
HALT = minimum

This statement will cause the computation to halt if the automatically controlled timestep drops below
minimum. This facility is useful when inconsistencies in data or discontinuities in parameters cause the
timestep controller to become confused.

HALT condition

Here the condition can be any relational operation, such as globalmax(myvariable) < 204. If the
condition is met on any timestep, the computation will be halted.

Limiting the maximum timestep
The time range specification may optionally be followed by a LIMIT statement:

LIMIT maximum
LIMIT = maximum

This statement will prevent the timestep controller from increasing the computation timestep beyond the
stated maximum.
maximum may be any constant arithmetic expression.

Critical Times
The time range specification may optionally be followed by a CRITICAL statement:

CRITICAL timel {, time2, time3 ...}

This will ensure that each of the times in the list will fall at the end of some timestep interval.
Times may be separated by commas or spaces.
An #include statement can be used to read the times from a disk file.

Problem Descriptor Reference : The Sections of a Descriptor 197

3.3.15 Monitors and Plots

The MONITORS section, which is optional, is used to list the graphic displays desired at intermediate
steps while a problem is being solved.

The PLOTS section, which is optional, is used to list the graphic displays desired on completion of a
problem or stage, or at selected problem times.

PLOTS differ from MONITORS in that they are written to the permanent .PG6 record for viewing after the
run is completed.

(For debugging purposes the global selector HARDMONITOR can be used to force MONITORS to be
written to the .pg6 file.)

Plot statements and Monitor statements have the same form and function.
The basic form of a PLOT or MONITOR statement is:
display_specification (plot_data) display_modifiers

display_specification must be one of the known plot types, as described in the next section.

In some cases, multiple plot_data arguments may be provided.

There may be any number of display_modifiers, with meanings determined by the
display_specification.

The various display_modifiers supported by FlexPDE are listed in the "Graphic Display Modifiers 200"
section.

An Exhortation:

The MONITORS facility has been provided to allow users to see immediate feedback on the progress of
their computation, and to display any and all data that will help diagnose failure or misunderstanding.
Please use MONITORS extensively, especially in the early phases of model development! Since they do
not write to the .pg6 storage file, they can be used liberally without causing disk file bloat. After the
model is performing successfully, you can remove them or comment them out. Many user pleas for help
recieved by PDE Solutions could be avoided if the user had included enough MONITORSs to identify the
cause of trouble.

Examples:
Samples | Usage | Plotting | Plot_test.pde/s1h

Note: All example problems contain PLOTS and MONITORS.

3.3.15.1 Graphics Display and Data Export Specifications

The MONITORS or PLOTS sections can contain one or more display specifications of the following types:

CDF (argl [,arg2,...])

e Requests the export of the listed values in netCDF version 3 format.

e The output will be two or three dimensional, following the current coordinate system or subsequent
ON SURFACE |206) modifiers.

e The included domain can be zoomed.

198

FlexPDE 6 : Problem Descriptor Reference

If the FILE[202) modifier does not follow, then the output will be written to a file

"<problem>_ <sequence>.cdf".

Staged, eigenvalue and time-dependent problems will stack subsequent outputs in the same file,
consistent with netCDF conventions.

CDF uses a regular rectangular grid, so interface definition may be ragged.

Use ZOOM |206) to show details.

CONTOUR (arg)

Requests a two dimensional contour map of the argument, with levels at uniform intervals of the
argument.

CONTOUR (argl, arg2)

Requests a two dimensional contour map of both argl and arg2, each with levels at independent
uniform intervals.
Alevel table is displayed for both argl and arg2.

ELEVATION (argl, [arg2,...]) path

Requests a two dimensional display (some times called a line-out) which displays the value of its
argument(s) vertically and the value of its path horizontally.

Each ELEVATION listed must have at least one argument and may have multiple arguments
separated by commas.

path can be either a line segment specified using the forms FROM 2081 (X1,Y1) TO (X2,Y2) or ON
206 name, where name is a literal string selecting a path named in the BOUNDARIES |186 section.

GRID (argl, arg2)

Requests a two dimensional plot of the computation grid, with nodal coordinates defined by the two
arguments.

Grids are especially useful for displaying material deformations.

In 3D problems, a two-argument GRID plot will show a cut-plane, and must be followed by an ON
206) specification.

3D cut plane grid plots do not necessarily accurately represent the computational grid.

GRID (argl, arg2, arg3)

Requests a three dimensional plot of the computation grid, with nodal coordinates defined by the
three arguments.

Only the outer surface of the grid will be drawn.

This plot can be interactively rotated, as with SURFACE 1981 plots.

MODE_SUMMARY

In eigenvalue problems, this produces a SUMMARY page for each mode (comparable to the version 5
SUMMARY).

SUMMARY

This plot type defines a text page on which only REPORT[208) items may appear.
A SUMMARY page can be EXPORT 20fled to produce text reports of scalar values.

SUMMARY ('string’)

If a string argument is given with a SUMMARY command, it will appear as a page header on the

Problem Descriptor Reference : The Sections of a Descriptor 199

summary page.

SURFACE (arg)

A quasi three dimensional surface which displays its argument vertically.
If no VIEWPOINT [205) clause is used, the viewing azimuth defaults to 216 degrees, the distance to
three times the size, and the viewing elevation to 30 degrees.

TABLE (argl [,arg2,...])

Requests the export of the listed values in tabular ASCII format.

The output will be two or three dimensional, following the current coordinate system or subsequent
ON |20 modifiers.

The included domain can be zoomed.

If the FILE 202y modifier does not follow, then the output will be written to a file

"<problem>_ <sequence>.tbl".

Staged, eigenvalue and time-dependent problems will create separate files for each stage or mode,
with additional sequencing numbers in the name.

TABLE output uses a regular rectangular grid, so interface definition may be lost.

Use ZOOM 2081 to show details.

TECPLOT (arg1l [,arg2,...])

Requests the export of the listed values to a file readable by the TecPlot visualization system.

The output will be two or three dimensional, following the current coordinate system.

The entire mesh is exported.

If the FILE 2021 modifier does not follow, then the output will be written to a file

"<problem>_ <sequence>.dat".

Staged, eigenvalue and time-dependent problems will stack subsequent outputs in the same file,
consistent with TecPlot conventions.

TecPlot uses the actual triangular or tetrahedral computation mesh (subdivided to linear basis), so
material interfaces are preserved.

TRANSFER (argl [,arg2,...])

Requests the export of the listed values and finite element mesh data in a file readable by FlexPDE
using the TRANSFER or TRANSFERMESH [168) input command. This method of data transfer
between FlexPDE problems retains the full accuracy of the computation, without the error
introduced by the rectangular mesh of the TABLE function.

The exported domain cannot be zoomed.

If the FILE|202) modifier does not follow, then the output will be written to a file

"<problem>_ <sequence>.dat". This export format uses the actual computation mesh, so material
interfaces are preserved.

The full computation mesh is exported.

When used in Staged, Time dependent or Eigenvalue problems, each output file will be identified by
appending a sequence number to the file name.

Note: TRANSFER files do not record the state of HISTORY plots. Problems restarted from a
TRANSFER file will have fragmented HISTORY plots.

VECTOR (vector)

Requests a two dimensional display of directed arrows in which the direction and magnitude of the
arrows is set by the vector argument.
The origin of each arrow is placed at its reference point.

200 FlexPDE 6 : Problem Descriptor Reference

VECTOR (argl, arg2)

¢ Requests a two dimensional display of directed arrows in which the horizontal and vertical
components of the arrows are given by argl and arg2.
o The origin of each arrow is placed at its reference point.

VTK (argl [,arg2,...])

e Requests the export of the listed values to a file in VTK (Visualization Tool Kit) format for display by
visualization systems such as VisIt.

¢ The output will be two or three dimensional, following the current coordinate system.

e The entire mesh is exported.

e If the FILE modifier does not follow, then the output will be written to a file
"<problem>_ <sequence>.vtk".

e Staged, eigenvalue and time-dependent problems will produce a family of files distinguished by the
sequence number.

e VTK format uses the actual triangular or tetrahedral computation mesh, so material interfaces are
preserved.

e The VTK format supports quadratic finite element basis directly, but not cubic. To export from
cubic-basis computations, use VTKLIN.

VTKLIN (argl [,arg2,...])
e Produces a VTK format file in which the native cells of the FlexPDE computation have been
converted to a set of linear-basis finite element cells.
e This command may be used to export to VTK visualization tools from cubic-basis FlexPDE
computations, or in cases where the visualization tool does not support quadratic basis.

For all commands, the argument(s) can be any valid expression.

3.3.15.2 Graphic Display Modifiers

The appearance of any display can be modified by adding one or more of the following clauses:

AREA_INTEGRATE

e Causes CONTOUR and SURFACE plots in cylindrical geometry to be integrated with dr*dz element,
rather than default 2*pi*r*dr*dz volume element.
e See also: LINE_INTEGRATE /203

AS 'string’
¢ Changes the label on the display from the evaluated expression to string.

