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Appendix B: Analytic Description of the F-I Method

1.
Simultaneous Conditioning of Forward and Inverse Flow Models
In the interest of economy, this Appendix abstracts pertinent parts of the mathematical development of the new F-I modeling techniques from their original documentation in an LLNL report by Gelinas et al [1998].  The context of the original developments was for single-phase flow in saturated porous media for ground water remediation problems.  These techniques are being extended to F-I modeling of 2-D transient oil-water problems in this Phase I project, where the  primary emphasis is on proofs of concepts.  Analytic descriptions of the simultaneous F-I modeling techniques are presented here in their original notation pertaining to ground water aquifer problems.  Additionally detailed mathematical proofs and text will be found in journal articles when they become generally available. 

To emphasize basic concepts without significant loss of generality, steady-state ground water flow in a confined aquifer is modeled according to Darcy’s law over regional scales. The steady-state flow equation in three spatial dimensions (3-D) can be written as:
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where K is the hydraulic conductivity of the aquifer, (h is the hydraulic head gradient, and Q represents internal source and sink rates.  When the aquifer thickness is substantially smaller than the horizontal scale of the flow domain, the two-dimensional (2-D) flow equation,
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is a reasonable approximation for many aquifers. The transmissivity T is defined as the product of K and the aquifer thickness, b. (Unless otherwise noted, we exercise an understood convention in subsurface flow articles of using scalar notation for tensor quantities, e.g., K and T in this report.)  A site characterized by borehole measurements of hydraulic head and transmissivity is depicted schematically in Figure B1.  Hydraulic head and transmissivity are measured at discrete locations in the domain, Ω, and on its boundaries ∂Ω. The thickness of the aquifer is assumed to be known from measurements, as are pumping sources and sink rates in equations (B-1) and (B-2). Transmissivity data are usually more sparse than head data. Head measurements are usually much more accurate and localized at the borehole than are transmissivity values. For convenience in this initial work, Q is henceforth taken to be zero.



Figure B1:
Remediation site domain Ω with boundary ∂Ω, characterized by discrete borehole measurements of h and T.

The main task is to determine transmissivity distributions everywhere in a domain Ω, based on knowledge of measured hydraulic head and transmissivity at a discrete and finite subset of Ω (see Figure 1). The data is assumed to fairly conform with the model assumptions of a steady-state condition of an aquifer region with no internal ground water sources or sinks.  The case with non-zero sources/sinks is being developed in separate work.  Because the present work focuses on the mathematical model for the lowest-order (mean) equations of the moment hierarchy, the angle brackets for statistical averages in the text will henceforth be dropped for convenience.  Also, to facilitate subsequent discussions, the following definitions are introduced here, referring to Figure B1.

S
A finite set of 2-D Cartesian coordinates {(xi,yi), i = 1, 2, ...} at which measurements of hydraulic head are collected.  This ‘fixed point set’ becomes part of the nodal assembly in the finite element solution of the governing PDEs.

H
The set of measured head values on the set S.

H '
Is constructed from H by replacing all elements of H by those obtained from the somewhat smoothed solution hs in equation (B-9).

T
A set of transmissivities inferred from other well tests at some subset of S.  These will be referred to as transmissivity measurements.

Ω
A domain in the x-y plane over which one attempts to solve for h and T and whose boundary ∂Ω is a polygon consisting of those linear segments joining the ‘outermost’ points of the set S.

S'
All points of S which are not included in ∂Ω;  S' = S - ∂Ω.

Ω'
The entire domain excluding the set S;  Ω' = Ω - S.

Cn(Ω)
The class of all continuously differentiable functions in Ω up to order n.

Notice that it is always possible to construct Ω so that it is the convex hull of S. However, such smallest convex set containing the set S could be inadequate in specific instances that are described in forthcoming journal articles.

