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1 Getting Started

This section presents an overview of how to install and interact with FlexPDE on your computer.  It does
not address the issues of how to pose a partial differential equations problem in the scripting language of
FlexPDE.  These issues are addressed in the sections User Guide  and Problem Descriptor Reference

.

1.1 Installation

The general principles of installation for FlexPDE are the same across all platforms: the set of installation
files must be extracted from the compressed distribution archive and placed in the system file hierarchy.
The details of how this is done vary with computer platform.  

There are two media options for FlexPDE installation: 

Installation from Internet download

Browse www.pdesolutions.com to the download page. Click the file name of the desired version,
and store the downloaded file at a convenient place in your file system.  For more information, click
the "Installation Guide" link next to the version download you have chosen.

Installation from CDROM

The optional CDROM has an installation page that is organized in the same fashion as the website
download page. Open the main index page and browse to the "Installation" page. Click the file name
of the desired version, and run the file (or store the downloaded file at a convenient place in your file
system then run it).  For more information, click the "Installation Guide" link next to the version
download you have chosen.

In addition to the "FlexPDE7" application folder, the installer will create a "FlexPDE7user" folder
containing a duplicate copy of the sample scripts and the FlexPDE user settings file ("flexpde7.ini"). On
Windows this will be in the user's "Documents" folder.

1.2 Starting FlexPDE

Windows

The FlexPDE installation program will place an icon on your desktop, as well as an entry in the Start
menu.  You can start FlexPDE by double-clicking the desktop icon, or single-clicking the Start menu
entry.  Alternatively, you can use the File Manager to navigate to the folder where FlexPDE was
installed, and then double-click on the file "FlexPDE7.exe" (the default installation location is "C:
\Program Files\FlexPDE7).

44
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The installation program will also create associations of the ".pde" and ".pg7" extensions with the
installed FlexPDE executable, so that FlexPDE can be started by double-clicking any file of these
types in the File Manager.

Mac OS X

FlexPDE is installed in the "Applications/FlexPDE7" folder by default, but you can choose to install it
in any location you wish.  Navigate to this folder and open the FlexPDE7 application.  

The installation program will also create associations of the ".pde" and ".pg7" extensions with the
installed FlexPDE application, so that FlexPDE can be started by double-clicking any file of these
types in the Finder.

Linux

FlexPDE is installed in the directory you choose when extracting the archive.  You can start
FlexPDE by typing a command line in a console window, or from the file manager by navigating to
the installation directory and opening the FlexPDE7 application.  

Associations of the ".pde" and ".pg7" extensions with FlexPDE7 can be made manually using the
standard procedures of the operating system.  You can also place a FlexPDE icon on your desktop
using the "fpde7icon.png" file included in the installation files.

The About Banner and Window Caption

When you start FlexPDE (or go to the "About FlexPDE"  menu), you will see a screen like this:6
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The About banner reports the version number, license class, OS platform, and date of creation of the
running version of FlexPDE.

The main window caption bar will also report the license class, version, OS platform, and license level
(1D, 2D, or 3D, depending on the current licensing level of the running program*).  Temporary licenses
will display the time remaining in the license.

The main window presents a standard menu bar and a tool bar, most items of which at this point are
disabled, unless you have opened FlexPDE with a file-click.  

* Note: Software and Internet keys are read at invocation of FlexPDE.  Dongles are merely checked for
their presence but a license is not acquired until a problem is run. At that time a license of the required
level, 1D, 2D or 3D will be requested and displayed in FlexPDE's About banner and title bar.

1.3 FlexPDE Working Files

FlexPDE works with an assortment of files differing in the file extension. All have the structure <problem
name><extension>, where <problem name> is the unique identifier for the model being run. The meaning
of the most commonly used extensions are described below. Other file extensions can be created and
used in other circumstances as described later in the documentation.

Input

.PDE

FlexPDE reads a model description from a script file with the extension ".pde". This file is created by
the user and contains the full description of the model to be run. The name of this file establishes the
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<problem name> used by the other files. This is an ordinary text file and can be opened with any text
editor. This file should not be modified by formatting editors like Word as they may insert illegal
characters.

Output

.PG7

FlexPDE writes primary graphical output into a file with the extension ".pg7". This file can be viewed
later and used to print or export graphical data to various other formats. The format of this file is
unique to FlexPDE and cannot be read by other programs.

_LOG.TXT

FlexPDE writes a summary of the progress of each run into a text file with the extension "_log.txt".
This file contains information about time steps, error estimates, memory use and other data. This is an
ordinary text file and can be opened with any text editor. In previous versions this file had the
extension ".log".

_DEBUG.TXT

FlexPDE writes a more elaborate summary of each run into a file with the extension "_debug.txt". 
This file is sometimes useful in determining errors or locating trouble spots in the domain. This is an
ordinary text file and can be opened with any text editor. In previous versions this file had the
extension ".dbg".

_EIG.TXT

In eigenvalue problems, FlexPDE writes a summary of final system eigenvalues into a file with the
extension "_eig.txt". This is an ordinary text file and can be opened with any text editor. In previous
versions this file had the extension ".eig".

_INITIALMESH.XFR

If requested in the Preferences General Settings  tab, FlexPDE will automatically export a transfer
file of the initial mesh into a file with the extension "_initialmesh.xfr" and reload this file when possible
to save time creating the initial grid.

29
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_RESTART.XFR

If requested in the Preferences General Settings  tab, when FlexPDE completes a problem it will
automatically export a RESTART  transfer file with all variables into a file with the extension
"_restart.xfr". This file can be used for post-processing of the solution data when needed.

Note: By default Windows hides the file name extensions, relying on distinctive icons to indicate file
type. Windows can be configured to show file extensions and we encourage users to do this. FlexPDE
has unique icons for ".pde" and ".pg7" files, but not for the other files.

1.4 The Main Menu Bar

The items of the main menu present many of the conventional functions of graphical applications.  The
availability and precise meaning of these menu items depends on the current state of processing of the
problem.  We summarize the menu items here, and describe them in more detail in the following sections.

File
The "File" menu item allows you to begin operation by opening a problem descriptor file, importing a
DXF file, importing an OBJ file, or viewing previously stored graphical output from a FlexPDE run. 
It also allows you to save your work or exit the application. These operations are performed using
standard dialogs of the computer operating system. (See "The File Menu" )

Controls
This menu contains an assortment of functions that may be performed during the generation and
running of a problem descriptor, such as running the script or switching between edit and plot modes.
 (See "The Controls Menu" )

View
When a stored FlexPDE graphics file has been opened, the View menu item will present a menu of
options for controlling the display of the stored images. (See "Viewing Saved Graphic Files" )

Stop
While a problem is being run, the Stop menu item will display a selection of termination strategies of
various levels of urgency.  (See "The Stop Menu" )

29
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Edit
When a descriptor is being edited, this menu provides standard editing commands. (See "Editing
Descriptor Files" )

Help
The Help menu contains five items as shown below: 
 

On Windows, the "Help" sub-item will initiate the help system. On Mac and Linux, you must
manually initiate your browser and direct it to "Help | Html | Index.html" in the FlexPDE installation
directory.

The "Preferences" sub-item allows you to inspect or modify the various FlexPDE preferences. 
(See "Preferences Window" )

The "Register FlexPDE" sub-item brings you to the License Registration Preferences tab and
allows you to inspect or modify the FlexPDE license registration.  (See "License Registration Tab"

)

The "Read License Agreement" sub-item displays the End-User License Agreement.

The "About FlexPDE" sub-item redisplays the About banner . Note that on Mac this item
appears in the FlexPDE "Application" menu.

1.4.1 The File Menu

The File Menu allows the creation of new files, opening existing files, saving and closing active problems,
importing DXF and OBJ files, and viewing saved graphics:

14
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The menu items have the following functions:

New Script
Use this menu item to create a new problem descriptor file (or "script").  FlexPDE will initialize the
descriptor with the most common section headings.  In most cases, it will be more convenient to
create a new descriptor by editing an existing one which is close in function to the new problem.
There are many starting scripts in the Samples folder.

Open File
This menu item can be used to open an existing descriptor file (either to modify it or to run the
problem), to open a stored graphics file for viewing, or to open a DXF or OBJ file for import.  A
standard Open_File dialog will appear.  Navigate to the folder which contains the descriptor you
wish to open.  For example, navigating to the standard samples folder "Samples | Usage |
3D_domains"  will display the following screen:
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(If your system is configured to hide file extensions, you will not see the ".pde" part of the file names,
but you can still recognize the FlexPDE icon.)

The default display shows script files (.pde extension).  You can select other file types using the
dropdown list.  (On Macintosh or Linux, the selection of alternate file types is slightly different, but
follows the customary methods for the operating system.) Double-click on the file of your choice, or
single-click and click Open. A new tab will be displayed, showing the name of the selected problem
file.  You can switch between tabs at will. You can open as many descriptors as you wish, and any
number of them can be running at the same time. Files can also be opened by drag-and-dropping
them onto the running FlexPDE application. See the following section "Editing Descriptor Files"
for more information on editing the open file.

Open Recent
This dynamically updated sub menu will present the last 20 files opened by FlexPDE. Selecting one
will cause that file to be opened as if it were selected in the open dialog or it was drag-and-dropped
onto the FlexPDE window.

Save Script
Use this menu item to save a descriptor which you have modified. The currently displayed file is
saved in place of the original file.  This function is automatically activated when a problem is run.

14
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Save As
Use this menu item to save to a descriptor to a new file name. If you have modified it, the original
source file will remain unchanged.

Close
Use this menu item to remove the currently displayed problem and disconnect from the associated
files.  

Print Script
Use this menu item to print a copy of the current script.  

Print Preview
Use this menu item to preview the printing of the current script.  

Print Setup
Use this menu item to set page information for script printing. 

Import
Use this menu item to import descriptors from other formats.  The DXF option will import a
descriptor from AutoCad version R14.  See the Technical Note "Importing DXF Files"  for more
information.  The OBJ option will create a descriptor to load the selected OBJ mesh file. See the
Technical Note "Importing OBJ Files"  for more information. (These functions are the same as
"Open File" with the DXF or OBJ file type selected.)

View
Use this menu item to open a file of saved graphical output from a FlexPDE problem which was run
and completed at an earlier time.  A standard Open_File dialog will appear.  Navigate the folder
containing the desired ".pg7" file.  Double-click on the file of your choice, or single-click and click
Open.  See the following section "Viewing Saved Graphics Files"  for more information.  You may
View more than one saved problem, and you may open files for viewing while other descriptors are
open, but you should not open the same problem for simultaneous viewing and running, since file
access conflicts may occur. (This function is the same as "Open File" with the "Graphics" file type
selected.)

Exit
Click here to terminate your FlexPDE session.  All open descriptors and Views will be closed.  If
changes have been made and not saved, you will be prompted.

1.4.2 The Controls Menu

The Controls menu presents several optional functions for processing descriptors.

284
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FlexPDE has two different operating modes, Edit and Plot.  When in edit mode, the text of the current
descriptor is displayed for editing.  When in Plot mode, graphics are displayed, either the monitors and
plots being constructed as a problem runs, or the final state of plots when a run is completed.

Domain Review
This is a modified form of the "Run" item.  When FlexPDE is in Edit mode, the Domain Review menu
item will begin processing the displayed problem descriptor, halting at various stages of the mesh
generation to display the current state of the mesh construction.  This is an aid to constructing
problem domains.  (See topic "Domain Review"  below.)

Run Script
When FlexPDE is in Edit mode, the Run Script menu item will begin processing of the displayed
problem descriptor.  Execution will proceed without interruption through the mesh generation,
execution and graphic display phases.  (See topic "While the Problem Runs"  below.)

Show Editor
When a problem is in Plot mode with graphics being displayed, the Show Editor menu item will enter
Edit mode and display the current problem text. (See topic "Editing Scripts"  below.)  If the

problem is stopped or has not yet been run, the tab will show the  icon.  If the problem is running
while the editor is displayed, the  icon will display on the problem tab.  

Show Plots
When a problem is in the Edit mode, the Show Plots menu item will switch to Plot mode and display
the current state of the problem graphics.  (See topic "While the Problem Runs"  below.)

Stop Batch
When a batch script is running, the Stop Batch menu item will stop the batch after the currently
running script finishes. This is particularly important when each individual problem in the batch runs
quickly and the user cannot intercept the Stop button of the currently running script. (See topic 
"Batch Processing" .)