BLACK

e Draws current plot in black color only.

BMP
BMP (pixels)
BMP (pixels, penwidth)

e Selects automatic creation of a graphic export file in BMP format.

Problem Descriptor Reference : The Sections of a Descriptor 201

pixels is the horizontal pixel count, which defaults to 1024 if omitted.

penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the drawing width (O means thin).

The export file name is the problem name with plot number and sequence number appended.

The file name cannot be altered.

CONTOURS = number

Selects the number of contour lines for CONTOUR plots. This is a local control equivalent to the
global CONTOURS control, but applying only to a single plot.

DROPOUT

EMF

Marks EXPORT and TABLE output points which fall outside the problem domain as "external". This
modifier affects only EXPORTS and TABLES with FORMAT strings (see below).

EMF (pixels)
EMF (pixels, penwidth)

EPS

Windows version only. Produces a Microsoft Windows Enhanced Metafile output.

pixels is the horizontal pixel count of the reference window, which defaults to 1024 if omitted.
penwidth is an integer (0,1,2 or 3) which specifies the width of drawn lines, in thousandths of the
drawing width (0 means thin).

The export file name is the problem name with plot number and sequence number appended.

The file name cannot be altered.

Warning: FlexPDE uses Windows rotated fonts to plot Y-labels and axis labels on surface plots.
Microsoft Word can read and resize these pictures, but its picture editor cannot handle them, and
immediately "rectifies" them to horizontal.

Produces an Encapsulated PostScript output.
The graphic is a 10x7.5 inch landscape-mode format with 7200x5400 resolution.

EXPORT

Causes a disk file to be written containing the data represented by the associated MONITOR or PLOT

A regular rectangular grid will be constructed, and the data will be printed in a format suitable for
reading by the FlexPDE TABLE function.

The dimension of the grid will be determined by the plot grid density appropriate to the type of plot.
The format of EXPORTED data may be controlled by the FORMAT modifier (see below).

(This is a renaming of the older PRINT modifier)

EXPORT (n)

Modifies the EXPORT command by specifying the dimension of the printed data grid.
For two- or three-dimensional plots, the grid will be (n x n) or (n x n x n).

EXPORT (nx, ny)
EXPORT (nx, ny, nz)

Modifies the EXPORT command by specifying the dimension of the printed data grid.

202 FlexPDE 6 : Problem Descriptor Reference

FILE 'string’

e Overrides the default naming convention for files created by the EXPORT or PRINT modifiers, and
writes the file named 'string’ instead.

FIXED RANGE (argl, arg2)

e Changes the dynamically set range used for the variable axis to a minimum value of argl and a
maximum of arg2. Data outside this range is not plotted.
e See also: RANGE 205)

FORMAT 'string’

¢ This modifier replaces the default format of the EXPORT or PRINT modifiers, or of the TABLE
output command. When this modifier appears, the output will consist of one line for each point in
the export grid.
o The contents of this line will be completely controlled by the format string as follows:
1. all characters except "#" will be copied literally to the output line.
2. "#"will be interpreted as an escape character, and various options will be selected by the character
following the "#":
o #x, #y, #z and #t will print the value of the spatial coordinates or time of the data point;
o #1through #9 will print the value of the corresponding element of the plot function list;
e #b will write a taB character;
o #r will cause the remainder of the format string to be repeated for each plot function in the plot
list;
e #iinside a repeated string will print the value of the current element of the plot function list.
¢ See the example problems "export_format" and "export_history".

FRAME (X, Y, Wide, High)

Forces the plot frame to the specified coordinates, regardless of the size of the problem domain.
The plot frame will be forced to a 1:1 aspect ratio using the largest of the width and height values.
This allows the creation of consistently-sized plots in moving-mesh problems.

See "Samples | Moving_ Mesh | Piston.pde".

See also: ZOOM /208

GRAY

o Draws current plot with a 32-level gray scale instead of the default color palette.

INTEGRATE

e Causes a report of the integral under the plotted function.

e For CONTOUR and SURFACE plots, this is a volume integral (with Cartesian element dx*dy*1 or
cylindrical element 2*pi*r*dr*dz).

e For ELEVATIONS, it is a surface integral (with Cartesian element dI*1 and cylindrical element
2*pi*r*dl). (See also AREA_INTEGRATE, LINE_INTEGRATE).

e This integral differs from a REPORT(INTEGRAL(...)) in that this command will integrate on the
plot grid, while the REPORT will integrate on the computation grid.

e This modifier can be globally imposed by use of PLOTINTEGRATE in the SELECT section.

LEVELS =11, 12, I3.....
o Explicitly defines the contour levels for CONTOUR plots.

Problem Descriptor Reference : The Sections of a Descriptor 203

LINE_INTEGRATE

e Causes ELEVATIONS in cylindrical geometry to be integrated with dl element, rather than default
2*pi*r*dl element.
o See also: AREA_INTEGRATE [200)

LOG
LINLOG
LOGLIN
LOGLOG

¢ Changes the default linear scales used to those specified by the scaling command.
e LOG is the same as LINLOG, and specifies logarithmic scaling in the data coordinate.

<bc><ly><lz>

e Changes the default linear scales used to those specified by the scaling command.
e Each of <Ix>, <ly> and <lz> can be either LIN or LOG, and controls the scaling in the associated
dimension.

LOG (number)
...combinations as above

e Limits the number of decades of data displayed to number.
e This effect can also be achieved globally by the Selector LOGLIMIT.

MERGE

¢ Sends EXPORT output for all stages or plot times to a single output file.
o This is the default for TECPLOT output.
¢ This option can be set globally by SELECT PRINTMERGE.

MESH

e In SURFACE plots, causes the surface to be displayed as a hidden-line drawing of the meshed
surface.
e This display is more suitable on some hardcopy devices.

NOHEADER

e Deletes the problem-identification header from EXPORT output.

NOLINES

e Suppresses mesh lines in grid plot.

NOMERGE

¢ Sends EXPORT output for each stage or plot time to a separate output file.
o This is the default for EXPORT output.

NOMINMAX

e Deletes "0" and "x" marks at min and max values on contour plot.

NORM

204 FlexPDE 6 : Problem Descriptor Reference

e In VECTOR plots, causes all vectors to be drawn with the same length. Only the color identifies
different magnitudes.

NOTAGS

e Suppresses labelling tags on contour or elevation plot.
o This can be applied globally with SELECT NOTAGS.

NOTIPS

e Plots VECTORS as line segments without heads.
e The line segment will be centered on the reference point.

ON <control>

o Selects region, surface or layer restrictions of plot domain. See "Controlling the Plot Domain|2061".

PAINTED

¢ Fills areas between contour lines with color. (This is slower than conventional contour lines.)

PAINTMATERIALS
PAINTREGIONS

e Draw color-filled grid plot.
o These local flags are equivalent to and override the corresponding global flags set in the SELECT
section. They affect only the current plot.

PENWIDTH = n

e Sets the on-screen pen width for the current plot.

e nisaninteger (0,1,2,3,...) which specifies the width of the drawn lines, in thousandths of the pixel
width (O means thin).

e Seealso: Global Graphics Controls|1s2,

PNG
PNG (pixels)
PNG (pixels, penwidth)

¢ Selects automatic creation of a graphic export file in PNG format.

e pixels is the horizontal pixel count, which defaults to 1024 if omitted.

e penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the pixel width (O means thin).

o The export file name is the problem name with plot number and sequence number appended.

¢ The file name cannot be altered.

POINTS = n
POINTS = (nx, ny)
POINTS = (nx, ny, nz)

e Overrides the default plot grid size and uses n instead.

e Two and three dimensional exports will use n in all dimensions.

¢ For two-dimensional export commands, the two-dimensional grid can be explicitly controlled.
e For three-dimensional exports, the three-dimensional grid can be explicitly controlled.

Problem Descriptor Reference : The Sections of a Descriptor 205

PPM
PPM (pixels)
PPM (pixels, penwidth)

¢ Selects automatic creation of a graphic export file in PPM format.

e pixels is the horizontal pixel count, which defaults to 1024 if omitted.

e penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the pixel width (O means thin).

o The export file name is the problem name with plot number and sequence number appended.

¢ The file name cannot be altered.

PRINT

PRINT (n)

PRINT (nx, ny)
PRINT (nx, ny, nz)

e Equivalent to EXPORT, EXPORT(n), EXPORT(nx,ny) and EXPORT(nx,ny,nz), respectively.

PRINTONLY
e Supresses graphical output. Use with PRINT or EXPORT to create text output only.

RANGE (argl, arg2)

e Changes the dynamically set range used for the variable axis to a minimum value of argl and a
maximum of arg2.

e If the calculated value of the variable falls outside of the range argument, the range argument is
ignored and the dynamically calculated value is used.

e See also: FIXED RANGE 202

VIEWPOINT(X, Y, angle)

¢ With SURFACE plots, the VIEWPOINT modifier sets the viewing azimuth and perspective distance
and the viewing elevation angle.