Starting from the mean flow equation for porous media with  physical sources and sinks of ground water (Q) equal to zero,
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and assuming that h(x,y) is known everywhere in Ω, then equation (B-3) can in principle be solved for T(x,y) as the unknown dependent variable.  This is the inverse solution process for T and is to be contrasted with the familiar usage of equation (B-3) to solve a forward problem for h when T is given everywhere in Ω.  Frequently, equation (B-3) is referred to as the inverse equation when the inverse solution process is being considered; its solution, T, is then referred to as the inverse solution.  Being a first order PDE in T, equation (B-3) can be solved by the method of characteristics provided that its coefficients satisfy some reasonable smoothness conditions.  Although the classic characteristic approach is not employed in this work; the latent wealth of information pertaining to the theory of first order partial differential equations [Courant and Hilbert, 1953; John, 1982] is nonetheless employed extensively and implicitly in the present work.

Sparsely measured head data (as well as sparse transmissivity data) present both the major problem and the reason for transmissivity parameter estimation.  Because of the lack of complete knowledge of h everywhere in Ω, it follows, that head gradients are not defined in all of Ω; and thus a PDE simply does not exist from which T can be determined.  An immediate way to proceed, then, is to find an interpolating surface that passes through all of the head datum points.  Because a vast number of such surfaces often exist, one finds that, unless further constraints are imposed, the inverse solution (if found) will often yield unphysical transmissivity distributions.  The cause of this difficulty is readily explained: most trial interpolating surfaces that pass through the measured head datum points form relative maxima or minima ‘spikes’ on the set S, thereby violating the maximum-principle for elliptic differential equations.  See, for example, Protter and Weinberger [1984].  The interpolating surfaces must therefore be selected judiciously—which is the starting point for the developments in this work.

For readers who may need a “refresher”, it is important to review briefly the method of characteristics for first-order quasi-linear differential equations.  In order to write equation (B-3) in standard form, one assumes, momentarily, that the head, h, belongs to the class of functions C2(Ω).  The theory of characteristics then leads one to solve the following set of autonomous ordinary differential equations (ODEs):
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where s is a parameter measured from some given ‘initial’ point (x0,y0,T0), and ∆ denotes the Laplacian operator.  The first two ODEs (B-4) and (B-5) easily map the geometry of characteristic curves (or more precisely, the projection of the characteristic curves on the x-y plane) based solely on knowledge of head gradients.  The third ODE determines T uniquely along the entire characteristic which passes through (x0,y0) and such that T=T0 at s=0.  In fact, if the parametric solutions: x=x(s,x0,y0), y=y(s,x0,y0) obtained from equations (B-4) and (B-5) are substituted into equation (B-6), the solution to equation (B-6) is obtained readily in the form
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which incidentally guarantees that T will always remain positive, as expected.  It is assumed in equation (B-7) that the functional form of (h is known at least along the characteristic curve through (x0,y0). Transmissivities would be completely determined everywhere in Ω once T is given values along an entire non-characteristic initial curve (, provided that all of the characteristic curves emanating from ( sweep the entire domain Ω. If not, one can only solve for T on the subdomain that is swept out by the characteristic curves.

When dealing with the reality of non-smooth h, several daunting problems and concerns must be addressed.  The first problem, the satisfactory resolution of head Laplacians from sparse data, is in practice intractable because the head gradients are often discontinuous on Ω; and the head Laplacian is therefore undefined on all of Ω.  A second concern is that only one transmissivity value is needed on a characteristic curve in order to determine all other transmissivity values along that curve uniquely.  If additional inconsistent values were to be assigned somehow on the same characteristic curve, as is frequently done in stochastic transmissivity parameterizations, zonation schemes, and history-matching techniques, fundamental ODE solution requirements for the inverse equation are contradicted and physical continuity is not respected in the inverse sense.

A third problem is one of managing logistics; i.e., the bookkeeping of all generated characteristic curves emanating from some finite set of points traversing  for the eventuality of constructing the integral surface containing these characteristic curves.  Thoughts concerning these problems motivated the present quest for more viable parameter estimation techniques—techniques that can solve simultaneous forward and inverse flow PDEs, augmented by spatial filtering PDEs for data smoothing, in a true physical continuum according to kinetic theory.