16
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1.4.3 The Stop Menu

When a problem is running, it is sometimes necessary to request an abnormal termination of the solution
process.  This may be because the user has discovered an error in his problem setup and wishes to
modify it and restart, or because the solution is satisfactory for his needs and additional computation
would be unnecessary.

The Stop menu provides several ways to do this, with the most imperative controls at the top,
descending to less immediate terminations:

The contents of this menu will depend on the type of problem that is being run. Below are the most
common.

Stop Now!
This is a panic stop that causes processing to be interrupted as soon as possible.  No attempt is
made to complete processing or write output.  You will be given a chance to change your mind:

If you click "No", the "Stop Now!" will be ignored.

Stop Solver
The current iteration phase will be terminated, and the processing will be completed as if
convergence had been achieved.  Final plots will be written, and FlexPDE will halt in Plot mode.
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Finish Modes
Only available in eigenvalue  problems. Halt after the last eigenvalue for the current iteration has
been completed.

Finish Iteration
At the conclusion of the current iteration phase, the processing will be completed as if convergence
had been achieved.  Final plots will be written, and FlexPDE will halt in Plot mode.

Finish Grid
Processing will continue until convergence requirements have been met for the current mesh.  No
additional adaptive mesh refinement will be attempted, and the problem will terminate as if final
convergence had been achieved.  Final plots will be written, and FlexPDE will halt in Plot mode.

Finish Stage
In a "Staged"  problem (q.v.), the current stage will be completed, including any necessary mesh
refinement.  Final plots will be written for the current stage, but no more stages will be begun. 
FlexPDE will halt in Plot mode.

Finish Timestep
Only available in time dependent  problems. Processing will continue for the current timestep, then
calculation will end as if the final time had been reached.

Pause
FlexPDE will stop processing and go into an idle state waiting for a mouse click response to the
displayed dialog:

"Continue" will resume processing at the point where it was interrupted.  "Edit" will terminate
processing as if "Stop Now!" had been clicked.  This function can be used to temporarily free
computer resources for a more important task without terminating the FlexPDE run.

75
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1.5 The Tool Bar

The buttons in the tool bar replicate some of the common entries in the various menus:

Icon Function from Menu

New Script File
Open Script File
Save Script File
Print Script Edit
Domain Review Controls
Run Script Controls
Stop Menu Stop
Show Editor Controls
Show Plots Controls

The tool bar icons also appear on the menu bar entries with corresponding function.

1.6 Editing Descriptor Files

A FlexPDE problem descriptor file is a complete description of the PDE modeling problem.  It describes
the system of partial differential equations, the parameters and boundary conditions used in the solution,
the domain of the problem, and the graphical output to generate.  See the section "User Guide " for a
tutorial on the use of FlexPDE problem descriptors. See the section "Problem Descriptor Reference "
for a complete description of the format and content of the descriptor file.

44
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You can open a descriptor file in either of two ways: 1) by running FlexPDE from the desktop icon or
from your file manager program, and then following the "File|Open" menu sequence; or 2) if an
association of FlexPDE with the ".pde" extension has been made, either automatically in Windows or
manually in other operating systems, you can double-click on the .pde file in your file manager.  In either
case, the descriptor file will be opened, a new tab will be created, and an edit window will appear.

For example, suppose we follow the "Open" sequence to the "Samples | Usage | 3D_domains" folder
and select "3d_void.pde".  The newly opened problem file will be recorded in a tab along the top of the
window, allowing it to be selected if a number of scripts are open simultaneously.

The Edit window appears as follows:

This is a standard editing window, showing the contents of the selected descriptor.  You can scroll and
edit in the usual way.  FlexPDE keywords are highlighted in red, comments in green, and text strings in
blue.

The "Edit" item in the main menu contains the editing functions:
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The menu items have the conventional meanings, and the control key equivalents are shown.
The Find and Font items have the following use:

Find
This item allows you to search the file for occurrences of a string.  The search will find imbedded
patterns, not just full words.

Font
This item will take you directly to the Font Settings Tab  of the Preferences Panel.

In addition to the main menu Edit item, you can right-click  the text window to bring up the same editing
menu.

At any time, you can click "File | Save" or "File |Save_As..." in the main menu to save your work before
proceeding. 

Now click "Domain Review" or "Run Script" in the Controls menu, and your problem will begin
execution.  
The file will be automatically saved in the currently open file, so if you wish to retain the unedited file, you
must use "Save_As" before "Run".

Note: The FlexPDE script editor is a "programming" editor, not a word processor.  There are
no sophisticated facilities for text manipulation.

1.7 Domain Review

The "Domain Review" menu item is provided in the Controls menu as a way to validate your problem
domain before continuing with the analysis.

30
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2D Problems

When you click "Domain Review", the descriptor file will be saved to disk, and the domain construction
phase will begin.  FlexPDE will halt with a display of the domain boundaries specified in the descriptor. 
If these are as you intended, click "Continue".  If they are not correct, click "Edit", and you will be
returned to the edit phase to correct the domain definition.  If you continue, the mesh generation process
will be activated, and FlexPDE will halt again to display the final mesh.  Again, you can continue or return
to the editor.

3D Problems

The 3D domain review is more extensive.  Echoing the mesh generation process used in FlexPDE, the
review will halt after each of the following stages:

A domain plot showing the boundaries of each extrusion surface and layer in order from lower to
higher Z coordinate.  The surface plots show the boundaries that exist in the surface.  The layer plot
shows the boundaries that extend through the layer and therefore form material compartments.  If at
any point you detect an error, you can click "Edit" to return to the editor and correct the error.

After the display of individual surfaces and layers, you will be presented a composite view of all the
boundaries of the domain, which might look like this:
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Once the domain boundaries are correct, FlexPDE will proceed to the generation of the 2D finite
element mesh for each extrusion surface.  These will be displayed in order from lower to upper
surfaces.  You can return to "Edit" after any surface.

Once the surface meshes are correct, FlexPDE will proceed to the generation of the 3D finite element
mesh. Each subregion of the first layer will be displayed and meshed.  When the layer is complete, the
full layer will be displayed. When all layers are complete, the full 3D mesh will be displayed.  You can
return to "Edit" at any point.

A 3D "Domain Review" plot might look like this:
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1.8 While the Problem Runs

Whether you click "Run" or proceed through the "Domain Review", once the problem begins running, the

icon on the problem tab will change from the Edit icon ( ) to the Run icon ( ). The screen will look
something like this:
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The STATUS Panel

On the left is the "Status Panel", which presents an active report of the state of the problem
execution. It contains a text based report, a progress bar for the current operation, several history
plots summarizing the activity, and a "Thumbnail" window of the current computational grid.

The history plots summarize the number of nodes/cells in the mesh, the convergence of the current
solver, the error estimates for the solution, and the current time step (in the case of time dependent
problems). Clicking on any plot will display a legend indicating meaning of the plot traces.

The format of the printed data will depend upon the kind of problem, but the common features will
be:

The elapsed computer time charged to this problem.
The current regrid number.
The number of computation Nodes (Mesh Vertices).
The number of Finite Element Cells.
The total Degrees of Freedom per variable (number of interpolation coefficients).
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The number of Unknowns (DOF times variables).
The amount of memory allocated for working storage (in KiloBytes).
The current estimate of RMS (root-mean-square) spatial error.
The current estimate of Maximum spatial error in any cell.

Other items which may appear are:

The current problem time and timestep
The stage number
The RMS and Maximum temporal error for the most recent iteration
The iteration count
A report of the current activity

The PLOT Windows

On the right side of the screen are separate "Thumbnail" windows for each of the PLOTS or
MONITORS requested by the descriptor.  

In steady-state problems, only MONITORS will be displayed during the run.  They will be replaced
by PLOTS when the solution is complete.

In time-dependent problems, all MONITORS and PLOTS will be displayed simultaneously, and
updated as the sequencing specifications of the descriptor dictate.  

PLOTS will be sent to the ".pg7" graphic record on disk for later recovery.  MONITORS will not.

In eigenvalue problems, there will be one set of MONITORS or PLOTS for each requested mode. 
In other respects, eigenvalue problems behave as steady-state problems.

A right-click in any "thumbnail" plot brings up a menu from which several options can be selected:
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The menu items are:

Maximize
Causes the selected plot to be expanded to fill the display panel. You can also maximize a
thumbnail by double-clicking in the selected plot.

Restore
Causes a maximized plot to be returned to thumbnail size.

Print
Sends the window to the printer using a standard Print dialog.

Export
Invokes a dialog which allows the selection of a format for exporting the plot in standard format
to other processes.  Currently, the options are BMP, EMF, EPS, PNG, PPG and XPG.  For
bitmap formats (BMP, PNG, PPG and XPG) the dialog allows the selection of the drawing
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linewidth and resolution of the bitmap, independent of the resolution of the screen.  For vector
formats (EMF, EPS) no resolution is necessary (FlexPDE uses a fixed resolution of
7200x5400).  EPS produces an 8.5x11 inch landscape mode PostScript file suitable for
printing.  

Rotate
3D plots can be rotated in polar and azimuthal angle. 

Zoom
The zoom level of a plot can be dynamically changed using "Zoom In", "Zoom Out", and
"Cancel Zoom".  With the right-click, the zoom will be centered around the click-position.  This
may also be done with the keyboard. Left-click once inside the plot first to ensure the plot has
focus (clicking and holding will report the plot coordinates of mouse position).  Then Z will
zoom in, M will zoom out, and 0 will cancel the zoom and restore the zoom level to 100%. L,
R, U, and P or the arrow keys will pan left, right, up, and down.  The zoom change is centered
around the most recent mouse position.

Plot Labeling

A typical CONTOUR plot might appear as follows:

At the top of the display the "Title" field from the problem descriptor appears, with the time and date
of problem execution at the right corner, along with the version of FlexPDE which performed the
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computation.

At the bottom of the page is a summary of the problem statistics, similar to that shown in the Status
Window:

The problem name
The number of gridding cycles performed so far
The polynomial order of the Finite-Element basis (p2 = quadratic, p3 = cubic)
The number of computation nodes (vertices)
The number of computation cells
The estimated RMS value of the relative error in the variables

In staged problems, the stage number will be reported.
In eigenvalue problems, the mode number will be reported.
In time dependent problems, the current problem time and timestep will be reported.

By default, FlexPDE computes the integral under the displayed curve, and this value is reported as
"Integral".

Any  requested REPORTS will appear in the bottom line.

A typical ELEVATION plot might appear as follows:

Here all the labeling of the contour plot appears, as well as a thumbnail plot of the problem domain,
showing the position of the elevation in the figure.  For boundary plots, the joints of the boundary are
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numbered on the thumbnail. The numbers also appear along the baseline of the elevation plot for
positional reference.

Editing While Running

While the problem is running, you can return the display panel to the editor mode by clicking the Edit

Script tool ( ) or the Show Editor item in the Controls menu.  The Run icon ( ) will continue to be
displayed in the problem tab as long as the problem is running.  When the problem terminates, the

problem tab will again display the Edit icon ( ).

You can return to the graphic display panel by clicking the Show Plots tool ( ) or the Show Plots item
in the Controls menu.

1.9 When the Problem Finishes

When FlexPDE completes the solution of the current problem, it will leave the displays requested in the

PLOTS section of the descriptor displayed on the screen.  The problem tab will display the Edit icon (
).
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At this point you have several options:

Edit or Save the Script

Click "Controls|Show Editor" (or the  Tool) to switch the display into Edit mode, allowing you to
change the problem and run again.  From Edit mode, you can click "Controls|Show Plots" (or the 
Tool) to redisplay the plots.  You can also click "File|Save"  (or the  Tool) to save the file, "File|
Save_As" to save with a new name, or "File|Close" to close the problem.

Switch to Another Problem

Each currently open problem is represented by a named tab on the tab bar.  You can switch back and
forth among open problems by selecting any tab.

Open a New File

Click "File|Open" (or the  Tool) to open another problem script without closing the current problem.