VOL_INTEGRATE

e Causes CONTOURS and SURFACE plots in cylindrical geometry to be integrated with
2*pi*r*dr*dz element.

o This is the default, and is equivalent to INTEGRATE.

o See also: INTEGRATE 202, AREA_INTEGRATE/20}

XPM
XPM (pixels)
XPM (pixels, penwidth)

e Selects automatic creation of a graphic export file in XPM format.

e pixels is the horizontal pixel count, which defaults to 1024 if omitted.

e penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the pixel width (O means thin).

e The export file name is the problem name with plot number and sequence number appended.

o The file name cannot be altered.

206

FlexPDE 6 : Problem Descriptor Reference

ZOOM (X, Y, Wide, High)

¢ Expands (zooms) a selected area of the display or export, with (X,Y) defining the lower left hand
corner of the area and (Wide,High) defining the extent of the expanded area.

¢ In 3D cut planes, the X and Y coordinates refer to the horizontal and vertical dimensions in the cut
plane.

e See also: FRAME /202

ZOOM (X, Y, Z, Xsize, Ysize, Zsize)

e Expands (zooms) a selected volume of an export, with (X,Y,Z) defining the lowest corner of the
volume and (Xsize,Ysize,Zsize) defining the extent of the included volume.

3.3.15.3 Controlling the Plot Domain

"ON" selectors

The primary mechanism for controlling the domain over which plot data are constructed is the "ON"
statement, which has many forms:

ON "name"

ON REGION "name"

ON REGIONS "namel” , "name2" {, ... }

ON REGION number

ON REGIONS numberl , number2 {, ... }

ON GRID(Xposition,Yposition)

In three-dimensional problems, the following are also meaningful:
ON LAYER "name"
ON LAYERS "namel"”, "name2" {, ... }
ON LAYER number
ON LAYERS numberl , number2 {, ... }
ON SURFACE "name"
ON SURFACE number
ON equation

The first listed form selects a boundary path, region, layer or surface depending on the definition of the
"name". (It is actually redundant to specify SURFACE "name", etc, since the fact that a surface is
being specified should be clear from the "name" itself. Nevertheless, the forms are acceptable.)

The multiple REGIONS and LAYERS forms allow grouping REGIONS and LAYERS to select the
portion of the domain over which to display the plot.

In many cases, particularly in 3D, more than one "ON" clause can be used for a single plot, since each
"ON" clause adds a restriction to those already in effect. There is a direct correspondence between the
"ON" clauses of a plot statement and the arguments of the various INTEGRAL/136) operators, although
some of the allowable integral selections do not have valid corresponding plot options.

In two dimensional geometries, area plots which are not otherwise restricted are assumed to be taken
over the entire problem domain.

Contours, Surface Plots, Grid Plots and Vector Plots

Contours, "surfaces" (3D topographic displays), grid plots and vector plots must be taken on some kind
of two dimensional data surface, so in 3D problems these plot commands are incomplete without at
least one "ON" clause. This can be an extrusion-surface name, or a cut-plane equation (it cannot be a

Problem Descriptor Reference : The Sections of a Descriptor 207

projection-plane boundary path). For example, in a 3D problem,

CONTOUR(...) ON SURFACE 2

requests a contour plot of data evaluated on the second extrusion surface.
CONTOUR(...) ON SURFACE "top"

requests a contour plot of data evaluated on the extrusion surface named "top".
CONTOUR(...) ON X=Y

requests a contour plot of data evaluated on the cut plane where x=y.

In addition to a basic definition of the data surface, "ON" clauses may be used to restrict the display to
an arbitrary REGION or LAYER. In 2D, a REGION restriction will display only that part of the domain
which is in the stated region:

CONTOUR(...) ON REGION 2
requests a contour plot of data evaluated on REGION 2.

Similarly, in 3D,

CONTOUR(...) ON SURFACE 2 ON REGION 2
requests a contour plot of data evaluated on extrusion surface 2, restricted to that part of the
surface lying above REGION 2 of the baseplane projection.

CONTOUR(...) ON SURFACE 2 ON REGION 2 ON LAYER 3
requests a contour plot of data evaluated on extrusion surface 2, restricted to that part of the
surface lying above REGION 2 of the baseplane projection, and with the evaluation taken in
LAYER 3, which is assumed to be bounded by the selected surface.

Cut Planes in 3D

Contours, surface plots and vector plots can also be specified on cut planes by giving the general
formula of the cutting plane:

CONTOUR(...) ON X = expression
requests a contour plot of data evaluated on the Y-Z plane where X is the specified value.

Cut planes need not be simple coordinate planes:

CONTOUR(...) ON X=Y
requests a contour plot of data evaluated on the plane containing the z-axis and the 45 degrees
line in the XY plane.

The coordinates displayed in oblique cut planes have their origin at the point of closest approach to the

origin of the domain coordinates. The axes are chosen to be aligned with the nearest domain coordinate
axes.

Elevation Plots

Elevation plots can be specified by endpoints of a line:

ELEVATION(...) FROM (x1,y1) TO (x2,y2)
ELEVATION(...) FROM (x1,y1,z1) TO (x2,y2,z2)

208 FlexPDE 6 : Problem Descriptor Reference

The plot will be displayed on the straight line connecting the specified endpoints. These endpoints
might span only a small part of the problem domain, or they might exceed the domain dimensions
somewhat, in which case the plot line will be truncated to the interior portion.

In 2D geometry only, an elevation plot may be specified by the name of a boundary path, as in

ELEVATION(...) ON "outer_boundary"

These boundary-path elevations can be additionally restricted as to the region in which the evaluation is
to be made:

ELEVATIONC(...) ON "inner_boundary"” ON REGION "core"

This form requests that the evaluation of the plot function be made in the region named "core", with the
assumption that "core" is one of the regions adjoining the "inner_boundary" path.

Plots on Deformed Grids

In fixed-mesh problems with implied deformation, such as "Samples | Applications | Stress |
Bentbar.pde", CONTOUR, SURFACE and VECTOR plots can be displayed on the deformed domain
shape. The syntax combines the forms of CONTOUR and GRID plots:

CONTOUR(...) ON GRID(Xposition,Yposition)
See "Samples | Usage | Plotting | Plot_on_grid.pde"[513] for an example.

(This feature is new in version 6.03)

Sign of Vector Components

In many cases, boundary-path elevations present normal or tangential components of vectors. For
these applications, the sense of the direction is the same as the sense of the NATURAL boundary
condition:

The positive normal is outward from the evaluation region.

The positive tangent is counter-clockwise with respect to the evaluation region.

Plots of the normal components of vectors on extrusion surfaces in 3D follows the same rule:
The positive normal is outward from the evaluation region.

3.3.15.4 Reports

Any display specification can be followed by one or more of the following clauses to add report quantities
to the plot page:

REPORT expression
Adds to the bottom of a display the text 'text of expression=value of expression', where
expression is any valid expression, possibly including integrals. Multiple REPORT clauses may be
used. REPORT is especially useful for reporting boundary and area integrals and functions thereof.

REPORT expression AS 'string'
Alabeled REPORT of the form 'string=value_of expression'.

Problem Descriptor Reference : The Sections of a Descriptor 209

REPORT('string")
REPORT 'string’
Inserts 'string' into the REPORT sequence.

3.3.15.5 The ERROR Variable

The reserved word ERROR can be used to display the current state of spatial error estimates over the
mesh, as for example:

CONTOUR(ERROR)

3.3.15.6 Window Tiling

When multiple MONITORS or PLOTS are listed, FlexPDE displays each one in a separate window and
automatically adjusts the window sizes to tile all the windows on the screen. Individual windows cannot be

independently resized or iconized. Any plot window can be maximized by double-clicking, or by
right-clicking to bring up a menu.

In steady-state and eigenvalue problems, MONITORS are displayed during solution, and are
replaced by PLOTS on completion.

In time-dependent problems, MONITORS, PLOTS and HISTORIES are displayed at all times.

3.3.15.7 Monitors in Steady State Problems

In steady state problems the listed MONITORS are displayed after each regrid. In addition, after each
Newton-Raphson iteration of a nonlinear problem or after each residual iteration of a linear problem, if
sufficient time has elapsed since the last monitor display, an interim set of monitors will be displayed.

3.3.15.8 Monitors and Plots in Time Dependent Problems

In time dependent problems the display specifications must be preceded by a display-time declaration
statement. The display-time declaration statement may be either of the form

FOR CYCLE = number
in which case the displays will be refreshed every number time steps, or
FOR T = timel [timeset ...]

Where each timeset may be one of the following :

time2
BY delta TO time2

In this case the displays will be refreshed at times specified by the timeset values.

Any number of plot commands can follow a display-time declaration, and the specification will apply to all
of them. It is not necessary to give a display-time specification for each plot.