The process developed here for heading off some of the classic difficulties mentioned above is composed of four basic steps.  Each step can be described and verified separately before merging them finally into a simultaneous, iterative process for sparse, noisy data in field applications.  The basic steps are:

1.
Form a trial interpolating surface hr(x,y) in Ω such that, on the discrete subset S ' of Ω, hr is forced to take on the corresponding measured values in the set H.  The interpolator employed here is a variant of the flow equation.

2.
Introduce and solve an additional PDE for smoothing hr in Ω.  The amount of smoothing of spikes in hr at measurement points is controlled by user-selected parameters.  This produces spatially filtered distributions hs that can deviate from H on the set S ' by any preset amount.

3.
Introduce and solve two additional PDEs that produce smoothed head gradient components, u and v, from hs obtained above.  It is extremely important to smooth head gradients prior to using them as coefficients in the inverse equation.

4.
Solve a regularized variant of the inverse equation (B-3) using a spatially filtered head gradient (u,v) in lieu of (h.

The first step is a ‘rough’ interpolation of the hydraulic head data.  The key idea is to bring a stronger influence of physical dynamics to bear on the interpolation than is usually applied in geostatistical interpolation methods.  An obvious choice is to use a variant of the mean flow PDE, itself, as the interpolator.  Letting T be a constant average value (or any constant value), the interpolating equation is


(((T(hr) = 0.
(B-8)

It is important to note that equation (B-8) is to be satisfied in Ω', rather than in the entire domain Ω.  The solution hr is ‘pinned,’ or ‘clamped’, to the set H on the remaining set S'.  In other words, hr is constrained to both respect the values of measured head and to satisfy the flow equation everywhere else in Ω.  This is directly analogous to solving mechanical stress problems with fixed loads at given coordinates.  Galerkin numerical solution methods are especially well-suited for solving these types of PDEs because they can respect the data at fixed points and yield optimized solutions that minimize PDE residuals over the rest of the problem domain.  On ∂Ω, Dirichlet boundary conditions are assigned to hr.  Linear interpolation is expedient but other methods of assignment may be used when they are more appropriate.
This first trial interpolating surface is calculated in this work by employing a dynamic adaptive grid finite element code toolkit, FlexPDE, which enables the user to solve equation (B-8) in Ω', subject to the pinning constraints.  (This feature was implemented in our version of the FlexPDE toolkit by its author, R.G. Nelson, specifically for development of the present inverse techniques.  See the texts of Backstrom (1994, 1998) for not only specific information about using such advanced toolkits as PDEase and FlexPDE but also new modes of posing computational models with these emerging tools in order to respect and enforce essential mathematical requisites in complex physical problems.)

The solution hr in this step is expected to possess relative maxima or minima that may be associated with several possible origins.  First is the sweeping approximation of replacing T by its average value on Ω.  While this might seem to be the major cause for such extraneous behavior, it is seldom the case.  Other possible causes include: data errors or noise, ground water sources/sinks that were previously unknown, absence of a perfect steady-state in nature, and local/non-Darcy effects (equivalent sources).

The second step performs an additional smoothing process on hr over Ω in order to damp or completely diminish spurious spikes.  It is necessitated because complete clamping of hr to H on S' can create a corresponding set of local spikes, which cannot exist anywhere in Ω, in the absence of physical sources or sinks.  (When such spikes actually turn out to be previously unknown physical sources or sinks, the presently described techniques turn out to be useful ‘source-finders,’ which is another subject that will be considered as part of ‘data-mining’ in future work.)  Looking ahead to the next (third) step, much of the important information content from hydraulic head measurements, no matter how sparse or devoid of high spatial frequency information they may be, resides in the gradients and Laplacians of the head, as was indicated in previous discussion.  The objective in the second and third steps is to extract as much information as possible by performing spatial filtering that is commensurate with the spatial intervals between the measured data [Bracewell, 1986].  Such filtering is also required to produce a smoothed hs that effectively satisfies the maximum principle for elliptic differential equations.  The clamping imposed on hr is therefore relaxed at the measurement points by solving the following PDE for hs on Ω:
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The Laplacian operation in the first term of equation (B-9) is recognized to be a bandpass filter function [McGillem and Cooper, 1984].  It does not have a sharp cut-off at any spatial frequency; so some latitude can be exercised in Laplacian smoothing with this factor in mind.  The second term in equation (B-9) can be viewed as a penalty function that controls the amount of smoothing of hr through proper choices of the parameter (.  Clearly, very large ( yields an hs that hardly differs from hr; that is, very little smoothing is done.  And vice versa, as ( approaches zero, hs approaches a harmonic solution in Ω.  But too much smoothing is obviously undesirable when it loses (by aliasing) significant amounts of information about the set H on S '.  Criteria for the extent of smoothing in this step are discussed in technical journal submissions.  (Recall that the average transmissivity assumed in the first step is not the final distribution that is sought.)  The solution hs is then used to construct a new set H ' of smoothed heads on S ', and H ' replaces H in subsequent steps.