1.10 Viewing Saved Graphic Files

Whenever a problem is run by FlexPDE 7, the graphical output selected by the PLOTS section of the
descriptor is written to a file with the extension ".pg7".  These files can later be viewed by FlexPDE
without re-running the job.  (FlexPDE 7 can also open output files from versions 4, 5, and 6.) You can
open these files from the "File | View File" or the "View | View FIle" menu items on the main FlexPDE
menu, or from the "File | Open File" menu using suffix selection.  A standard "Open_File" dialog will
appear, from which you may select from the available files on your system.  Once a file is selected, the
first block of plots will be displayed.  

On the left is a "Status" window, much like the one that appears during the run.  Not all the runtime
information will appear here, but only those items necessary to identify the current group of plots. 

In steady-state problems, all the PLOT windows will be displayed.  If the problem is staged, then each
stage will appear in a separate group.

In time-dependent problems, each plot time group specified in the PLOTS section of the descriptor will
form a display group.

The Problem Tab shows the View icon ( ) to indicate that this is a "View" file, not a PDE problem.

You can use the "View" item in the main menu to control the viewing of these stored graphics:
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Thumbnail Plot Displays

In the normal thumbnail display, all the plots of a group are displayed simultaneously. In this case, the
"View" menu items have the following meanings:

Next
Use this item to advance to the next group of plots in the file.  If there are no more groups, a
message box will appear.

Back
Causes FlexPDE to back up and redisplay the previous group. If there are no earlier groups, a
message box will appear.

Restart
Returns to the beginning of the file and displays the first group.

Last
Scans to the end of the file and displays the last group.

Select
Displays a list of plot times that can be viewed. Double-clicking an entry views the selected plot
group.

Movie
This item is active only for time-dependent or staged problems.  It will cause all groups to be
displayed sequentially, with a default delay of 500 milliseconds between groups (plus the file
reading time).

Frame Delay
Allows redefining of the delay time between movie frames.
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Stop
During the display of a movie, you can use Stop to halt the display.

View File
Selects a new graphics file to be opened in a new tab.

Maximized Plot Windows

When a selected View plot is maximized, either by the right-click menu or by double-click, the
behavior of some of the View menu items is modified:

Next
Advances to the next instance of the currently maximized plot.  If there are no more instances, a
message box will appear.

Back
Backs up and redisplays the previous instance of the currently maximized plot. If there are no
earlier instances, a message box will appear.

Movie
This item is active only for time-dependent or staged problems.  It will cause all instances of the
current plot to be displayed sequentially, separated by the currently active Frame Delay time
(plus the file read time).

Export Movie
An export parameters dialog will appear, allowing you to select the file format and resolution.  A
movie will then be displayed as with "Movie".  Each frame of the movie will be exported to a file
of the selected type and resolution.  The files will be numbered sequentially, and can be
subsequently imported into an animation program such as "Animation Shop" to create
animations.

1.11 Preferences Window

The Preferences Window can be accessed from the main menu bar  and has four tabs where the user
can adjust the behavior of FlexPDE :

General Settings

Font Settings

Web Proxy Settings

License Registration

The settings of these tabs are saved and loaded from the "flexpde7.ini" file which is located in the
FlexPDE7user directory. (In MyDocuments on Windows, Home on Linux.)
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1.11.1 General Settings Tab

The General Settings tab presents a variety of settings for the user :

Default computation thread count

Specifies the default number of computation threads that will be used while running a script. This
value can be overridden within the SELECT  section of a script, using the selector THREADS .
It may also be set using the command-line switch -T . If a value larger than the maximum 24 is
entered, the value will be set to 24.

Default FEA interpolation order

Specifies the default FEA interpolation order used while running a script. The choices are Cubic (3rd
order), Quadratic (2nd order), and Linear (1st order.) This value can be overridden within the 
SELECT  section, using the selector ORDER .

Auto-check for version updates

Specifies whether or not FlexPDE should contact the PDE Solutions website to determine if version
updates/upgrades are available.  Updates/upgrades will not be automatically downloaded or
installed. The automatic check is performed on a random basis when you run FlexPDE
(approximately 5% of the time.) Clicking the "Check Now" button will force the check to take place

182 189
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immediately.

Consolidate FlexPDE output into subdirectory

Specifies whether or not FlexPDE should write all output files generated by a script into a sub-
directory named "<pdename>_output". For example, a script with the name "test.pde" would output
all files into the sub-directory "test_output". Changes made to this setting do not effect scripts that are
currently open. They must be closed and reopened for the setting to take effect.

Remember last window size and position

Specifies whether or not FlexPDE will remember the size and position of the main window when it
last closed, and use that size and position when it starts next. If turned off, FlexPDE will open at full
screen size.

Auto-load initial mesh file when possible

Specifies whether or not FlexPDE will automatically save the initial mesh and try to reload it on
subsequent runs. This can save significant time in gridding when a user is adjusting plots or other
settings not related to the grid. If the domain layout changes in any way, the previous grid will not be
used and a new grid will be generated. The output file name is "<pdename>_initialmesh.xfr". This
value can be overridden within the SELECT  section, using the selector AUTOMESH . It may
also be turned off using the command-line switch -NM .

Auto-save final transfer file

Specifies whether or not FlexPDE will automatically save the final grid and all of the primary
variables. This can simplify post-processing of primary variable data. The output file name is
"<pdename>_restart.xfr". This value can be overridden within the SELECT  section, using the
selector AUTOTRANSFER .

Note : any changes made will not take place until the "Apply" button is clicked. Clicking "Cancel" will
discard any changes. Clicking "Close" will prompt the user if there are unsaved changes.

1.11.2 Font Settings Tab

The Font Settings tab allows the user to set various aspects of the editor font :
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Use custom editor font
This check box indicates if the user has selected a custom editor font. To choose a custom font,
select the check box or click the "Set" button. A font selection dialog will be presented. When this
option is unselected, FlexPDE will revert to the default font.

Use custom editor colors
This check box indicates if the user has selected a custom editor color. To choose a custom color,
click one of the "Set" buttons. A color selection dialog will be presented. When this option is
unselected, FlexPDE will revert to the default colors.

Note : any changes made will not take place until the "Apply" button is clicked. Clicking "Cancel" will
discard any changes. Clicking "Close" will prompt the user if there are unsaved changes.

1.11.3 Web Proxy Settings Tab

The Web Proxy Settings tab allows the user to enter appropriate proxy information :
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This tab is only needed if the user's computer accesses the internet through a proxy web server. The user
may need to contact their system administrator to obtain the necessary information.

Note : any changes made will not take place until the "Apply" button is clicked. Clicking "Cancel" will
discard any changes. Clicking "Close" will prompt the user if there are unsaved changes.

1.11.4 License Registration Tab

The License Registration tab presents various controls for license registration :
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Computer ID
This text is the unique identification of your computer.  It may be used to request a software key or
trial license for FlexPDE Professional. It is also used automatically by the Internet Key  license to
identify the current computer. The ID is four groups of four hexadecimal numbers.

Current License
The current licensing information is displayed here. In the currently shown case, FlexPDE is
registered to a local dongle. The dongle's serial number is 2-2428246 and it contains three licenses;
1-1D, 1-2D, and 1-3D.

License Method
Changes to the licensing method can be made here. Additional windows will open to complete the
process. See note below and the section "Registering FlexPDE" .

Note : any changes made will not take place until the "Apply" button is clicked. Clicking "Cancel" will
discard any changes. Clicking "Close" will prompt the user if there are unsaved changes.

1.12 Registering FlexPDE

The standard distribution of FlexPDE will run in Lite mode when no Professional license is present.  The
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Lite mode is restricted in the number of nodes and simultaneous equations a problem can have.  In order
to enable Professional mode and create larger problems, FlexPDE will need to be registered to a
professional license.  There are several forms for the license :

Internet Key
The standard method of licensing FlexPDE Professional is by internet activation.  This mode of
licensing generates a text key that locks the execution of FlexPDE to a specific computer.  Access to
the internet is required on a periodic basis to validate the key.  The key can be released from one
machine and reactivated on another without difficulty.  If you need to use a proxy server for internet
access, you can set this information on the Web Proxy Settings  preference tab. A serial number
will be sent via email. Use the serial number to configure the license in the License Registration
preference tab.  See "Internet Key Registration"  for details.

Dongle
On request, Professional configurations can be licensed by use of a portable hardware license key
(dongle).  The standard dongle for use with FlexPDE 7 is a Wibu USB Cm Stick.  Unlike the dongle
used by previous versions, this dongle can be used in local or network mode.  See "Dongle
Registration"  for details.

In order for FlexPDE to find the dongle, you must 
1) Run the appropriate dongle driver install program to load it into your system.
2) Install the dongle in an appropriate USB connector or hub. (Note : On Windows, an autoplay
window may appear. Simply dismiss it.)
3) Register the dongle in the License Registration  preference tab.

The request for a dongle license will not be made until you actually "Run" a problem.  At that time, a
license of the appropriate class, 1D, 2D or 3D will be requested from the dongle.  If a license is
successfully acquired, the corresponding license class will be appended to the main window's title
bar.  The acquired license will be held until the current invocation of FlexPDE is terminated or two
hours of idle time has elapsed.  In this way, networks of FlexPDE users can get optimal use out of
the mix of 1D, 2D and 3D licenses that have been purchased.

Software Key
The primary use for the software key is for trial usage prior to purchasing a Professional license.  On
request, Professional configurations can be licensed in the form of a text key that locks the execution
of FlexPDE to a specific computer. This license method has been superseded by the Internet Key
method and PDE Solutions strongly encourages users not to use this method for a permanent license.
 If you prefer a software license key, you must first download and install the software and record the
computer ID from the License Registration  preference tab. Include the computer ID on the
license application form. Your software key will be sent to you by Email. Save the key and configure
the license in the License Registration  preference tab (you may need administrator privileges to do
this).  See "Software Key Registration"  for details.
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1.12.1 Internet Key Registration

If your license is to be acquired from the PDE Solutions website, select the "Acquire Internet Key"
option in the License Registration  tab and click "Apply".  When you wish to release the from the PDE
Solutions website, select the "Release Internet Key" option in the License Registration  tab and click
"Apply".

Activation
Enter your serial number into text field and click "Contact Web Server".  If successful, FlexPDE will
be activated on the local machine.  If not, it will report an error.  (If this activation is performed in
public places, you can choose to "Hide" the Serial Number.)

Deactivation
Enter your serial number into the text field and click "Contact Web Server".  If successful, FlexPDE
will release the license on the local machine.  If not, it will report an error.  (If this activation is
performed in public places, you can choose to "Hide" the Serial Number.)

Notes :
A computer's identification is constructed in part from it's MAC address and the operating system's
report of a unique identifier for that installation. Sometimes the MAC address can change (usually on
laptops connecting to different networks or when connected by Wi-Fi instead of a wired
connection).  If this happens after the machine is licensed, FlexPDE will issue an error telling the user
that the license authorizes a different computer.  When that happens, the user can simply release and
reacquire the license in order to resolve the issue.
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 If you need to use a proxy server for internet access, you can set this information in the Web Proxy
Settings  preference tab.

1.12.2 Dongle Registration

If your license is to be read from a local or network dongle, select the "Dongle" option in the License
Registration  tab and click "Apply".  The following dialog will appear :

Click the "Find Dongles" button.  FlexPDE will search the USB ports for all Wibu dongles and enter
their serial numbers into the popup menu.  If no dongle is found, or if the dongle driver has not been
installed, the search will fail, and FlexPDE will report an error.  If the dongle you wish to register to is on
another machine on the network, select the "Network Mode" checkbox and click "Find Dongles".  The
machine with the dongle attached must be configured to allow network access to the dongle. See 
"Network Dongle Registration"  for more details.

If there are multiple dongles installed, then they can be selected by clicking the popup menu and scrolling
to the desired dongle serial number.  After choosing a dongle, the corresponding FlexPDE license
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content of the selected dongle will be display to the right of the serial number.  In the case displayed
above the license encodes three FlexPDE 7 Professional licenses; one for 1D, one for 1D+2D, and one
for 1D+2D+3D problems.

After selecting the desired dongle, click "Register" to install the dongle as the active license method. 
Subsequently, every time you start FlexPDE it will search the USB ports for this specific dongle.  If it is
found, FlexPDE will start up in Professional mode.  If the dongle is unable to be found, FlexPDE will
report that and run in Lite mode. Once the dongle is reconnected, you will have to restart FlexPDE to
return to Professional mode, or go back to the registration dialog to search for the dongle.