Multiple display time declaration statements can be used. When multiple display time statements are used

210 FlexPDE 6 : Problem Descriptor Reference

each applies to all subsequent display commands until a new time declaration is encountered or the
MONITORS or PLOTS section ends.

Examples:
"Samples | Applications | Heatflow | Float_Zone.pde" [337)

"Samples | Applications | Chemistry | Melting.pde" (2961
3.3.15.9 Hardcopy

A right-click on any plot window, whether tiled or maximized, will bring up a menu from which the plot
may be printed or exported (or rotated, if this is meaningful for the plot).

Text listings of plotted values can be written to disk by the plot modifier EXPORT (aka PRINT) in the
descriptor.

3.3.15.10 Graphics Export

Bitmaps
A right-click in any displayed plot window brings up a menu, one item of which is "Export". Clicking

this item brings up a dialog for exporting bitmap forms of the displayed plot. Current options are BMP,
PNG, PPM and XPM. See the "Getting Started" section for more information.
All these formats can also be selected automatically as graphic display modifiers 200,

Retained Graphics
All displays in the PLOTS section are written in compressed form to a disk file with the extension
".PG6".
These files may be redisplayed at a later time by use of the "View" menu item in the "File" menu. On
some systems, this may be accomplished simply by double-clicking the ".PG6" file in the system file
manager.
See the "Getting Started" section for more information.

Screen Grabs
Any display may also be pasted into other windows programs by using a screen capture facility such as
that provided with PaintShopPro by JASC (www.jasc.com).

Export Files
The plot types CDF, TABLE, TECPLOT and VTK [ie7ican be used to export data to other
applications for external processing. TRANSFER 1971 can be used to transfer data to another
FlexPDE run for postprocessing.
See Graphics Display and Data Export/te7] or Exporting Data to Other Applications /1061 for more
information.

Examples
See the following sample problems for examples of exporting plot data:
Samples | Usage |Plotting | Print_test.pde@%
Samples | Usage |Import-Export|Export.pde /477
Samples | Usage |Import-Export|Export_Format.pde[477]
Samples | Usage |Import-Export|Export_History.pde/+78)

3.3.15.11 Examples

See the sample problem Samples | Usage | Plotting | Plot_test.pde 5141 for examples of PLOTS and
MONITORS.

See the sample problem Samples | Usage | Plotting | Print_test.pde(s151 for examples of exporting plot data.

Problem Descriptor Reference : The Sections of a Descriptor 211

See the sample problem Samples | Usage | Import-Export | Export.pdel+771 for examples of exports without
display.

3.3.16 Histories

The HISTORIES section, which is optional, specifies values for which a time history is desired. While
multiple HISTORY statements can be listed they must all be of the form:

HISTORY (argl [,arg2,...])
HISTORY (argl [,arg2,...]) AT (X1,Y1)[(X2,Y2)...]

The coordinates specify locations in the problem at which the history is to be recorded. If no coordinate is
given, the arg must evaluate to a scalar.

The modifiers and reports available to PLOTS and MONITORS may also be applied to HISTORY
statements.

The display of HISTORIES is controlled by the AUTOHIST select switch, which defaults to ON. With the
default setting all HISTORIES are automatically refreshed and displayed with the update of any
MONITORS or PLOTS.

If desired, HISTORY statements can be included directly in the MONITORS section or PLOTS section.

Histories in Staged Problems

HISTORY statements may be used in STAGED problems as well as in time-dependent problems.
In this case, the default abscissa will be stage number. You can select a different value for the abscissa
quantity by appending the clause

VERSUS expression

In this case, the values of the given expression in the various stages will be used as the plot axis.

Windowing History Plots

HISTORY plots by default display the total time range of the problem run. Specific time ranges can be
specified in several ways. A global window specifier can be set in the SELECT section:

SELECT HISTORY_WINDOW = time
This command causes all histories to display only the most recent time interval of the data.

Individual HISTORY plots can be windowed by the two plot qualifier forms:

WINDOW = time selects a moving window containing the most recent time interval
WINDOW (timel, selects a fixed time range, plotting the time between time1 and time2
time2)

See the sample problem "Samples | Usage | Two_Histories.pde" 396 for an example.

212 FlexPDE 6 : Problem Descriptor Reference

3.3.17 End

3.4

All problem descriptors must have an END section.

With the exception of a numeric enabling key used in special demonstration files prepared by PDE
Solutions Inc., anything appearing after the reserved word end is ignored by FlexPDE and treated as a
comment.

Problem notes can be conveniently placed after the reserved word END.

Batch Processing
A special form of descriptor is used to specify a group of problems to be run in batch mode.

A single "section" introduced by the word BATCH identifies a descriptor as a batch control file. Following
this header, a sequence of names appears, each name enclosed in quote marks. Commas may optionally be
used to separate the names. Any number of names may appear on each line of the descriptor. Each name
is the name of a problem descriptor to be run. Names may include directory paths, which are assumed to
originate in the directory containing the batch descriptor. The ".pde" extension is not required, and will be
assumed if omitted. The list should be closed with an END statement.

Example:

BATCH
{ FlexPDE will accept either \ or / as a separator }
"misc\table", "steady_state\heat_flow\slider"
"steady_state/stress/3d_bimetal"

END

The entire problem list is examined immediately, and any syntax errors in the names are reported. All files
named in the list are located, and missing files are reported before any processing begins.

Each problem named in the list is run to completion in sequence. As the problems run, status information
is written to a log file in the directory containing the batch descriptor. This file has the same name as the
batch descriptor, with the extension ".log", and all problems in the list are summarized in this single file.
Graphical output from each problem is written as usual to a unique ".pg6" file in the directory with the
specific descriptor. After the run is completed, this graphic output may be reviewed by restarting FlexPDE
and using the VIEW/ 19" menu item.

Simple names may be listed without the quotes, but in this case embedded spaces, path separators,
reserved words and numeric initials will all cause error diagnostics.

An optional DELAY value may be set immediately following the BATCH identifier. This delay value
specifies the number of seconds to wait prior to starting the next problem in the sequence.

For example,

BATCH
DELAY = 3

END

Part

Electromagnetic
Applications

21

4 FlexPDE 6 : €Electromagnetic Applications

4
4.1

411

Electromagnetic Applications

Introduction

FlexPDE is a software tool for finding numerical solutions to systems of linear or non-linear partial
differential equations using the methods of finite element analysis. The systems may represent static
boundary value, time dependent initial/boundary value, or eigenvalue problems. Rather than addressing
the solution of specific equations related to a given area of application, FlexPDE provides a framework for
treating partial differential equation systems in general. It gives users a straightforward method of
defining the equations, domains and boundary conditions appropriate to their application. From this
description it creates a finite element solution process tailored to the problem. Within quite broad limits,
then, FlexPDE is able to construct a numerical solution to a wide range of applications, without itself
having any built-in knowledge of any of them.

The goal of this book is not to provide a discussion of the specific grammatical rules of writing scripts for
FlexPDE, nor to describe the operation of the graphical user interface. Those topics are covered in other
volumes of the FlexPDE documentation, the Getting Started guide, the User Guide tutorial, and the
Problem Descriptor Reference.

In this book we will address several fields of physics in which FlexPDE finds fruitful application, describing
the various problems, the mathematical statement of the partial differential equation system, and the
ultimate posing of the problem to FlexPDE. The volume is accompanied by the text of all the examples,
which the user can submit to FlexPDE to see the solution in progress or use as a foundation for problems
of his own.

This manual is emphatically not a compendium of the problems FlexPDE “knows how to solve”. Itis
rather a group of examples showing ways in which the power of FlexPDE can be applied to partial
differential equations systems in many fields. The true range of applicability of FlexPDE can be
demonstrated only by the full range of ingenuity of users with insight into the mathematics of their own
special fields.

Nor does this manual attempt to present textbook coverage of the theory of the topics addressed. The
range of applications addressable by FlexPDE would make such an attempt impossible, even if we were
capable of such an endeavor. Instead, we have presented enough of the theory of each topic to allow those
practitioners who are familiar with the subject to see how the material has been analyzed and presented to
FlexPDE. Users who are unfamiliar with the various fields of application should consult standard
textbooks to find the full theoretical development of the subjects.

Finite Element Methods

It is not our intent to provide an elaborate discussion of finite element methods. One goal of FlexPDE has
been to allow users in the various fields of science and engineering to begin reaping the benefits of applying
finite element analysis to their individual work without becoming programmers and numerical analysts.
There are hundreds of books in print detailing the method and its variants in many fields, and the
interested student can find a wealth of material to keep him busy. If we have been successful in our
endeavors, he won'’t have to.

Nevertheless, a familiarity with some of the concepts of finite element analysis can be of benefit in
understanding how FlexPDE works, and why it sometimes does not. Hence this brief overview.