The rationale for step three is built on the fact that the gradient of hs, and not hs per se, is the critical determinant in solving for T in step four.  Because small deviations of hs from a correspondingly true head produce large deviations in calculated head gradient, this smoothing step is mandatory.  The principle applied in the third step is similar to that in step two.  Defining (u,v) to be the desired smoothed head gradients, relative to less-smooth gradients (∂hs/∂x,∂hs/∂y), the following two PDEs are introduced and solved for on Ω:
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The options used for assigning boundary conditions (BCs) for u and v on ∂Ω are straightforward and are specifically discussed in journal submissions.
The fourth step attempts to determine T based on knowledge of spatially filtered head gradient (u,v) obtained in step three.  As part of a procedure that deals mainly with solutions of boundary value problems (BVPs) in steps 1-3, it is both desirable and advantageous to recast the inverse equation so that a BVP can be prescribed here as well.  This is accomplished by solving a regularized version of equation (B-3) through the addition of the regularizing term ((T, for sufficiently small (,
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This modified equation (B-12) is in principle an elliptic equation.  But in practice it is essentially a hyperbolic PDE.  The solution to equation (B-12) can then be completely determined, provided that T is given along some non-characteristic curve ( in the closure of Ω and such that the continuum of characteristics emanating from ( span the entire domain Ω. For brevity, a ( curve that satisfies these conditions will be referred to as an admissible ( curve.  If no admissible ( curve exists for the entire domain Ω, then one must partition Ω into two or more subdomains, each of which possesses its own admissible ( curve.  Fortunately, in the absence of sources and sinks in ground water flow problems, the geometry of characteristic curves is usually simple enough (but not trivial!) that it only requires the specification of a single admissible ( curve.  No further specification of T along the remainder of ∂Ω is required.  Such a ‘no specification’ boundary condition is exacted by recycling integrands in all boundary integrals that are produced from integration by parts in the numerical solution process [Oden et al, 1986].  That is, whatever expression appears in a boundary integral, it is reused, as is, in forming the mass matrix of the Galerkin equations.

It appears, so far, that knowledge about the projection of the characteristic curves (or simply characteristics) on the x-y plane for equation (B-12) with ( = 0, enters in this analysis for the end-purpose of determining admissible curves (.  Such a purpose could just as well be accomplished quickly by graphically investigating the normalized spatially filtered head gradient (u/s, v/s), 

1/2 (i.e., a vector field plot).  Knowledge about the characteristics, and more importantly how stably and efficiently they are determined, actually serve a broader goal in this work. Consider, then, the solution ( of the following first order PDE:





(B-13)

and suppose ( is an admissible curve in Ω, which could be a part of ∂Ω.  For simplicity, let ( take on any monotonically increasing set of values along (, say for instance ( = s, s being some parameterization of ( such that 0 ( s ( 1 (see Figure B2).  One can conclude from the theory of characteristics that the continuum of curves {( = C, 0 ( C ( 1} is precisely the set of all characteristic curves for equation (B-13).  That is, if one can solve equation (B-13) ‘directly’ in Ω in lieu of actually solving the standard ODEs for the characteristic curves, namely,





(B-14)
the entire geometry of characteristics is then obtained, all at once, from the knowledge of (.  Such direct solution of equation (B-13) can be accomplished by regularization with the term , paralleling the previous discussion.  The essential BC required here is that which is given along (, namely ( = s; and ‘no specification’ BC is required along the remainder of ∂Ω.  The function ( should not be confused with the classical stream function, which is usually defined as a solution of the Cauchy-Reimann equations and is obtained as the solution of a harmonic equation with proper choices of BC on ∂Ω.  Classical stream line solutions obtained in this way are identical to ( only for constant T.