Clicking "Cancel" will abort without changing the active license method.

Upgrading a Dongle

You can use the Register dialog to field-upgrade a dongle.  Click on the "Upgrade >>>" button and the
dongle upgrade panel will be shown.
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In order to upgrade the dongle, PDE Solutions will need a Remote Activation Content (RaC) file. When
requested, create this file by clicking the "Create RaC" button and send the resulting file to PDE
Solutions.  The file name will be the dongle serial number and the extension will be "WibuCmRaC". In
the above example, the resulting file would be named "2-2428246.WibuCmRaC".

After receiving the RaC file, PDE Solutions will send you a Remote Activation Upgrade (RaU) file. Enter
the path to the upgrade file, or use the "Browse" button to find the location, and select "Upgrade".  Your
dongle will be updated with the information encoded in the key. The upgrade file name will also be the
dongle serial number and the extension will be "WibuCmRaU". In the above example, the upgrade file
would be named "2-2428246.WibuCmRaU".

Note that the dongle upgrade facility will rewrite the dongle only if the serial number of the dongle
matches the serial number encoded in the upgrade key, and the state of the dongle must be exactly the
same as when the RaC file was created.  Any changes to the dongle after creating the RaC for PDE
Solutions will invalidate the upgrade file they will send.  This includes the creation of another RaC file, so
DO NOT create an RaC file if you have already sent one to PDE Solutions for an upgrade.

Dongles cannot be upgraded over the network.  The upgrade must be performed from the computer to
which the dongle is physically connected.
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Clicking on the "Hide <<<" button will hide the upgrade panel.

Note : Dongles issued with FlexPDE versions 4, 5 or 6 cannot be upgraded to newer versions
since they are from a different manufacturer. They will need to be replaced.

1.12.3 Network Dongle Registration

If you wish to use your Wibu dongle in network mode, it will have to be configured to allow access from
the network.  This is done using the vendor's "CodeMeter Control Center".  On Windows it can be
accessed in the Start menu under "All Programs > CodeMeter" (or in the file system at "C:\Program Files
(x86)\CodeMeter\Runtime\bin\CodeMeterCC.exe"). On Linux, it can be accessed at "/usr/bin/
CodeMeterCC". On Mac OS X it can be found at "Applications/CodeMeter/CodeMeter Control
Center".

Select the dongle to be configured and click "WebAdmin" in the lower right corner to open the
administration panel.
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Select the 'Configuration' tab and then the 'Server' subtab. Check the box next to 'Run Network Server'
and click 'Apply'.  This will make the dongle accessible over the network.

If the server and client are on different networks or different subnets, it may be necessary to specify the
server address to the CodeMeter WebAdmin on the client machine. This means the dongle driver will
need to be installed on the client as well as the server machine. The server address can be specified on
the 'Network' subtab of the 'Configuration' tab on the client.
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1.12.4 Software Key Registration

If your license is to be read from a software key file, select the "Software Key" option in the License
Registration  tab and click "Continue".  The following dialog will appear:32
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Enter the path to your license key file, or use the "Browse" button to find the location of the software key
file, and select "Validate Key".  This button will read the contents of the license file without installing it as
the selected license method.  FlexPDE will  validate the license file entered and display the contents in the
text field. This step is optional, but always a good idea to ensure that the key file is valid.  Click
"Register" to install this key file as the active license, or click "Cancel" to abort without changing the
active license method.
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2 User Guide

This section introduces the reader gradually to the use of FlexPDE in the solution of systems of partial
differential equations.

We begin with a discussion of the basic character of FlexPDE.  We then construct a simple model
problem and proceed to add features to the model.

The result is a description of the most common features of FlexPDE in what we hope is a meaningful and
understandable evolution that will allow users to very quickly become accustomed to the use of FlexPDE
and to use it in their own work.

No attempt is made in this manual to present a complete description of each command or circumstance
which can arise.  Detailed descriptions of each command are presented in the Problem Descriptor
Reference  section.

2.1 Overview

2.1.1 What Is FlexPDE?

FlexPDE is a "scripted finite element model builder and numerical solver".  

By this we mean that from a script written by the user, FlexPDE performs the operations necessary
to turn a description of a partial differential equations system into a finite element model, solve the
system, and present graphical and tabular output of the results.

FlexPDE is also a "problem solving environment". 

It performs the entire range of functions necessary to solve partial differential equation systems: an
editor for preparing scripts, a mesh generator for building finite element meshes, a finite element
solver to find solutions, and a graphics system to plot results.  The user can edit the script, run the
problem and observe the output, then re-edit and re-run repeatedly without leaving the FlexPDE
application environment.

FlexPDE has no pre-defined problem domain or equation list.  

The choice of partial differential equations is totally up to the user.

The FlexPDE scripting language is a "natural" language.

It allows the user to describe the mathematics of his partial differential equations system and the
geometry of his problem domain in a format similar to the way he might describe it to a co-worker.

For instance, there is an EQUATIONS section in the script, in which Laplace's equation would be
presented as

Div(grad(u)) = 0.

Similarly, there is a BOUNDARIES section in the script, where the geometric boundaries of a two-

149



FlexPDE 7 : User Guide45

dimensional problem domain are presented merely by walking around the perimeter:

Start(x1,y1) line to (x2,y1) to (x2,y2) to (x1,y2) to close

This scripted form has many advantages

The script completely describes the equation system and problem domain, so there is no
uncertainty about what equations are being solved, as might be the case with a fixed-application
program.
New variables, new equations or new terms may be added at will, so there is never a case of the
software being unable to represent a different loss term, or a different physical effect.
Many different problems can be solved with the same software, so there is not a new learning
curve for each problem

There is also a corollary requirement with the scripted model:

The user must be able to pose his problem in mathematical form.  

In an educational environment, this is good.  It's what the student wants to learn.  

In an industrial environment, a single knowledgeable user can prepare scripts which can be used and
modified by less skilled workers.  And a library of application scripts can show how it is done.

2.1.2 What Can FlexPDE Do?

FlexPDE can solve systems of first or second order partial differential equations in one, two or three-
dimensional Cartesian geometry, in one-dimensional spherical or cylindrical geometry, or in axi-
symmetric two-dimensional geometry.  (Other geometries can be supported by including the proper
terms in the PDE.)

The system may be steady-state or time-dependent, or alternatively FlexPDE can solve eigenvalue
problems.  Steady-state and time-dependent equations can be mixed in a single problem.

Any number of simultaneous equations can be solved, subject to the limitations of the computer on
which FlexPDE is run.

The equations can be linear or nonlinear.  (FlexPDE automatically applies a modified Newton-
Raphson iteration process in nonlinear systems.)

Any number of regions of different material properties may be defined.  

Modeled variables are assumed to be continuous across material interfaces.  Jump conditions on
derivatives follow from the statement of the PDE system. (CONTACT boundary conditions can
handle discontinuous variables.)
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FlexPDE can be extremely easy to use, and this feature recommends it for use in education. But
FlexPDE is not a toy.  By full use of its power, it can be applied successfully to extremely difficult
problems.

2.1.3 How Does It Do It?

FlexPDE is a fully integrated PDE solver, combining several internal facilities to provide a complete
problem solving system:

A script editing facility with syntax highlighting provides a full text editing facility and a graphical
domain preview.

A symbolic equation analyzer expands defined parameters and equations, performs spatial
differentiation, and symbolically applies integration by parts to reduce second order terms to create
symbolic Galerkin equations.  It then symbolically differentiates these equations to form the Jacobian
coupling matrix.

A mesh generation facility constructs a triangular or tetrahedral finite element mesh over a two or
three-dimensional problem domain. In two dimensions, an arbitrary domain is filled with an
unstructured triangular mesh.  In three-dimensional problems, an arbitrary two-dimensional domain is
extruded into a the third dimension and cut by arbitrary dividing surfaces.  The resulting three-
dimensional figure is filled with an unstructured tetrahedral mesh.

A Finite Element numerical analysis facility selects an appropriate solution scheme for steady-
state, time-dependent or eigenvalue problems, with separate procedures for linear and nonlinear
systems.  The finite element basis may be linear, quadratic or cubic.

An adaptive mesh refinement procedure measures the adequacy of the mesh and refines the mesh
wherever the error is large.  The system iterates the mesh refinement and solution until a user-defined
error tolerance is achieved.

A dynamic timestep control procedure measures the curvature of the solution in time and adapts
the time integration step to maintain accuracy. 

A graphical output facility accepts arbitrary algebraic functions of the solution and plots contour,
surface, vector or elevation plots.

A data export facility can write text reports in many formats, including simple tables, full finite
element mesh data, CDF,  VTK or TecPlot compatible files. 
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2.1.4 Who Can Use FlexPDE?

Most of physics and engineering is described at one level or another in terms of partial differential
equations.  This means that a scripted solver like FlexPDE can be applied to virtually any area of
engineering or science.

Researchers in many fields can use FlexPDE to model their experiments or apparatus, make
predictions or test the importance of various effects. Parameter variations or dependencies are not
limited by a library of forms, but can be programmed at will. 

Engineers can use FlexPDE to do design optimization studies, feasibility studies and conceptual
analyses.  The same software can be used to model all aspects of a design -- no need for a separate
tool for each effect.

Application developers can use FlexPDE as the core of a special-purpose applications that need
finite element modeling of partial differential equation systems. 

Educators can use FlexPDE to teach physics or engineering.  A single software tool can be used to
examine the full range of systems of interest in a discipline.  

Students see the actual equations, and can experiment interactively with the effects of modifying
terms or domains. 

2.1.5 What Does A Script Look Like?

A problem description script is a readable text file.  The contents of the file consist of a number of
sections, each identified by a header.  The fundamental sections are:

TITLE a descriptive label for the output.

SELECT user controls that override the default behavior of FlexPDE.

VARIABLES here the dependent variables are named.

DEFINITIONS useful parameters, relationships or functions are defined.

EQUATIONS each variable is associated with a partial differential equation.

BOUNDARIES the geometry is described by walking the perimeter of the domain,
stringing together line or arc segments to bound the figure.

MONITORS and PLOTS desired graphical output is listed, including any combination of 
CONTOUR, SURFACE, ELEVATION or VECTOR plots.

END completes the script.
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Note: There are several other optional sections for describing special aspects of the problem.
Some of these will be introduced later in this document.  Detailed rules for all sections are
presented in the FlexPDE Problem Descriptor Reference chapter "The Sections of a Descriptor

".

COMMENTS can be placed anywhere in a script to describe or clarify the work.  Two forms of
comment are available:

{ Anything inside curly brackets is a comment. }
! from an exclamation to the end of the line is a comment.

Example:

A simple diffusion equation on a square might look like this:

TITLE  'Simple diffusion equation'
{ this problem lacks sources and boundary conditions }
VARIABLES

u
DEFINITIONS 

k=3 { conductivity }
EQUATIONS 

div(k*grad(u)) =0
BOUNDARIES

REGION 1
START(0,0) 

LINE TO (1,0) TO (1,1) TO (0,1) TO CLOSE
PLOTS

CONTOUR(u)
VECTOR(k*grad(u))

END

Later on, we will show detailed examples of the development of a problem script.

2.1.6 What About Boundary Conditions?

Proper specification of boundary conditions is crucial to the solution of a PDE system.

In a FlexPDE script, boundary conditions are presented as the boundary is being described.

The primary types of boundary condition are VALUE and NATURAL.
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The VALUE (or Dirichlet) boundary condition specifies the value that a variable must take on at the
boundary of the domain.

The NATURAL boundary condition specifies a flux at the boundary of the domain.  (The precise meaning
of the NATURAL boundary condition depends on the PDE for which the boundary condition is being
specified.  Details are discussed in the Chapter "Natural Boundary Conditions ")

In the diffusion problem presented above, for example, we may add fixed values on the bottom and top
edges, and zero-flux conditions on the sides as follows:

…
BOUNDARIES

REGION 1
START(0,0) 

VALUE(u) = 0 LINE TO (1,0) { fixed value on bottom }
NATURAL(u)=0 LINE TO (1,1) { insulated right side }
VALUE(u)=1 LINE TO (0,1) { fixed value on top }
NATURAL(u)=0 LINE TO CLOSE { insulated left side }

…

Notice that a VALUE or NATURAL statement declares a condition which will apply to the subsequent
boundary segments until the declaration is changed.