41.2 Principles

Partial differential equations generally arise as a mathematical expression of some conservation principle
such as a conservation of energy, momentum or mass. Partial differential equations by their very nature
deal with continuous functions -- a derivative is the result of the limiting process of observing differences

Electromagnetic Applications : Introduction 215

at an infinitesimal scale. A temperature distribution in a material, for example, is assumed to vary
smoothly between one extreme and another, so that as we look ever more closely at the differences
between neighboring points, the values become ever closer until at “zero” separation, they are the same.

Computers, on the other hand, apply arithmetic operations to discrete numbers, of which only a limited
number can be stored or processed in finite time. A computer cannot analyze an infinitude of values. How
then can we use a computer to solve a real problem?

Many approaches have been devised for using computers to approximate the behavior of real systems. The
finite element method is one of them. It has achieved considerable success in its few decades of existence,
first in structural mechanics, and later in other fields. Part of its success lies in the fact that it approaches
the analysis in the framework of integrals over small patches of the total domain, thus enforcing aggregate
correctness even in the presence of microscopic error. The techniques applied are little dependent on
shapes of objects, and are therefore applicable in real problems of complex configuration.

The fundamental assumption is that no matter what the shape of a solution might be over the entire
domain of a problem, at some scale each local patch of the solution can be well approximated by a low-
order polynomial. This is closely related to the well-known Taylor series expansion, which expresses the
local behavior of a function in a few polynomial terms.

In a two-dimensional heat flow problem, for example, we assume that if we divide the domain up into a
large number of triangular patches, then in each patch the temperature can be well represented by, let us
say, paraboloidal surfaces. Stitching the patches together, we get a Harlequin surface that obeys the
differential limiting assumption of continuity for the solution value—but perhaps not for its derivatives.
The patchwork of triangles is referred to as the computation “mesh”, and the sample points at vertices or
elsewhere are referred to as the “nodes” of the mesh.

In three dimensions, the process is analogous, using a tetrahedral subdivision of the domain.
How do we determine the shape of the approximating patches?

1. Assign a sample value to each vertex of the triangular or tetrahedral subdivision of the domain. Then
each vertex value is shared by several triangles (tetrahedra).

2. Substitute the approximating functions into the partial differential equation.

3. Multiply the result by an importance-weighting function and integrate over the triangles surrounding
each vertex.

4. Solve for the vertex values which minimize the error in each integral.

This process, known as a “weighted residual” method, effectively converts the continuous PDE problem
into a discrete minimization problem on the vertex values. This is usually known as a “weak form” of the
equation, because it does not strictly enforce the PDE at all points of the domain, but is instead correct in
an integral sense relative to the triangular subdivision of the domain.

The locations and number of sample values is different for different interpolation systems. In FlexPDE, we
use either quadratic interpolation (with sample values at vertices and midsides of the triangular cells), or
cubic interpolation (with values at vertices and two points along each side). Other configurations are
possible, which gives rise to various “flavors” of finite element methods.

41.3 Boundary Conditions

A fundamental component of any partial differential equation system is the set of boundary conditions,
which alone make the solution unique. The boundary conditions are analogous to the integration
] Al
o J.xzdx:—x3+C
constants that arise in integral calculus. We say 3 ,where C is any constant. If we
differentiate the right hand side, we recover the integrand, regardless of the value of C.

216 FlexPDE 6 : Electromagnetic Applications

o’u B
In a similar way, to solve the equation 8x—2 B , we must integrate twice. The first integration gives
o,
ox ! , and the second gives Cix+C5 | These integration constants must be supplied by the boundary

conditions of the problem statement.

It is clear from this example that there are as many integration constants as there are nested
differentiations in the PDE. In the general case, these constants can be provided by a value at each end of
an interval, a value and a derivative at one end, etc. In practice, the most common usage is to provide
either a value or a derivative at each end of the domain interval. In two or three dimensions, a value or
derivative condition applied over the entire bounding curve or surface provides one condition at each end
of any coordinate integration path.

41.4 Integration by Parts and Natural Boundary Conditions

A fundamental technique applied by FlexPDE in treating the finite element equations is “integration by
parts”, which reduces the order of a derivative integrand, and also leads immediately to a formulation of
derivative boundary conditions for the PDE system.

In its usual form, integration by parts is given as

Jjudv:(uv) Z—ijdu

Application of integration by parts to a vector divergence in a two- or three-dimensional domain, for
example, results in the Divergence Theorem, given in 2D as

HAV.F dA = qf/ﬁ-ﬁ dl

This equation relates the integral inside the area to the flux crossing the outer boundary (72 referring to the
outward surface-normal unit vector).

As we shall see, the use of integration by parts has a wide impact on the way FlexPDE interprets and solves
PDE systems.

Applied to the weighted residual method, this process dictates the flux conservation characteristics of the
finite element approximation at boundaries between the triangular approximation cells, and also provides
a method for defining the interaction of the system with the outside world, by specifying the value of the
surface integrand.

The values of the surface integrands are the “Natural” boundary conditions of the PDE system, a term
which also arises in a similar context in variational calculus.

FlexPDE uses the term “Natural” boundary condition to specify the boundary flux terms arising from the
integration by parts of all second-order terms in the PDE system.

For example, in a heat equation, V-(—kV (/)) +85=0 , the divergence term will be integrated by parts,
resulting in

on N VA0 dd=d (-kVp)idl

The right hand side is the heat flux crossing the outer boundary, and the value of —kV @ must be provided

Electromagnetic Applications : Introduction 217

by the user in a Natural boundary condition statement (unless a value BC is applied instead).

At an interface between two materials, —k, (V(”)] *’l represents the heat energy leaving material 1 at a

point on the interface. Likewise, —k, (V 7)) »*"> represents the heat energy leaving material 2 at the same
point. Since the outward normal from material 1 is the negative of the outward normal from material 2,

the sum of the fluxes at the boundary is [kz (V(”)z —k (V (0)1 }n‘ , and this becomes the Natural
boundary condition at the interface. In this application, we want energy to be conserved, so that the two
flux terms must sum to zero. Thus the internal Natural BC is zero at the interface, and this is the default
value applied by FlexPDE.

Useful Integral Rules

(0.2) j I -[vy = J‘ '[(1f)dS (Gradient Theorem)
(0.3) I '[-[VeFdy = ﬁ*‘ (ﬁ-ﬁ)dS (Divergence Theorem)
o I} j @ VeFdV = q‘jﬁg @ (7 F)dS — m;(Vgp)-ﬁdV
(0.5) ”-[V< Fdy = CJ‘:L e ﬁ)dS (Curl Theorem)

41.5 Adaptive Mesh Refinement

We have said that at “some scale®, the solution can be adequately approximated by a set of low-order
polynomials. But it is not always obvious where the mesh must be dense and where a coarse mesh will
suffice. In order to address this issue, FlexPDE uses a method of “adaptive mesh refinement®. The
problem domain presented by the user is divided into a triangular mesh dictated by the feature sizes of the
domain and the input controls provided by the user. The problem is then constructed and solved, and the
cell integrals of the weighted residual method are crosschecked to estimate their accuracy. In locations
where the integrals are deemed to be of questionable accuracy, the triangles are subdivided to give a new
denser mesh, and the problem is solved again. This process continues until FlexPDE is satisfied that the
approximation is locally accurate to the tolerance assigned by the user. Acceptable local accuracy does not
necessarily guarantee absolute accuracy, however. Depending on how errors accumulate or cancel, the
global accuracy could be better or worse than the local accuracy condition implies.

41.6 Time Integration

The finite element method described above is most successful in treating boundary value problems. When
addressing initial value problems, while the finite element method could be applied (and sometimes is),
other techniques are frequently preferable. FlexPDE uses a variable-order implicit backward difference
method (BDM) as introduced by C.W. Gear. In most cases, second order gives the best tradeoff between
stability, smoothness and speed, and this is the default configuration for FlexPDE. This method fits a
quadratic in time to each nodal value, using two known values and one future (unknown) value. It then
solves the coupled equations for the array of nodal values at the new time. By looking backward one
additional step, it is possible to infer the size of the cubic term in a four-point expansion of the time
behavior of each nodal value. If these cubic contributions are large, the timestep is reduced, and if
extreme, the current step repeated.

218 FlexPDE 6 : Electromagnetic Applications

41.7 Summary

With this very cursory examination of finite element methods, we are ready to start applying FlexPDE to
the solution of PDE systems of interest in real scientific and engineering work.

Disclaimer

We have tried to make these notes as accurate as possible, but because we are not experts in all the fields
addressed, it is possible that errors have crept in. We invite readers to comment freely on the material
presented here, and to take us to task if we have erred.

4.2 Electrostatics

Perhaps the most important of all partial differential equations is the simple form

(1.1) Ve(kVp)+q =0

It is encountered in virtually all branches of science and engineering, and describes the diffusion of a
quantity ¢ with diffusivity k and volume source q. With k=1 it is referred to as Poisson’s equation,

V2(/) +¢ =0. With k=1 and q=0, it is referred to as Laplace’s equation, VZ(D =0,

If @ is electric potential, k is permittivity and q is charge density, then (1.1) is the electrostatic field
equation.