Figure B2:
Schematic representation of an admissible ( curve in a domain Ω.  Transmissivity values measured at (x0', y0') can be projected to the ( curve by procedures developed in journal article submissions.

Returning to equation (B-12), it is of interest to note its relationship to equation (B-13).  For simplicity assume that both u and v are differentiable. Equation (B-12) can then be written for ( = 0 as, 





(B-15)

 In the absence of the last term (which is essentially T(h), equation (B-15) is identical to equation (B-13) with ( replaced by T.  The point to be made here is that the behavior of the solution process in (B-13) is expected to reflect on how the solution process to (B-15) will develop.  In fact, it was found that it is often convenient to represent T in (B-12) as the product of two functions,
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where Tg is a general or generic solution to equation (B-12) with Tg = 1 on (; and ( is a particular solution to equation (B-13) with ( = T( along (.  It is clear from this specification that T = T( on (.  That the factorized form of T in equation (B-16) formally satisfies (B-12) is also straightforward to deduce.  One can further notice that (u,v) only needs to be continuous along ( in order for the representation (B-16) to make sense.  Also notice that, if ( is either a portion of the domain boundary ∂Ω or if it is an isocontour h(x,y) = constant, then no assumptions about the smoothness of (u,v) along ( are required.  The additional rationale for the T factorization will be addressed shortly.

The foregoing analysis of the four main steps was presented as sequential steps so that each succeeding step builds on the results of the preceding one, but not vice-versa.  The core algorithm presented in this work, however, consists of merging, with slight modification, the equations studied in these steps into a full-fledged system of coupled nonlinear equations.  The purpose of the sequential presentation was to: (i) better understand the motivations and rationale leading to the creation and execution of each step; (ii) derive a new set of head values H ' that are more compatible with prospective transmissivity distributions than H; and (iii) obtain a reasonably good starting set of trial values for the quartic {h, u, v, T}. 

The system of equations employed for the final determination of T is derived with few minor modifications from the four steps discussed previously.  The system solved in this final stage consists of four PDEs in four unknowns {h, u, v, T} expressed as:
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The main distinction between equations (B-17) and the previous individual steps is that equation (B-8) with constant average T in step 1 is replaced by equation (B-17a), with both T and h unknown.  A similar distinction holds between equation (B-17d) and equation (B-12).  Whereas equation (B-17d) treats T, u, and v as unknowns, equation (B-12) was solved only for T with u and v assumed known.  Notice that no further smoothing of h, itself, is performed here.  The smoothing of head gradients is however, retained.  Discussions related to boundary conditions in the previous steps carry over to this system of coupled equations, with one exception.  Namely, the set H in step one is replaced by the set H ' here.  Taken as a whole, the system of PDEs (B-17) is obviously nonlinear in the unknown variables {h, u, v, T}.  As such, it is important to start with good initial trial estimates according to the procedures developed in this work for starting the Newton-Raphson linearization process employed in the numerical PDE solver.

As discussed previously for equation (B-16), one can factorize T as T =(•Tg and solve the system (B-17) with Tg in place of T, obtaining solutions for u, v, and Tg. One can then obtain ( by solving separately, the following regularized PDE: 
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The system (B-17) with T replaced by Tg is devoid of any particular assignment of transmissivity data along (.  (Recall that Tg = 1 along ( under this factorization.)  The system (B-17) therefore needs to be solved only once; and many different possible realizations of T along ( can then be tested quickly by solving the simpler, single equation (B-18).  The facility of Tg = 1 on ( implies that a reasonable initial guess for the Newton-Raphson linearization could be taken as Tg = 1 everywhere in Ω.  On the other hand, an assignment of highly varying T along ( when solving the original unfactorized T can lead to instabilities and outright divergence of the numerical solution process.