2.2 Basic Usage

2.2.1 How Do I Set Up My Problem?

FlexPDE reads a text script that describes in readable language the characteristics of the problem to be
solved.  In simple applications, the script can be very simple.  Complex applications may require much
more familiarity with the abilities of FlexPDE.  

In the following discussion, we will begin with the simpler features of FlexPDE and gradually introduce
more complex features as we proceed.

FlexPDE has a built-in editor with which you can construct your problem script.  You can edit the script,
run it, edit it some more, and run it again until the result satisfies your needs.  You can save the script for
later use or as a base for later modifications.

The easiest way to begin a problem setup is to copy a similar problem that already exists.

Whether you start fresh or copy an existing file, there are five basic parts to be defined:

Define the variables and equations
Define the domain
Define the material parameters
Define the boundary conditions
Specify the graphical output.
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These steps will be described in the following sections.  We will use a simple 2D heatflow problem as an
example, and start by building the script from the most basic elements of FlexPDE.  In later sections, we
will elaborate the script, and address the more advanced capabilities of FlexPDE in an evolutionary
manner.  3D applications rely heavily on 2D concepts, and will be discussed in a separate chapter.  

Note: We will make no attempt in the following to describe all the options that are available
to the user at any point, but try to keep the concept clear by illustrating the most common
forms.  The full range of options is detailed in the FlexPDE Problem Descriptor Reference .
 Many will also be addressed in subsequent topics.

2.2.2 Problem Setup Guidelines

In posing any problem for FlexPDE, there are some guidelines that should be followed.

Start with a fundamental statement of the physical system.  Descriptions of basic conservation
principles usually work better than the heavily massaged pseudo-analytic "simplifications" which
frequently appear in textbooks.  

Start with a simple model, preferably one for which you know the answer.  This allows you
both to validate your presentation of the problem, and to increase your confidence in the reliability of
FlexPDE.  (One useful technique is to assume an analytic answer and plug it into the PDE to generate
the source terms necessary to produce that solution.  Be sure to take into account the appropriate
boundary conditions.)

Use simple material parameters at first. Don't worry about the exact form of nonlinear
coefficients or material properties at first.  Try to get a simple problem to work, and add the
complexities later.

Map out the domain.  Draw the outer boundary first, placing boundary conditions as you go.  Then
overlay the other material regions.  Later regions will overlay and replace anything under them, so you
don't have to replicate a lot of complicated interfaces.

Use MONITORS of anything that might help you see what is happening in the solution.  Don't just
plot the final value you want to see and then wonder why it's wrong.  Get feedback!  That's what the 
MONITORS section is there for.

Annotate your script with frequent comments. Later you will want to know just what it was you
were thinking when you wrote the script.  Include references to sources of the equations or notes on
the derivation.

Save your work.  FlexPDE will write the script to disk whenever you click "Domain Review" or
"Run Script".  But if you are doing a lot of typing, use "Save" or "Save_as" to protect your work from
unforeseen interruptions.
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2.2.3 Notation

In most cases, FlexPDE notation is simple text as in a programming language.

Differentiation, such as du/dx, is denoted by the form dx(u). All active coordinate names are
recognized, as are second derivatives like dxx(u) and differential operators Div, Grad and Curl. 

Names are NOT case sensitive.  "F" is the same as "f".
Comments can be placed liberally in the text.  Use { } to enclose comments or ! to ignore the
remainder of the line.

Note: See the Problem Descriptor Reference chapter on Elements  for a full description of 
FlexPDE notation.

2.2.4 Variables and Equations

The two primary things that FlexPDE needs to know are:  

what are the variables that you want to analyze?
what are the partial differential equations that define them?

The VARIABLES  and EQUATIONS  sections of a problem script supply this information.  The two
are closely linked, since you must have one equation for each variable in a properly posed system.

In a simple problem, you may have only a single variable, like voltage or temperature.  In this case, you
can simply state the variable and equation:

VARIABLES
Phi

EQUATIONS
Div(grad(Phi))  = 0

In a more complex case, there may be many variables and many equations.  FlexPDE will want to know
how to associate equations with variables, because some of the details of constructing the model will
depend on this association.

Each equation must be labeled with the variable to which it is associated (name and colon), as indicated
below:

VARIABLES
A,B

EQUATIONS
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A:  Div(grad(A))  = 0
B:  Div(grad(B))  = 0

Later, when we specify boundary conditions, these labels will be used to associate boundary conditions
with the appropriate equation.

2.2.5 Mapping the Domain

Two-Dimensional Domain Description

A two-dimensional problem domain is described in the BOUNDARIES section, and is made up of
REGIONS, each assumed to contain unique material properties.  A REGION may contain many closed
loops or islands, but they are all assumed to have the same material properties.  

A REGION specification begins with the statement REGION <number>  (or REGION "name") and all
loops following the header are included in the region.

REGIONs occurring later in the script overlay and cover up parts of earlier REGIONs.

The first REGION should contain the entire domain.  This is an unenforced convention that makes the
attachment of boundary conditions easier. 

Region shapes are described by walking the perimeter, stepping from one joint to another with LINE,
SPLINE, ARC or CURVE segments.  Each segment assumes that it will continue from the end of the
previous segment, and the START clause gets things rolling.  You can make a segment return to the
beginning with the word CLOSE (or TO CLOSE).

A rectangular region, for example, is made up of four line segments:

START(x1,y1) 
LINE TO(x2,y1) 
TO (x2,y2) 
TO (x1,y2) 
TO CLOSE

(Of course, any quadrilateral figure can be made with the same structure, merely by changing the
coordinates.  And any polygonal figure can be constructed by adding more points.)

Arcs can be built in several ways, the simplest of which is by specifying a center and an angle:

START(r,0) 
ARC(CENTER=0,0) ANGLE=360 

Arcs can also be built by specifying a center and an end point:

START(r,0) 
ARC(CENTER=0,0) TO (0,r) { a 90 degree arc }
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An elliptical arc will be built if the distance from the center to the endpoint is different than the
distance from the center to the beginning point.  The axes of the ellipse will extend along the
horizontal and vertical coordinate axes.  The axes can be rotated with the ROTATE=degrees

command. 

Curves can be built by specifying a start point and an expression for the curve:

START(r,0) 
CURVE(x^2+y^2=r^2) BY (+X) TO (0,r) { a 90 degree arc }

A curve. 

Loops can be named for use in later references, as in: 

START "Name" (…)

The prototype form of The BOUNDARIES section is then:

BOUNDARIES
REGION 1
<closed loops around the domain> 
REGION 2
<closed loops around overlays of the second material> 
…

You can build your domain a little at a time, using the "domain review" menu button to preview a drawing
of what you have created so far.

The "Save" and "Save_As" menu buttons allow you to frequently save your work, just in case.

2.2.6 An Example Problem

Let us build as an example a circular inclusion between two plates.  We will simply treat the plates as the
top and bottom surfaces of a square enclosure, with the circle centered between them.  Using the
statements above and adding the required control labels, we get:

BOUNDARIES
REGION 1  'box' { the bounding box }
START(-1,-1) 

LINE TO(1,-1) 
TO (1,1) 
TO (-1,1) 
TO CLOSE
REGION 2  'blob' { the embedded circular 'blob' }

START 'ring' (1/2,0) 
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

The resulting figure displayed by the "domain review" button is this:
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Note: The detailed Rules for constructing domain boundaries is included in the Reference
chapter "Sections | Boundaries ".

2.2.7 Generating A Mesh

When you select "Run Script" from the Controls menu (or the  button), FlexPDE will begin execution
by automatically creating a finite element mesh to fit the domain you have described.  In the automatic
mesh, cell sizes will be determined by the spacing between explicit points in the domain boundary, by the
curvature of arcs, or by explicit user density controls.

In our example, the automatic mesh looks like this:
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Notice that the circular boundary of region 2 is mapped onto cell legs.

There are several controls that the user can apply to change the behavior of the automatic mesh.  These
are described in detail in the chapter "Controlling Mesh Density"  below.

As an example, we can cause the circular boundary of region 2 to be gridded more densely by using the
modifier MESH_SPACING:

REGION 2 'blob' { the embedded 'blob' }
START(1/2,0) 

MESH_SPACING = 0.05
ARC(CENTER=0,0) ANGLE=360

The resulting mesh looks like this:

In most cases, it is not necessary to intervene in the mesh generation, because as we will see later,
FlexPDE will adaptively refine the mesh wherever it detects that there are strong curvatures in the
solution.

2.2.8 Defining Material Parameters

Much of the complexity of real problems comes in the fact that the coefficients that enter into the partial
differential equation system take on different values in the various materials of which a structure is
composed.

This is handled in FlexPDE by two facilities.  First, the material parameters are given names and default
values in the DEFINITIONS section.  Second, the material parameters are given regional values within the
domain REGIONS.

So far, it has been of little consequence whether our test problem was heat flow or electrostatics or
something else entirely.  However, for concreteness in what follows, let us assume it is a heat equation,
describing an insulator imbedded in a conductor between to heat reservoirs.  We will give the circular
insulator a conductivity of 0.001 and the surrounding conductor a conductivity of 1.
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First, we define the name of the constant and give it a default value in the definitions section:

DEFINITIONS
k = 1

This default value will be used as the value of "k" in every REGION of the problem, unless specifically
redefined in a region.

Now we introduce the constant into the equation:

EQUATIONS
Div(-k*grad(phi))  = 0

Then we specify the regional value in region 2:

...
REGION 2 'blob' { the embedded blob }

k = 0.001
START(1/2,0) 

ARC(CENTER=0,0) ANGLE=360

We could also define the parameter k=1 for the conductor in REGION 1, if it seemed useful for clarity.

See also MATERIALS  section.

2.2.9 Setting the Boundary Conditions

Boundary conditions are specified as modifiers during the walk of the perimeter of the domain.

The primary types of boundary condition are VALUE and NATURAL.

The VALUE (or Dirichlet) boundary condition specifies the value that a variable must take on at the
boundary of the domain.  Values may be any legal arithmetic expression, including nonlinear
dependences on variables.

The NATURAL boundary condition specifies a flux at the boundary of the domain.  Definitions may be
any legal arithmetic expression, including nonlinear dependence on variables.  With Laplace's equation,
the NATURAL boundary condition is equivalent to the Neumann or normal derivative boundary condition.

Note: The precise meaning of the NATURAL boundary condition depends on the PDE for
which the boundary condition is being specified.  Details are discussed in the Chapter "Natural
Boundary Conditions ." 

Each boundary condition statement takes as an argument the name of a variable.  This name associates
the boundary condition with one of the listed equations, for it is in reality the equation that is modified by
the boundary condition.  The equation modified by VALUE(u)=0, for example, is the equation which has
previously been identified as defining u.  NATURAL(u)=0 will depend for its meaning on the form of the
equation which defines u.

In our sample problem, suppose we wish to define a zero temperature along the bottom edge, an
insulating boundary on the right side, a temperature of 1 on the top edge, and an insulating boundary on
the left.  We can do this with these commands:
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...
REGION 1 'box' { the bounding box }

START(-1,-1) 
{ Phi=0 on base line: }
VALUE(Phi)=0 LINE TO(1,-1) 
{ normal derivative =0 on right side: }
NATURAL(Phi)=0 LINE TO (1,1) 
{ Phi = 1 on top: }
VALUE(Phi)=1 LINE TO (-1,1) 
{ normal derivative =0 on left side: }
NATURAL(Phi)=0 LINE TO CLOSE

Notice that a VALUE or NATURAL statement declares a condition which will apply to the subsequent
boundary segments until the declaration is changed.

Notice also that the segment shape (Line or Arc) must be restated after a change of boundary condition.

Note: Other boundary condition forms are allowed.  See the Reference chapter "Sections |
Boundaries ".

2.2.10 Requesting Graphical Output

The MONITORS and PLOTS sections contain requests for graphical output.  

MONITORS are used to get ongoing information about the progress of the solution.  

PLOTS are used to specify final output, and these graphics will be saved in a disk file for later viewing.

FlexPDE recognizes several forms of output commands, but the primary forms are:

CONTOUR a plot of contours of the argument; it may be color-filled

SURFACE a 3D surface of the argument

VECTOR a field of arrows

ELEVATION a "lineout" along a defined path

SUMMARY text-only reports

Any number of plots may be requested, and the values plotted may be any consistent algebraic
combination of variables, coordinates and defined parameters.