If @ is temperature, k is thermal conductivity and q is heat source, then (1.1) is the heat equation.

If we identify derivatives of ¢ with fluid velocities,

ox Oy

b

u

then (1.1) is the potential flow equation.

In most cases, we can identify —kV ¢ with the flux of some quantity such as heat, mass or a chemical. (1.1)
then says that the variation of the rate of transfer of the relevant quantity is equal to the local source (or
sink) of the quantity.

If we integrate the divergence term by parts (or equivalently, apply the divergence theorem), we get

w2 I} j Ve(kV @)dV = Cﬁs 7is(kV p)dS = - | H qdV

That is, the total interior source is equal to the net flow across the outer boundary.
In a FlexPDE script, the equation (1.1) is represented simply as

Div(k*grad(phi)) + =0

The boundary flow ne(kVp)is represented in FlexPDE by the Natural boundary condition,

Electromagnetic Applications : Electrostatics 219

4.2.1

Natural(phi) = <boundary flux>
The simplest form of the natural boundary condition is the insulating or “no flow“ boundary,

Natural(phi) = 0.

Electrostatic Fields in 2D

Let us as a first example construct the electrostatic field equation for an irregularly shaped block of high-
dielectric material suspended in a low-dielectric material between two charged plates.

First we must present a title:

title
'Electrostatic Potential'

Next, we must name the variables in our problem:

variables
V

We will need the value of the permittivity:

definitions
eps =1

The equation is as presented above, using the div and grad operators in place of Ve and V :

equations
div(eps*grad(V)) =0

The domain will consist of two regions; the bounding box containing the entire space of the problem, with
charged plates top and bottom:

boundaries
region 1

start (0,0)

value(V) =0 4
line to (1,0)

natural(V) = 0
line to (1,1)

value(V) = 100
line to (0,1)

natural(V) = 0 i
line to close

&

L J

and the imbedded dielectric:

220 FlexPDE 6 : Electromagnetic Applications

region 2

eps = 50

start (0.4,0.4)

line to (0.8,0.4)
to (0.8,0.8)

]

to close

Notice that we have used the insulating form of the natural boundary condition on the sides of the
bounding box, with specified potentials top (100) and bottom (0).

We have specified a permittivity of 50 in the imbedded region. (Since we are free to multiply through the
equation by the free-space permittivity o, we can interpret the value as relative permittivity or dielectric

constant.)

What will happen at the boundary between the dielectric and the air? If we apply equation (1.2) and
integrate around the dielectric body, we get

qf iie(kV @)dl = jL qdA =0

/

If we perform this integration just inside the boundary of the dielectric, we must use k = 50, whereas just
outside the boundary, we must use k = 1. Yet both integrals must yield the same result. It therefore

follows that the interface condition at the boundary of the dielectric is

ne(kV), .. =n(kVe)

inside outside

Since the electric field vectoris £ =V @ and the electric displacement is D=¢E , we have the condition

that the normal component of the electric displacement is continuous across the interface, as required by
Maxwell’s equations.

We want to see what is happening while the problem is being solved, so we add a monitor of the potential:

monitors
contour(V) as 'Potential’

At the end of the problem we would like to save as graphical output the computation mesh, a contour plot
of the potential, and a vector plot of the electric field:

plots
grid(x,y)
contour(V) as 'Potential’
vector(-dx(V),-dy(V)) as 'Electric Field'
The problem specification is complete, so we end the script:

end

Putting all these sections together, we have the complete script for the dielectric problem:

Electromagnetic Applications

: Electrostatics

See also "Samples | Applications | Electricity | Dielectric.pde" 30
See also "Samples | Applications | Electricity | Fieldmap.pde" |30

Descriptor 1.1: Dielectric.pde

title
'Electrostatic Potential'
variables
Y
definitions
eps =1
equations
div(eps*grad(V)) =0
boundaries
region 1
start (0,0)
value(V) =0 line to (1,0)
natural(V) = 0 line to (1,1)
value(V) = 100 line to (0,1)
natural(V) = 0 line to close
region 2
eps = 50
start (0.4,0.4)
line to (0.8,0.4) to (0.8,0.8)
to (0.6,0.8) to (0.6,0.6)
to (0.4,0.6) to close
monitors
contour(V) as 'Potential’
plots
grid(x,y)
contour(V) as 'Potential’
vector(-dx(V),-dy(V)) as 'Electric Field'
end

The output plots from running this script are as follows:

221

222 FlexPDE 6 : Electromagnetic Applications

Electrostatic Potential 17:52:13 12/19/08
. . . FlexPDE 6.00
1. r Xy
0.8+ r
0.6+ r
>
0.4+ r
0.2+ r
o0- L
) OE 04 Ob ds {
X
dielectric: Grid#2 P2 Nodes=1313 Cells=626 RMS Err= 9.5e-4
Electrostatic Potential 17:52:13 12/19/08
A) .) . . FlexPDE 6.00
1.4 = - Potential
- ¢ max 100.

e t: 100,
- 95.0

0.8 i
/_—_

r 90.0
0.6

0.4

5
o
0 QLUOUNONOTNOGH
S

Y
IwoToa®ha T TR TS
NN
oouon
Soooo

f
0.2 _____—*——‘______ f
e—

dielectric: Grid#2 P2 Nodes=1313 Cells=626 RMS Err= 9.5e-4
Integral= 52.85127

223

: Electrostatics

Electromagnetic Applications

17:52:13 12/19/08
FlexPDE 6.00

Electric Field

Electrostatic Potential

626 RMS Err= 9.5e-4

1313 Cells

dielectric: Grid#2 P2 Nodes

D

icsin 3

4.2.2 Electrostat

We can convert this example quite simply to a three dimensional calculation. The modifications that must

be made are:

e Qualify plot commands with the cut plane in which the plot is to be computed.

¢ Add an extrusion section listing the dividing surfaces.

¢ Provide boundary conditions for the end faces.

e Specify cartesiang coordinates.

In the following descriptor, we have divided the extrusion into three layers. The dielectric constant in the

first and third layer are left at the default of k

dielectric region only.

1, while layer 2 is given a dielectric constant of 50 in the

0 has been added, to show the resulting vertical cross

A contour plot of the potential in the plane x

section. The plots in the z

0.15 plane reproduce the plots shown above for the 2D case.

Modifications to the 2D descriptor are shown in red.

See also"Samples | Applications | Electricity | 3D_Dielectric.pde" (2981

: 3D Dielectric.pde

Descriptor 1.2

title

'Electrostatic Potential'

coordinates

cartesian3

variables

224 FlexPDE 6 : Electromagnetic Applications

\"

definitions
eps =1

equations
div(eps*grad(V)) = 0

extrusion
surface "bottom" z=0
surface "dielectric_bottom" z=0.1
layer "dielectric"”
surface "dielectric_top" z=0.2
surface "top" z=0.3

boundaries

surface "bottom" natural(V)=0
surface "top" natural(V)=0

region 1
start (0,0)
value(V) =0 line to (1,0)
natural(V) =0 line to (1,1)
value(V) = 100 line to (0,1)
natural(V) = 0 line to close

region 2
layer "dielectric” eps = 50
start (0.4,0.4)
line to (0.8,0.4) to (0.8,0.8)
to (0.6,0.8) to (0.6,0.6)
to (0.4,0.6) to close

monitors
contour(V) on z=0.15 as 'Potential'

plots
contour(V) on z=0.15 as 'Potential'
vector(-dx(V),-dy(V)) on z=0.15 as 'Electric Field'
contour(V) on x=0.5 as 'Potential’

end

The following potential plot on x=0 shows the vertical cross section of the extruded domain. Notice that

the potential pattern is not symmetric, due to the influence of the extended leg of the dielectric in the y
direction.

Electromagnetic Applications : Electrostatics 225

Electrostatic Potential 17:55:19 12/19/08
. FlexPDE 6.00

Potential
on x=0.5

0.6 r
max 100.
t:
s 95.0
r 90.0

0.4 r

@ —
Q

o —]
0 —
aon
oo
oo

0.2 b h ’ T -
ki

-
=
Joocoan QT
S
oo
coo

-0.4 T T T T T T

Y

3d_dielectric: Grid#4 P2 Nodes=7867 Cells=5242 RMS Err= 0.0017
Integral= 15.84897

4.2.3 Capacitance per Unit Length in 2D Geometry

— Submitted by J.B. Trenholme

This problem illustrates the calculation of capacitance per unit length in a 2D X-Y geometry extended
indefinitely in the Z direction. The capacitance is that between a conductor enclosed in a dielectric sheath
and a surrounding conductive enclosure. In addition to these elements, there is also another conductor
(also with a dielectric sheath) that is "free floating" so that it maintains zero net charge and assumes a
potential that is consistent with that uncharged state.

We use the potential | as the system variable, from which we can calculate the electric field E=VV and
displacement D=¢E , where ¢ is the local permittivity and may vary with position.