Undersampling Effects
The primary challenge of inverse modeling is to deal with the daunting problems associated with determining transmissivity realizations (images) between boreholes from sparsely sampled data, so that the realizations obtained will agree as closely as possible with the actual spatial distribution that exists in nature.  The realizations sought must respect all applicable principles of mathematics, physics, and signal processing.  For testing ground-truth notice that, if an inverse solution algorithm is somehow given a set of practically perfect (very highly-resolved) discrete data for transmissivity and head from a well-posed problem, the algorithm has no way of knowing that the problem was abstracted from one with a unique solution.  So a first test of any inverse method/algorithm is that it should produce a close semblance of the unique transmissivity distribution when such a data set is provided.  That is the type of test used here to establish a connection with ground-truth.  Once that is established, the effects of sparse data sampling can be examined gainfully.

Highly accurate adaptive-grid PDE tools enable one to construct ground-truth data sets for well-posed problems that do not have analytic solutions.  The following such problem is constructed here with discontinuous transmissivity: A domain Ω consisting of the square (-4 ( x ( 4) by (-4 ( y (4) is selected.  As shown in Figure B-3, Ω is partitioned into 64 equal blocks, or zones, of unit squares; and T is assigned a constant value on each of these 64 zones.  Notice that the constant zonal values of T alternate several times between increasing and decreasing, geometrically, giving rise to a haphazard staircase-like shape with a range of T between 1 and about 75.  Given this distribution for transmissivity in Ω, the following boundary value problem (BVP) for h is solved numerically: (((T(h) = 0 in Ω, along with the BCs h = 100 on the side x = -4; h = 10 on the opposite side, x = 4, and zero flux condition along the remaining sides y = (4.  The solution to this BVP was obtained to a very high accuracy, using the PDEase toolkit.  The solution obtained for the pair (T, h) is shown in Figure B-4 as head isocontours.  To verify ground-truth of the inverse solution, a very dense set of discretely sampled datum points was then abstracted from the head isocontours in Figure B-4, along with a dense set of discretely sampled transmissivity datum points only on the Cauchy line, taken to be along the vertical line at x = -4.  Provided with these sets of dense datum points, the F-I algorithms described previously in this Appendix calculated a transmissivity solution that was indistinguishable from the original distribution shown in Figure B-3.  With ground-truth established, the effects of data undersampling are examined next.



Figure B-3:
Plot of synthetic transmissivity used to generate the ground-truth head solution.




Figure B-4:
Isocontour plot of the ground-truth solution h(x,y).  The contours a, b..., q correspond to h = 15, 20, ..., 95 respectively.

 Sixty-four ‘measured’ h data are given only at the center co-ordinates of each of the 64 blocks shown in Figure B-4, and T is given along the side x = -4; (-4 ( y ( 4).  Exact transmissivity values were assigned along ( in the calculation of the particular solution ( equation (B-17).  Using the factorized methods described previously, the discontinuous transmissivity features of the ‘true’ solution (Figure B-3) are resolved as shown in Figure B-5 for Tg and in Figure B-6 for Tcalc.  As expected, sharp discontinuities in the true T distribution of Figure B-3 are smoothed by the undersampling.  The general features of the transmissivity distribution have however been reproduced with surprisingly good fidelity from the information contained in such few observation points, in our opinion.  The Maximum Relative Error Norm (MREN) ( 245%, and the Absolute Relative Error (ARE) ( 19%. Maximum errors, as seen in Figure B-7, occur at the T discontinuities, as anticipated.  It is here that adaptive grid PDE solvers apparently demonstrate their worth for calculating gradients with the maximum fidelity that is compatible with supporting measured data.




Figure B-5:
Isocontour of Tg  for Tg = 1 along (.



Figure B-6:
Tcalc surface plot.  This estimated transmissivity has the overall shape of the ‘true’ solution shown in Figure B-3.




Figure B-7:
Plot of MREN for the undersampled h and T.  Maximum  error occurs along horizontal lines between large changes in T and does not exceed 245%. The ARE is <19%.
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