In our example, we will request a contour of the temperature, a vector map of the heat flux, k*grad(Phi),
an elevation of temperature along the center line, and an elevation of the normal heat flux on the surface
of the blob:

PLOTS
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) TO (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
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Output requested in the PLOTS section is produced when FlexPDE has finished the process of solving
and regridding, and is satisfied that all cells are within tolerance.  An alternative section, identical in form
to the PLOTS section but named MONITORS, will produce transitory output at more frequent intervals,
as an ongoing report of the progress of the solution.

A record of all PLOTS is written in a file with suffix .PG7 and the name of the .PDE script file.  These
recorded plots may be viewed at a later time by invoking the VIEW item in the FlexPDE main menu.  

MONITORS are not recorded in the .PG7 file.  It is strongly recommended that MONITORS be used
liberally during script development to determine that the problem has been properly set up and that the
solution is proceeding as expected.  

Note: FlexPDE accepts other forms of plot command, including GRID plots and HISTORIES. 
See the Reference chapter "Sections | Monitors and Plots ".

2.2.11 Putting It All Together

In the previous sections, we have gradually built up a problem specification.

Putting it all together and adding a TITLE, it looks like this:

TITLE 'Heat flow around an Insulating blob'
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }

EQUATIONS
Div(-k*grad(phi)) = 0

BOUNDARIES
REGION 1 'box'
START(-1,-1) 

VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2  'blob' { the embedded blob }
k = 0.001
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS

CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

We have defined a complete and meaningful problem in twenty-three readable lines.
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The output from this script looks like this:
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2.2.12 Interpreting a Script

It is important to understand that a FlexPDE script is not a procedural description of the steps to be
performed in solving the PDE system.  It is instead a description of the dependencies between various
elements of the model.

A parameter defined as P = 10 means that whenever P is used in the script, it represents the constant
value 10.

If the parameter is defined as P = 10*X, then whenever P is used in the script, it represents 10 times the
value of X at each point of the domain at which the value of P is needed for the solution of the system.  In
other words, P will have a distribution of values throughout the domain.

If the parameter is defined as P = 10*U, where U has been declared as a VARIABLE, then whenever P is
used in the script, it represents 10 times the current value of U at each point of the domain, and at each
stage of the solution process.  That is, the single definition P = 10*U implies repeated re-evaluation as
necessary throughout the computation.
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2.3 Some Common Variations

2.3.1 Controlling Accuracy

FlexPDE applies a consistency check to integrals of the PDE's over the mesh cells.  From this it
estimates the relative uncertainty in the solution variables and compares this to an accuracy tolerance.  If
any mesh cell exceeds the tolerance, that cell is split, and the solution is recomputed.

The error tolerance is called ERRLIM, and can be set in the SELECT section of the script.  

The default value of ERRLIM is 0.002, which means that FlexPDE will refine the mesh until the estimated
error in any variable (relative to the variable range) is less than 0.2% over every cell of the mesh.  

Note: This does not mean that FlexPDE can guarantee that the solutions is accurate to 0.2%
over the domain.  Individual cell errors may cancel or accumulate in ways that are hard to
predict.

In our sample problem, we can insert the statement 

SELECT ERRLIM=1e-5

as a new section.  This tells FlexPDE to split any cell in which the consistency check implies an error of
more than 0.001% over the cell.

FlexPDE refines the mesh twice, and completes with a mesh that looks like this:

In this particular case, the result plots are not noticeably different from the default case.

Note: In time-dependent problems, spatial and temporal errors are both set by ERRLIM, but
they can also be independently controlled by XERRLIM and TERRLIM.  See the Problem
Descriptor Reference .185
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2.3.2 Computing Integrals

In many cases, it is an integral of some function that is of interest in the solution of a PDE problem. 
FlexPDE has an extensive repertoire of integration facilities, including volume integrals, surface integrals
on bounding surfaces and line integrals on bounding lines.  The two-dimensional forms are

Result = LINE_INTEGRAL(expression, boundary_name)

Computes the integral of expression over the named boundary.
Note: BINTEGRAL is a pseudonym for LINE_INTEGRAL.

Result = VOL_INTEGRAL(expression, region_name)

Computes the integral of expression over the named region.
If region_name is omitted, the integral is over the entire domain.

Note: INTEGRAL is a pseudonym for VOL_INTEGRAL.  

Note: In 2D Cartesian geometry, AREA_INTEGRAL is also the same as VOL_INTEGRAL, since the
domain is assumed to have a unit thickness in Z.

In our example problem, we might define

DEFINITIONS 
{ the total flux across 'ring': 

(recall that 'ring' is the name of the boundary of 'blob') }
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring')  
{ the total heat energy in 'blob': }
Tenergy = VOL_INTEGRAL(Phi, 'blob')  

In the case of internal boundaries, there is sometimes a different value of the integral on the two sides of
the boundary.  The two values can be distinguished by further specifying the region in which the integral is
to be evaluated:

{ the total flux across 'ring': }
Tflux = LINE_INTEGRAL(NORMAL(-k*grad(Phi)), 'ring', 'box')  
{ evaluated on the 'box' side of the boundary }

Note: Three-dimensional integral forms will be addressed in a later section.  A full description
of integral operators is presented in the Problem Descriptor Reference section "Elements |
Operators | Integral Operators ".

2.3.3 Reporting Numerical Results

In many cases, there are numerical quantities of interest in evaluating or classifying output plots.  Any plot
command can be followed by the REPORT statement:
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REPORT value AS "title"
Or just

REPORT value 

Any number of REPORTs can be requested following any plot, subject to the constraint that the values
are printed on a single line at the bottom of the plot, and too many reports will run off and be lost.

For instance, we might modify the contour plot of our example plot to say

CONTOUR(Phi)  REPORT(k)  REPORT(INTEGRAL(Phi, 'blob'))

On running the problem, we might see something like this at the bottom of the plot:

2.3.4 Summarizing Numerical Results

A special form of plot command is the SUMMARY.  This plot command does not generate any pictorial
output, but instead creates a page for the placement of numerous REPORTs.

SUMMARY may be given a text argument, which will be printed as a header.

For example,

SUMMARY
REPORT(k)
REPORT(INTEGRAL(Phi,'blob')) as "Heat energy in blob"
REPORT('no more to say')

In our sample, we will see a separate report page with the following instead of a graphic:

2.3.5 Parameter Studies Using STAGES

FlexPDE supports a facility for performing parameter studies within a single invocation.  This facility is
referred to as "staging".  Using staging, a problem can be solved repeatedly, with a range of values for a
single parameter or a group of parameters.  

The fundamental form for invoking a staged run is to define one or more parameters as STAGED:

DEFINITIONS
Name = STAGED(value1, value2, ….)

The problem will be re-run as many times as there are values in the value list, with "Name" taking on
consecutive values from the list in successive runs.
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If the STAGED parameter does not affect the domain dimensions, then each successive run will use the
result and mesh from the previous run as a starting condition.  

Note: This technique can also be used to approach the solution of a strongly nonlinear
problem, by starting with a linear system and gradually increasing the weight on a nonlinear
component.

If the STAGED parameter is used as a dimension in the domain definition, then each successive run will
be restarted from the domain definition, and there will be no carry-over of solutions from one run to the
next.  

As for time-dependent problems (which we will discuss later), variation of arbitrary quantities across the
stages of a problem can be displayed by HISTORY plots.  In staged runs the history is plotted against
stage number.

As an example, let us run our sample heat flow problem for a range of conductivities and plot a history of
the top edge temperature.

We will modify the definition of K in the insulator as follows:

DEFINITIONS
Kins = STAGED(0.01, 0.1, 1, 10)
{ Notice that the STAGED specification must appear at the initial declaration of a
name.  It cannot be used in a regional redefinition. } 

…
REGION 2 'blob' { the embedded blob }

K = Kins
START(R,0) ARC(CENTER=0,0) ANGLE=360

…
HISTORY(Phi) AT (0,-R)

When this modified descriptor is run, the history plot produces the following:
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In a staged run, all PLOTS and MONITORS requested will be presented for each stage of the run.  

Other Staging Controls

The global selector STAGES can be used to control the number of stages to run.  If this selector
appears, it overrides any STAGED lists in the DEFINITIONS section (lists shorter than STAGES will
report an error).  It also defines the global name STAGE, which can be used subsequently in arithmetic
expressions. See the Problem Descriptor Reference  for details.

The default action is to proceed at once from one stage to the next, but you can cause FlexPDE to
pause while you examine the plots by placing the command AUTOSTAGE=OFF in the SELECT section
of the script.

Note: The STAGE facility can only be used on steady-state problems. It cannot be used with time
dependent problems.

2.3.6 Cylindrical Geometry

In addition to two-dimensional Cartesian geometry, FlexPDE can solve problems in axisymmetric
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cylindrical coordinates, (r,z) or (z,r).

Cylindrical coordinates are invoked in the COORDINATES section of the script.  Two forms are
available, XCYLINDER and YCYLINDER.  The distinction between the two is merely in the orientation of
the graphical displays.

XCYLINDER places the rotation axis of the cylinder, the Z coordinate, along the abscissa (or "x"-axis)
of the plot, with radius along the ordinate.  Coordinates in this system are (Z,R)
YCYLINDER places the rotation axis of the cylinder, the Z coordinate, along the ordinate (or "y" axis)
of the plot, with radial  position along the abscissa.  Coordinates in this system are (R,Z)

Either form may optionally be followed by a parenthesized renaming of the coordinates.  Renaming
cannot be used to change the geometric character of the coordinate.  Radius remains radius, even if you
rename it "Z".

The default names are 

XCYLINDER  implies  XCYLINDER('Z','R').
YCYLINDER  implies  YCYLINDER('R','Z').

2.3.6.1 Integrals In Cy lindrical Geom etry

The VOL_INTEGRAL (alias INTEGRAL) operator in Cylindrical geometry is weighted by 2*PI*R,
representing the fact that the equations are solved in a revolution around the axis.

An integral over the cross-sectional area of a region may be requested by the operator 
AREA_INTEGRAL.  This form differs from VOL_INTEGRAL in that the 2*PI*R weighting is absent.

Similarly, the operator SURF_INTEGRAL will form the integral over a boundary, analogous to the
LINE_INTEGRAL operator, but with an area weight of 2*PI*R.

2.3.6.2 A Cy lindrical Exam ple

Let us now convert our Cartesian test problem into a cylindrical one.  If we rotate the box and blob
around the left boundary, we will form a torus between two circular plates (like a donut in a round box).

These changes will be required:

We must offset the coordinates, so the left boundary becomes R=0.
Since we want the rotation axis in the Y-direction, we must use YCYLINDER coordinates.
Since 'R' is now a coordinate name, we must rename the 'R' used for the blob radius.

The full script, converted to cylindrical coordinates is then:

TITLE 'Heat flow around an Insulating Torus'
COORDINATES

YCYLINDER
VARIABLES

Phi { the temperature }
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DEFINITIONS
K = 1 { default conductivity }
Rad = 0.5 { blob radius (renamed)}

EQUATIONS
Div(-k*grad(phi)) = 0

BOUNDARIES
REGION 1 'box'
START(0,-1) 

VALUE(Phi)=0 LINE TO (2,-1)
NATURAL(Phi)=0 LINE TO (2,1)
VALUE(Phi)=1 LINE TO (0,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
k = 0.001
START 'ring' (1,Rad) 

ARC(CENTER=1,0) ANGLE=360 TO CLOSE
PLOTS

CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (1,-1) to (1,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

The resulting contour and boundary plot look like this:
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2.3.7 Time Dependence

Unless otherwise defined, FlexPDE recognizes the name "T" (or "t") as representing time.  If references
to time appear in the definitions or equations, FlexPDE will invoke a solution method appropriate to
initial-value problems.

FlexPDE will apply a heuristic control on the timestep used to track the evolution of the system.  Initially,
this will be based on the time derivatives of the variables, and later it will be chosen so that the time
behavior of the variables is nearly quadratic.  This is done by shortening or lengthening the time intervals
so that the cubic term in a Taylor expansion of the variables in time is below the value of the global
selector ERRLIM.