In steady state, in charge-free regions, Maxwell’s equation then becomes
VeD =Veo(gE)=Ve(eVV)=0

We impose value boundary conditions on }* at the surfaces of the two conductors, so that we do not have
to deal with regions that contain charge.

The metal in the floating conductor is "faked" with a fairly high permittivity, which has the effect of driving
the interior field and field energy to near zero. The imposition of (default) natural boundary conditions
then keeps the field normal to the surface of the conductor, as Maxwell requires. Thus we get a good
answer without having to solve for the charge on the floating conductor, which would be a real pain due to
its localization on the surface of the conductor.

The capacitance can be found in two ways. If we know the charge O on the conductor at fixed potential V',

226 FlexPDE 6 : Electromagnetic Applications

we solve

Q=CVyo get C=0/V Weknow V because it is imposed as a boundary condition, and we can find 0
from the fact that

q D=0

where the integral is taken over a surface enclosing a volume and O is the charge in the volume.

1
W==Cr* . ,
Alternatively, we can use the energy relation 2 toget C =2W /V°. We find the energy WV by

1~ -
—E.D

integrating the energy density 2 over the area of the problem.

See also "Samples | Applications | Electricity | Capacitance.pde"[298)

Descriptor 1.3: Capacitance.pde

TITLE 'Capacitance per Unit Length of 2D Geometry'
{ 17 Nov 2000 by John Trenholme }

SELECT
errlim 1le-4
thermal_colors on
plotintegrate off

VARIABLES
Y
DEFINITIONS
mm = 0.001 I meters per millimeter
Lx = 300 * mm I enclosing box dimensions
Ly = 150 * mm
b=0.7 I fractional radius of conductor
I position and size of cable at fixed potential:
x0 = 0.25 * Lx
y0 = 0.5 * Ly
rO = 15 * mm
x1 = 0.9 * Lx
yl =0.3 * Ly
ri =r0
epsr I relative permittivity
epsd = I epsr of cable dielectric
epsmetal = 1000 I fake metallic conductor
eps0 = 8.854e-12 I permittivity of free space
eps = epsr * eps0
vl =1 I fixed potential of the cable

| field energy density:
energyDensity = dot(eps * grad(v), grad(v))/2

Electromagnetic Applications : Electrostatics 227

EQUATIONS
div(eps *grad(v))=0

BOUNDARIES

region 1 'inside' epsr =1

start 'outer' (0, 0) value(v) =0

line to (Lx,0) to (Lx,Ly) to (0,Ly) to close
region 2 'diel0' epsr = epsd

start 'dieb0' (x0+r0, y0)

arc (center = x0, y0) angle = 360
region 3 'condQ' epsr=1

start 'conb0' (x0+b*r0Q, y0) value(v) = v0

arc (center = x0, y0) angle = 360
region 4 'diell' epsr = epsd

start 'diebl' (x1+rl1, y1)

arc (center = x1, y1) angle = 360
region 5 'condl' epsr = epsmetal

start 'conbl' (x1+b*rl, y1)

arc (center = x1, y1) angle = 360

PLOTS
contour(v) as 'Potential'
contour(v) as 'Potential Near Driven Conductor'
zoom(x0-1.1*r0, y0-1.1*r0, 2.2*r0, 2.2*r0)
contour(v) as 'Potential Near Floating Conductor'
zoom(x1-1.1*r1, y1-1.1*r1, 2.2%r1, 2.2%rl)
elevation(v) from (0,y0) to (x0, y0)
as 'Potential from Wall to Driven Conductor'
elevation(v) from (x0, y0) to (x1, y1)
as 'Potential from Driven to Floating Conductor'
vector(grad(v)) as 'Field'
contour(energyDensity) as 'Field Energy Density'
contour(energyDensity)
zoom(x1-1.2*%r1, y1-1.2*r1, 2.4*r1, 2.4*rl)
as 'Field Energy Density Near Floating Conductor'
elevation(energyDensity)
from (x1-2*r1, y1) to (x1+2*r1, y1)
as 'Field Energy Density Near Floating Conductor'
contour(epsr) paint on "inside"
as 'Definition of Inside'

SUMMARY

report sintegral(normal(eps*grad(v)),'conb0’, 'diel0")
as 'Driven charge'

report sintegral(normal(eps*grad(v)),'outer’,'inside")
as 'Outer charge'

report sintegral(normal(eps*grad(v)),'conbl’,'diell")
as 'Floating charge'

report sintegral(normal(eps*grad(v)),'conb0’,'diel0")/v0
as 'Capacitance (f/m)’

report integral(energyDensity, 'inside")
as 'Energy (J/m)'

228 FlexPDE 6 : Electromagnetic Applications

report 2 * integral(energyDensity, 'inside') / vO~2
as 'Capacitance (f/m)’

report 2 * integral(energyDensity)/(v0*
sintegral(normal(eps*grad(v)), 'conb0’, 'diel0"))
as 'cap_by_energy / cap_by_charge'

END

Capacitance per Unit Length of 2D Geometry

62 L L

20.4

0. 5. 10. 15. 20. 25. 30
X
capacitance: Grid#4 P2 Nodes=4365 Cells=2134 RMS Err=7.7e-5

Potential

17:58:32 12/19/08
FlexPDE 6.00

max
u:
t:
s

~3>=

JeoToQo @I TR

cooooo000000000
QOO =2=2NNWWEEOIOIO®D
ococvouoouomououl

Electromagnetic Applications : Electrostatics 229

Capacitance per Unit Length of 2D Geometry 17:58:32 12/19/08
62 L L L L f L L FlexPDE 6.00
X Potential Near Floating Conductor
6] /// g, \C\ [zoom(x1-1.4*r1,yT-11%r1,2.2*r1,2.2*1
. /\(J / max 1.62
X 1.60
/ 9 e\ w 1.55
v 1.50
5.5 / F u 1.45
] L ‘ 1.20
5 5 1.15
n: 1.10
m: 1.05
G
> 457 C 090
i 0.85
h: 0.80
g: 0.75
f: 0.70
4. r e: 0.65
/ d: 0.60
c: 0.55
/ / b: 0,50
a: 0.45
3.59 o min 0.43
/ Scale = E-2
"/
3.9 -
// %b P
0.255 0.26 0.265 0.27 0.275 0.28 0.285
X
capacitance: Grid#4 P2 Nodes=4365 Cells=2134 RMS Err=7.7e-5
Capacitance per Unit Length of 2D Geometry 17:58:32 12/19/08
6.2 L L L L L L L FlexPDE 6.00
Field Energy Density
max 6.15
20.4 + u: 6.00
t: 5.70
s 5.40
15.4 F 0 20
n 3.90
m: 3.60
B 3.30
‘ 5%
10. Food 2.40
.
g .
> f 1,50
e 1.20
5. @ L d 0.90
: c 0.60
b 0.30
a: 0.00
min 0.00
0. - Scale = E-9
5.1 -

10. 15. 20. 25. 30.

o
o

X e-2

capacitance: Grid#4 P2 Nodes=4365 Cells=2134 RMS Err=7.7e-5

230 FlexPDE 6 : Electromagnetic Applications

4.3

Capacitance per Unit Length of 2D Geometry 18:06:17 12/19/08
FlexPDE 6.00

SUMMARY

Driven charge= 2.942077e-11

Quter charge= -2.951385e-11

Floating charge= -2.146545e-15
Capacitance (f/m)= 2.942077e-11

Energy (J/m)= 1.384088e-11

Capacitance (f/m)= 2.768177e-11
cap_by_energy / cap_by_charge= 1.004412

capacitance: Grid#4 P2 Nodes=4365 Cells=2134 RMS Err=7.7e-5

Magnetostatics

From Maxwell’s equations in a steady-state form we have

(2.1) VxH=J
VeB=0
VeJ =0

where H isthe magnetic field intensity, B=pH igthe magnetic induction, # is the magnetic

permeability and J is the current density.

The conditions required by Maxwell’s equations at a material interface are

nx I:]l =nx flz
(2.2) B, =nB,

S

It is sometimes fruitful to use the magnetic field quantities directly as variables in a model. However, eq.
(2.2) shows that the tangential components of / are continuous across an interface, while the normal
components of B are continuous.

The finite element method used by FlexPDE has a single value of each variable on an interface, and
therefore requires that the quantities chosen for system variables must be continuous across the interface.

Electromagnetic Applications : Magnetostatics 231

In special cases, it may be possible to choose components of B or [which satisfy this continuity

requirement. We could, for example model B in a problem where material interfaces are normal to X .
In the general case, however, meeting the continuity requirements can be impossible.

It is common in Magnetostatics to use instead of the field quantities the magnetic vector potential A,
defined as

(2_3) B:VXA_

This definition automatically enforces Vo g = (. Furthermore, 4 can be shown to be continuous
everywhere in the domain, and can represent the conditions (2.2) correctly.