In time dependent problems, several new things must be specified:

The THRESHOLD of meaningful values for each variable (if not apparent from initial values).
The time-dependent PDE's
The time range of interest,
The times at which plots should be produced
Any history plots that may be desired

Note: FlexPDE can treat only first derivatives in time.  Equations that are second-order in
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time must be split into two equations by defining an intermediate variable.

The time range is specified by a new script section

TIME start TO finish

Plot times are specified by preceding any block of plot commands by a time control, in which specific
times may be listed, or intervals and end times, or a mixture of both:

FOR   T = t1,  t2 BY step TO t3 ….

We can convert our heat flow problem to a time dependent one by including a time term in the heat
equation:

Div(k*grad(Phi)) = c*dt(Phi)

To make things interesting, we will impose a sinusoidal driving temperature at the top plate, and present a
history plot of the temperature at several internal points.

The whole script with pertinent modifications now looks like this:

TITLE 'Transient Heat flow around an Insulating blob'
VARIABLES

Phi (threshold=0.01) { the temperature }
DEFINITIONS

K = 1 { default conductivity }
C = 1 { default heat capacity }
R = 1/2

EQUATIONS
Div(-K*grad(phi)) + C*dt(Phi) = 0

BOUNDARIES
REGION 1 'box'
START(-1,-1) 

VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=sin(t) LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
K = 0.001
C = 0.1
START(R,0) 

ARC(CENTER=0,0) ANGLE=360
TIME 0 TO 2*pi
PLOTS

FOR T = pi/2 BY pi/2 TO 2*pi
CONTOUR(Phi)
VECTOR(-K*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)

HISTORIES
HISTORY(Phi) AT (0,r/2) (0,r) (0,3*r/2)

END
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At the end of the run (t=2*pi), the contour and history look like this:
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2.3.7.1 Bad T hings T o Do In T im e Dependent Problem s

Inconsistent Initial Conditions and Instantaneous Switching

If you start off a time-dependent calculation with initial conditions that are inconsistent, or turn on
boundary values instantaneously at the start time (or some later time), you induce strong transient signals
in the system.  This will cause the time step, and probably the mesh size as well, to be cut to tiny values
to track the transients.  

Unless it is specifically the details of these transients that you want to know, you should start with initial
conditions that are a consistent solution to a steady problem, and then turn on the boundary values,
sources or driving fluxes over a time interval that is meaningful in your problem.  

It is a common mistake to think that simply turning on a source is a smooth operation.  It is not. 
Mathematically, the turn-on time is significantly less that a femtosecond (zero, in fact), with attendant
terahertz transients.  If that's the problem you pose, then that's the problem FlexPDE will try to solve. 
More realistically, you should turn on your sources over a finite time.  Electrical switches take
milliseconds, solid state switches take microseconds.  But if you only want to see what happens after a
second or two, then fuzz the turn-on.

Turning on a driving flux or a volume source is somewhat more gentle than a boundary value, because it
implies a finite time to raise the boundary value to a given level.  But there is still a meaningful time interval
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over which to turn it on.

2.3.8 Eigenvalues and Modal Analysis

FlexPDE can also compute the eigenvalues and eigenfunctions of a PDE system.

Consider the homogeneous time-dependent heat equation as in our example above, 

0
t

C K

together with homogeneous boundary conditions  

0

and/or

0
n

on the boundary.

If we wish to solve for steady oscillatory solutions to this equation, we may assert

( , , ) ( , ) exp( )x y t x y t

The PDE then becomes 

0K

C

The values of  and  for which this equation has nontrivial solutions are known as the eigenvalues
and eigenfunctions of the system, respectively.  All steady oscillatory solutions to the PDE can be made
up of combinations of the various eigenfunctions, together with a particular solution that satisfies any non-
homogeneous boundary conditions.

Two modifications are necessary to our basic steady-state script for the sample problem to cause
FlexPDE to solve the eigenvalue problem.

A value must be given to the MODES parameter in the SELECT section.  This number determines the
number of distinct values of  that will be calculated.  The values reported will be those with lowest
magnitude.
The equation must be written using the reserved name LAMBDA for the eigenvalue.
The equation should be written so that values of LAMBDA are positive, or problems with the ordering
during solution will result.  The full descriptor for the eigenvalue problem is then:

TITLE 'Modal Heat Flow Analysis'
SELECT 

modes=4
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VARIABLES
Phi { the temperature }

DEFINITIONS
K = 1 { default conductivity }
R = 0.5 { blob radius }

EQUATIONS
Div(k*grad(Phi)) + LAMBDA*Phi = 0

BOUNDARIES
REGION 1 'box'
START(-1,-1) 

VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=0 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
k = 0.2 { This value makes more interesting pictures }
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS

CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

The solution presented by FlexPDE will have the following characteristics:

The full set of PLOTS will be produced for each of the requested modes.
An additional plot page will be produced listing the eigenvalues.
The mode number and eigenvalue will be reported on each plot.
LAMBDA is available as a defined name for use in arithmetic expressions.

The first two contours are as follows:
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2.3.8.1 T he Eigenvalue Sum m ary

When running an Eigenvalue problem, FlexPDE automatically produces an additional plot displaying a
summary of the computed eigenvalues.

If the user specifies a SUMMARY plot, then this plot will supplant the automatic summary, allowing the
user to add reports to the eigenvalue listing.

For example, we can add to our previous descriptor the plot specification:

SUMMARY
REPORT(lambda)
REPORT(integral(phi))

This produces the following report on the summary page:
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2.4 Addressing More Difficult Problems

If  heat flow on a square were all we wanted to do, then there would probably be no need for FlexPDE.
 The power of the FlexPDE system comes from the fact that almost any functional form may be specified
for the material parameters, the equation terms, or the output functions.  The geometries may be
enormously complex, and the output specification is concise and powerful.

In the following sections, we will address some of the common situations that arise in real problems, and
show how they may be treated in FlexPDE.

2.4.1 Nonlinear Coefficients and Equations

One common complication that arises is that either the terms of the equation or the material properties
are complicated functions of the system variables.  FlexPDE understands this, and has made full
provision for handling such systems.

Suppose, for example, that the conductivity in the 'blob' of our example problem were in fact a strong
function of the temperature.  Say, for example, that K=exp(-5*phi).  The solution couldn't be simpler. 
Just define it the way you want it and click "run":

…
REGION 2 'blob' { the embedded blob }

k = exp(-5*phi)
…

The appearance of a nonlinear dependence will automatically activate the nonlinear solver, and all the
dependency details will be handled by FlexPDE.

The modified result appears immediately:
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Nonlinear terms in the equation are just as easy.  If our system has a nonlinear sinusoidal source, for
example, we may type: 

EQUATIONS
Div(k*grad(phi)) + 0.01*phi*sin(phi) = 0

Click "run", and the solution appears:
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2.4.1.1 Com plications Associated with Nonlinear Problem s

Actually, nonlinear problems are frequently more difficult than we have implied above, for several
reasons.

Nonlinear problems can have more than one solution.
A nonlinear problem may not, in fact, have a solution at all.

FlexPDE uses a Newton-Raphson iteration process to solve nonlinear systems.  This technique can be
very sensitive to the initial estimate of the solution.  If the starting conditions are too far from the actual
solution, it may be impossible to find the answer, even though it might be quite simple from a different
starting value.

There are several things that can be done to help a nonlinear problem find a solution:

Provide as good an initial value as you can, using the INITIAL VALUES section of the script.
Ensure that the boundary conditions are consistent.
Use STAGES to progress from a linear to a nonlinear system, allowing the linear solution to provide
initial conditions for the nonlinear one.
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Pose the problem as a time-dependent one, with time as an artificial relaxation dimension.
Use SELECT CHANGELIM to limit the excursion at each step and force FlexPDE to creep toward a
solution.
Use MONITORS to display useful aspects of the solution, to help identify troublesome terms.

We will return in a later section  to the question of intransigent nonlinear problems.

2.4.2 Natural Boundary Conditions

The term "natural boundary condition" usually arises in the calculus of variations, and since the finite
element method is fundamentally one of minimization of an error functional, the term arises also in this
context.

The term has a much more intuitive interpretation, however, and it is this which we will try to present.

Consider a Laplace equation, 

0u

The Divergence Theorem says that the integral of this equation over all space is equal merely to the
integral over the bounding surface of the normal component of the flux, 

( ( )) ( )
A S

div grad u dA n grad u dlÑ

(we have presented the equation in two dimensions, but it is valid in three dimensions as well).

The surface value of ( )n grad u  is in fact the "natural boundary condition" for the Laplace (and
Poisson) equation.  It is the way in which the system inside interacts with the system outside.  It is the
(negative of the) flux of the quantity u  that crosses the system boundary.

The Divergence Theorem is a particular manifestation of the more general process of Integration by
Parts.  You will remember the basic rule,

b b
b
a

a a

udv uv vdu

The term uv  is evaluated at the ends of the integration interval and gives rise to surface terms.  Applied
to the integration of a divergence, integration by parts produces the Divergence Theorem.

FlexPDE applies integration by parts to all terms of the partial differential equations that contain second-
order derivatives of the system variables.  In the Laplace equation, of course, this means the only term
that appears.

In order for a solution of the Laplace equation (for example) to be achieved, one must specify at all

points of the boundary either the value of the variable (in this case, u ) or the value of  ( )n grad u .

In the notation of FlexPDE, 

142
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VALUE(u)=u1 supplies the former, and 
NATURAL(u)=F supplies the latter.  

In other words,

The NATURAL boundary condition statement in FlexPDE supplies the value of the surface
flux, as that flux is defined by the integration of the second-order terms of the PDE by parts.
The default boundary condition for FlexPDE is NATURAL(VARIABLE)=0.

Note:  On an internal boundary the NATURAL defines the difference in flux between the two adjacent
regions, producing a source or sink at that boundary.

Consistent with our discussion of nonlinear equations, the value given for the surface flux may be a
nonlinear value.  

The radiation loss from a hot body, for example, is proportional to the fourth power of temperature, and
the statement

NATURAL(u) = -k*u^4

is a perfectly legal boundary condition for the Laplace equation in FlexPDE.

2.4.2.1 Som e T y pical Cases

Since integration by parts is a fundamental mathematical operation, it will come as no surprise that its
application can lead to many of the fundamental rules of physics, such as Ampere's Law.  

For this reason, the Natural boundary condition is frequently a statement of very fundamental
conservation laws in many applications.

But it is not always obvious at first what its meaning might be in equations which are more elaborate than
the Laplace equation.

So let us first list some basic terms and their associated natural boundary condition contributions (we
present these rules for two-dimensional geometry, but the three-dimensional extensions are readily seen).

Applied to the term ( ) /f u x , integration by parts yields

( )
( ) ( )

f u
dxdy f u dy f u dl

x Ñ Ñ
Here  is the x-direction cosine of the surface normal and dl  is the differential path length.  Since
FlexPDE applies integration by parts only to second order terms, this rule is applied only if the

function ( )f u  contains further derivatives of u .  Similar rules apply to derivatives with respect to

other coordinates.

Applied to the term 
2 2( ) /f u x , integration by parts yields
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2

2

( ) ( ) ( )f u f u f u
dxdy dy dl

x x xÑ Ñ
Since this term is second order, it will always result in a contribution to the natural boundary
condition.

Applied to the term ( )F u
r

, integration by parts yields the Divergence Theorem

ˆ( ) ( )F u dxdy F u ndl
r r

Ñ
Here  is the outward surface normal unit vector.  

As with the x-derivative case, integration by parts will not be applied unless the vector F
r

 itself

contains further derivatives of u .

Applied to the term ( )F u
r

, integration by parts yields the Curl Theorem

ˆ( ) ( )F u dxdy n F u dl
r r

Ñ

Using these formulas, we can examine what the natural boundary condition means in several common
cases:

The Heat Equation

Div(-k*grad(Temp)) + Source = 0

Natural(Temp) = normal(-k*grad(Temp)) { outward surface-normal flux }

(Notice that we have written the PDE in terms of heat flux with the negative sign imbedded in the
equation.  If the sign is left out, the sign of the Natural is reversed as well.)

One-dimensional heat equation

dx(-k*dx(Temp)) + Source = 0
Natural(Temp) = outward surface-normal component of flux = (-k*dx(temp)*nx),

where nx is the x-direction cosine of the surface normal.  

Similar forms apply for other coordinates.