A can be derived from Ampere’s Law, and shown to be the integrated effect at each point of all the current
loops active in the domain. In this derivation, 4 will have components parallel to the components of J ,

so that it can be determined a priori which components of 4 must be represented.

Eq. (2.3) alone is not sufficient to uniquely define A. Ttmustbe supplemented by a definition of Ved to
be unique. This definition (the “gauge condition”) is usually taken to be Ved =0 (“Coulomb gauge”), a
definition consistent with the derivation of A from Ampere’s Law. Other definitions are useful in some
applications. It is not important what the qauge condition is; in all cases V x A , and therefore the field

quantities, remain the same.

Combining eq. (2.1) with (2.3) gives

(2.4) Vx((Vx?l)/,u):j

In cases with multiple materials, where # can take on different values, it is important to keep the 4
inside the curl operator, because it is the integration of this term by parts that gives the correct jump

conditions at the material interface.

Applying eq. (0.5) we have

“‘J;,VX((VX2)/;z)dV:H'[’VxﬁdV:(ﬁgﬁxfldS’

so that the Natural boundary condition defines 77X /1 on external boundaries, and 7 x / is assumed
continuous across internal boundaries, consistent with Maxwell’s equations.

(2.5)

4.3.1 A Magnet Coil in 2D Cylindrical Coordinates

As a first example, we will calculate the magnetic field created by a coil, using 2D cylindrical (r,z) geometry.

We will apply current only in the azimuthal direction, so the only nonzero component of 4 will be the

A

azimuthal component “*¢ . With only a single component normal to the computational plane, the gauge

232 FlexPDE 6 : Electromagnetic Applications

-~ 104 ’
Ved=—-"=0
condition is automatically satisfied, since r 0¢

In the descriptor which follows, note that we have chosen to align the cylindrical axis with the horizontal

plot axis. FlexPDE uses a right-hand coordinate system, so in this case positive J ¢ is outward from the
plot page.

See also "Samples | Applications | Magnetism | Magnet_Coil.pde" [350)

Descriptor 2.1: Magnet Coil.pde

Title 'AXI-SYMMETRIC MAGNETIC FIELD'

Coordinates
xcylinder(Z,R)

Variables
Aphi { azimuthal component of the vector potential }

Definitions
mu =1 { the permeability }
J=0 { global source term defaults to zero }
current = 10 { the source value in the coil }

Br = -dz(Aphi) { definitions for plots }
Bz = dr(r*Aphi)/r

Equations
Curl(curl(Aphi)/mu) =]

Boundaries

Region 1
start(-10,0)
value(Aphi) = 0 { specify A=0 along axis }
line to (10,0)
value(Aphi) =0 { Hx n = 0 on distant sphere }
arc(center=0,0) angle 180 to close

Region 2
J = current { redefine source value }
start (-0.25,1)
line to (0.25,1) to (0.25,1.5)

to (-0.25,1.5) to close

Monitors
contour(Bz) zoom(-2,0,4,4) as 'FLUX DENSITY B'
contour(Aphi) as 'Potential’

Plots
grid(z,r)
contour(Bz) as 'FLUX DENSITY B'
contour(Bz) zoom(-2,0,4,4) as 'FLUX DENSITY B'

Electromagnetic Applications : Magnetostatics 233

elevation(Aphi, dr(Aphi), Aphi/r, Bz)
from (0,0) to (0,1) as 'Near Axis'
vector(Bz,Br) as 'FLUX DENSITY B'
vector(Bz,Br) zoom(-2,0,4,4) as 'FLUX DENSITY B'
contour(Aphi) as 'MAGNETIC POTENTIAL'

contour(Aphi) zoom(-2,0,4,4) as 'MAGNETIC POTENTIAL'
surface(Aphi) as 'MAGNETIC POTENTIAL'
viewpoint (-1,1,30)

End

AXI-SYMMETRIC MAGNETIC FIELD 20:09:51 12/19/08
L L L L L L 1 L L FlexPDE 6.00

41 L FLUXDENSITY B

zoom(-2,0,4,4)

rgax 1.97

: 1.90

357 r B 1.80

A 1.70

z 1.60

y 1.50

2.5

0.5

6066066500000 0000000
OCOOENOOPRWN_2O=2NWAUIDNOOO
200000000000 OOOOO

JOTOQOPQ TR TIS0TO 0

magnet_coil: Grid#4 P2 Nodes=3369 Cells=1654 RMS Err= 5.4e-5
Vol_Integral= 5.297303

234

FlexPDE 6 : Electromagnetic Applications

AXI-SYMMETRIC MAGNETIC FIELD

20:07:29 12/19/08
FlexPDE 6.00
15.4

- MAGNETIC POTENTIAL

max 0.82
q: 0.80

p: 0.75
124 L o 0.70

P

T
JuToam eI T

5
coooooo0000000

Qoo NNWLWERUIU
Sodomonononon

magnet_coil: Grid#4 P2 Nodes=3369 Cells=1654 RMS Err= 5.4e-5
Vol_Integral= 62.80235

AXI-SYMMETRIC MAGNETIC FIELD

20:07:29 12/19/08
FlexPDE 6.00

MAGNETIC POTENTIAL
viewpoint(-0.9, 0.98, 30.)

max 0.82

0.85

ocoo
~ o
aoo

MAGNETIC POTENTIAL

=3
N
o

105

magnet_coil: Grid#4 P2 Nodes=3369 Cells=1654 RMS Err= 5.4e-5
Vol_Integral= 62.80235

4.3.2 Nonlinear Permeability in 2D

In the following 2D Cartesian example, a current-carrying copper coil is surrounded by a ferromagnetic

Electromagnetic Applications : Magnetostatics 235

core with an air gap. Current flows in the coil in the Z direction (out of the computation plane), and only
the Z component of the magnetic vector potential is nonzero. The Coulomb gauge condition is again

satisfied automatically. We assume a symmetry plane along the X-axis, and impose 4.=0 along the

remaining sides. The relative permeability is # = 1 in the air and the coil, while in the core it is given by
ILllT’lHX
1+C(VAY

with parameters giving a behavior similar to transformer steel.

/’l = + lumin

See also "Samples | Applications | Magnetism | Saturation.pde"|25

Descriptor 2.2: Saturation.pde

Title "A MAGNETOSTATIC PROBLEM"

Select
errlim = 1e-4

Variables
A
Definitions
mu =1 { default to air}
mu0 =1 { for saturation plot }

mu_max = 5000

mu_min = 200

mucore = mu_max/(1+0.05*grad(A)"2) + mu_min
S=0

current = 2

y0 =8

Equations
curl(curl(A)/mu) = S

Boundaries
Region 1 { The IRON core }
mu = mucore
muO0 = mu_max
start(0,0)
natural(A) = 0 line to (40,0)
value(A) = 0 line to (40,40) to (0,40) to close

Region 2 { The AIR gap }
mu =1
start (15,0)
line to (40,0) to (40,y0) to (32,y0)
arc (center=32,y0+2) to (30,y0+2)
line to (30,20) to (15,20) to close

Region 3 { The COIL }
S = current

236 FlexPDE 6 : Electromagnetic Applications

mu =1
start (15,12)
line to (30,12) to (30,20) to (15,20) to close

Monitors
contour(A)

Plots
grid(x,y)
vector(dy(A),-dx(A)) as "FLUX DENSITY B"
vector(dy(A)/mu, -dx(A)/mu) as "MAGNETIC FIELD H"
contour(A) as "Az MAGNETIC POTENTIAL"
surface(A) as "Az MAGNETIC POTENTIAL"
contour(mu0O/mu) painted as "Saturation: muQ/mu"

End

A MAGNETOSTATIC PROBLEM

40.7 Xy

20:20:51 12/19/08
FlexPDE 6.00

35.

30.

25.

> 20 Ai”%){ ‘,,
v‘ ’
PO

A
hmmw, 2

saturation: Grid#5 P2 Nodes=4069 Cells=1994 RMS Err= 9.7e-5

Electromagnetic Applications : Magnetostatics 237

A MAGNETOSTATIC PROBLEM 20:20:51 12/19/08
1 1 1 1 1 L 1 1 1 FlexPDE 6.00

401 L AzMAGNETIC POTENTIAL

max 553.
S

r: .
351 q: 480.
P

=]
o F
© N
o

30.

T
-3

W
@
[=%=}

25

3VTO0Q® QT TR [
©
o
o

" k
// N
/ /
T T T T T

0. 5. 10. 15. 20. 25. 30. 35. 40.
X

saturation: Grid#5 P2 Nodes=4069 Cells=1994 RMS Err= 9.7e-5
Integral= 380334.7

A MAGNETOSTATIC PROBLEM 20:20:51 12/19/08
1 1 1 1 1 . 1 1 L FlexPDE 6.00

- Saturation: mu0/mu

40.

max 247

35.

30.

25.

T T
0. 5. 10. 15. 20. 25. 30. 35. 40.
X

saturation: Grid#5 P2 Nodes=4069 C