Magnetic Field Equation

curl(curl(A)/mu) = J
Natural(A) = tangential component of H = tangential(curl(A)/mu)

Convection Equation

dx(u)-dy(u)=0
Natural(u) is undefined, because there are no second-order terms.

See the example "Samples | Applications | Fluids | Hyperbolic.pde" .397
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2.4.2.2 An Exam ple of a Flux Boundary  Condition

Let us return again to our heat flow test problem and investigate the effect of the Natural boundary
condition.   As originally posed, we specified Natural(Phi)=0 on both sidewalls.  This corresponds to
zero flux at the boundary.  Alternatively, a convective cooling loss at the boundary would correspond to
a flux

Flux = -K*grad(Phi) = Phi – Phi0

where Phi0 is a reference cooling temperature.  With convectively cooled sides, our boundary
specification looks like this (assuming Phi0=0):

REGION 1 'box'
START(-1,-1) 

VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=Phi LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=Phi LINE TO CLOSE

The result of this modification is that the isotherms curve upward:



User Guide : Addressing More Difficult Problems 86

2.4.3 Discontinuous Variables

The default behavior of FlexPDE is to consider all variables to be continuous across material interfaces. 
This arises naturally from the finite element model, which populates the interface with nodes that are
shared by the material on both sides.

FlexPDE supports discontinuities in variables at material interfaces by use of the words CONTACT and
JUMP in the script language.  

CONTACT(V) is a special form of NATURAL boundary condition which also causes the affected variable
to be stored in duplicate nodes at the interface, capable of representing a double value.

JUMP(v) means the instantaneous change in the value of variable "v" when moving outward across an
interface from inside a given material.  At an interface between materials '1' and '2', JUMP(V) means
(V2-V1) in material '1', and (V1-V2) in material '2'.

The expected use of JUMP is in a CONTACT Boundary Condition statement on an interior boundary. 
The combination of CONTACT and JUMP causes a line or surface source to be generated proportional to
the difference between the two values.

JUMP may also be used in other boundary condition statements, but it is assumed that the argument of
the JUMP is a variable for which a CONTACT boundary condition has been specified.  See the example
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"Samples | Usage | Discontinuous_Variables | Contact_Resistance_Heating.pde" for an example of this
kind of use.

The interpretation of the JUMP operator follows the model of contact resistance, as explained in the next
section.

2.4.3.1 Contact Resistance

The problem of contact resistance between two conductors is a typical one requiring discontinuity of the
modeled variable.  

In this problem, a very thin resistive layer causes a jump in the temperature or voltage on the two sides of
an interface.  The magnitude of the jump is proportional to the heat flux or electric current flowing across
the resistive film.  In microscopic analysis, of course, there is a physical extent to the resistive material.
But its dimensions are such as to make true modelling of the thickness inconvenient in a finite element
simulation.

In the contact resistance case, the heat flux across a resistive interface between materials '1' and '2' as
seen from side '1' is given by 

F1 = -K1*dn(T) = -(T2-T1)/R  

where F1 is the value of the outward heat flux, K1 is the heat conductivity, dn(T) is the outward normal
derivative of T, R is the resistance of the interface film, and T1 and T2 are the two values of the
temperature at the interface.  

As seen from material '2', 

F2 = -K2*dn(T) = -(T1-T2)/R = -F1

Here the normal has reversed sign, so that the outflow from '2' is the negative of the outflow from '1',
imposing energy conservation.

The Natural Boundary Condition for the heat equation 

div(-K*grad(T)) = H 

is given by the divergence theorem as

Natural(T) = -K*dn(T), 

representing the outward heat flux.

This flux can be related to a discontinuous variable by use of the CONTACT boundary condition in place
of the NATURAL.

The FlexPDE expression JUMP(T) is defined as (T2-T1) in material '1' and (T1-T2) in material '2'.

The representation of the contact resistance boundary condition is therefore

CONTACT(T) = -JUMP(T)/R
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This statement means the same thing in both of the materials sharing the interface.  [Notice that the sign
applied to the JUMP reflects the sign of the divergence term.]

We can modify our previous example problem to demonstrate this, by adding a heat source to drive the
jump, and cooling the sidewalls.  The restated script is:

TITLE 'Contact Resistance on a heated blob'
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }
H = 0 { internal heat source }
Res = 0.5 { contact resistance }

EQUATIONS
Div(-k*grad(phi)) = H

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=0 { cold outer walls }
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE

REGION 2 'blob' { the embedded blob }
H = 1 { heat generation in the blob }
START 'ring' (R,0) 

CONTACT(phi) = -JUMP(phi)/Res
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
CONTOUR(Phi)
SURFACE(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

The surface plot generated by running this problem shows the discontinuity in temperature:
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2.4.3.2 Decoupling

Using the Contact Resistance model, one can effectively decouple the values of a given variable in two
adjacent regions.  In the previous example, if we replace the jump boundary condition with the statement

CONTACT(phi) = 0*JUMP(phi)

the contact resistance is infinite, and no flux can pass between the regions.

Note:  The JUMP statement is recognized as a special form. Even though the apparent value of
the right hand side here is zero, it is not removed by the arithmetic expression simplifier.

2.4.3.3 Using JUMP in problem s with m any  variables

An expression JUMP(V) may appear in any boundary condition statement  on a boundary for which the
argument variable V has been given a CONTACT boundary condition.  

In an electrical resistance case, for example, the voltage undergoes a jump across a contact resistance,
and the current through this contact is a source of heat for a heatflow equation.  The following example,
though not strictly realizable physically, diagrams the technique.  Notice that the JUMP of Phi appears as
a source term in the Natural boundary condition for Temp.  Phi, having appeared in a CONTACT

boundary condition definition, is stored as a double-valued quantity, whose JUMP is available to the
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boundary condition for Temp.  Temp, which does not appear in a CONTACT boundary condition
statement, is a single-valued variable at the interface.

TITLE 'Contact Resistance as a heat source'
VARIABLES

Phi { the voltage }
Temp { the temperature }

DEFINITIONS
Kd = 1 { dielectric constant }
Kt = 1 { thermal conductivity }
R = 0.5 { blob radius }
Q = 0 { space charge density }
Res = 0.5 { contact resistance }

EQUATIONS
Phi: Div(-kd*grad(phi)) = Q
Temp: Div(-kt*grad(temp) = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=0 { grounded outer walls }
VALUE(Temp)=0 { cold outer walls }
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE

REGION 2 'blob' { the embedded blob }
Q = 1 { space charge in the blob }
START 'ring' (R,0) 

CONTACT(phi) = -JUMP(phi)/Res
{ the heat source is the voltage difference times the current }
NATURAL(temp) = -JUMP(Phi)^2/Res
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

PLOTS
CONTOUR(Phi)SURFACE(Phi)
CONTOUR(temp) SURFACE(temp)

END

The temperature shows the effect of the surface source:
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2.5 Using FlexPDE in One-Dimensional Problems

FlexPDE treats problems in one space dimension as a degenerate case of two dimensional problems.

The construction of a problem descriptor follows the principles laid out in previous sections, with the
following specializations:

The COORDINATES specification must be CARTESIAN1, CYLINDER1 or SPHERE1

Coordinate positions are given by one dimensional points, as in 

START(0) LINE TO (5)

The boundary path is in fact the domain, so the boundary must not CLOSE on itself.

Since the boundary path is the domain, boundary conditions are not specified along the path. Instead
we use the existing syntax of POINT VALUE and POINT LOAD to specify boundary conditions at the
end points of the domain:

START(0) POINT VALUE(u)=0 LINE TO (5) POINT LOAD(u)=1

Only ELEVATION and HISTORY are meaningful plots in one dimension.
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Our basic example problem does not have a one-dimensional analog, but we can adapt it to an insulating
spherical shell between two spherical reservoirs as follows:

TITLE 'Heat flow through an Insulating shell'
COORDINATES

Sphere1
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R1 = 1 { the inner reservoir }
Ra = 2 { the insulator inner radius }
Rb = 3 { the insulator outer radius }
R2 = 4 { the outer reservoir }

EQUATIONS
Div(-k*grad(phi)) = 0

BOUNDARIES
REGION 1 { the total domain }
START(R1) POINT VALUE(Phi)=0

LINE TO (R2) POINT VALUE(Phi)=1
{ note: no 'Close'! }

REGION 2 'blob' { the embedded layer }
k = 0.001
START (Ra) LINE TO (Rb)

PLOTS
ELEVATION(Phi) FROM (R1) to (R2)

END

2.6 Using FlexPDE in Three-Dimensional Problems

First, a caveat: 

Three-dimensional computations are not simple.  We have tried to make FlexPDE as easy as possible to
use, but the setup and interpretation of 3D problems relies heavily on the concepts explained in 2D
applications of FlexPDE.  Please do not try to jump in here without reading the preceding 2D discussion.

Extrusion:

FlexPDE constructs a three-dimensional domain by extruding a two-dimensional domain into a third
dimension.  This third dimension can be divided into layers, possibly with differing material properties and
boundary conditions in each layer.  The interface surfaces which separate the layers need not be planar,
but there are some restrictions placed on the shapes that can be defined in this way.

The finite element model constructed by FlexPDE in three-dimensional domains is fully general.  The
domain definition process is not.
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2.6.1 The Concept of Extrusion

The fundamental idea of extrusion is quite simple; a square extruded into a third dimension becomes a
cube; a circle becomes a cylinder.  Given spherical layer surfaces, the circle can also become a sphere.  

Note: It is important to consider carefully the characteristics of any given problem, to
determine the orientation most amenable to extrusion.

What happens if we extrude our simple 2D heat flow problem into a third dimension?  Setting the
extrusion distance to half the plate spacing, we get a cylinder imbedded in a brick, as we see in the
following figure:

A cross-section at any value of Z returns the original 2D figure.

A cross-section cut at Y=0 shows the extruded structure:

2.6.2 Extrusion Notation in FlexPDE

Performing the extrusion above requires three basic changes in the 2D script:

The COORDINATES section must specify CARTESIAN3.
A new EXTRUSION section must be added to specify the layering of the extrusion.
PLOTS and MONITORS must be modified to specify any cut planes or surfaces on which the display is
to be computed.
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There are two forms for the EXTRUSION section, the elaborate form and the shorthand form.  In both
cases, the layers of the model are built up in order from small to large Z.

In the elaborate form, the dividing SURFACES and the intervening LAYERS are each named explicitly,
with algebraic formulas given for each dividing surface.  

Note: With this usage, we have overloaded the word SURFACE.  As a plot command, it can
mean a form of graphic output in which the data are presented as a three-dimensional surface;
or, in this new case, it can mean a dividing surface between extrusion layers.  The distinction
between the two uses should be clear from the context.

In the simple case of our extruded cylinder in a square, it looks like this:

EXTRUSION
SURFACE 'Bottom'  z=0

LAYER 'Everything'
SURFACE 'Top'  z=1

The bottom and top surfaces are named, and given simple planar shapes.  

The layer between these two surfaces comprises everything in the domain, so we can name it
'Everything'.

In the shorthand form, we merely state the Z-formulas:

EXTRUSION z = 0, 1

In this case, the layers and surfaces must later be referred to by number.  The first surface, z=0, is
identified as surface 1.  The second surface, z=1, as surface 2.

Notice that there is no distinction, as far as the layer definition is concerned, between the parts of the
layer which are in the cylinder and the parts of the layer which are outside the cylinder.  This distinction is
made by combining the LAYER concept with the REGION concept of the 2D base plane representation. 
In a vertical cross-section we can label the parts as follows:

Notice that the cylinder can be uniquely identified as the intersection of the 'blob' region of the base plane
with the 'Everything' layer of the extrusion.
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2.6.3 Layering

Now suppose that we wish to model a canister rather than a full length cylinder.  This requires that we
break up the material stack above region 2 into three parts, the canister and the continuation of the box
material above and below it.

We do this by specifying three layers (and four interface surfaces): 

EXTRUSION
SURFACE "Bottom"  z=-1/2

LAYER "Underneath"
SURFACE "Can Bottom"  z=-1/4

LAYER "Can"
SURFACE "Can Top"  z=1/4

LAYER "Above"
SURFACE "Top"  z=1/2

We have now divided the 3D figure into six logical compartments: three layers above each of two base
regions.  

Each of these compartments can be assigned unique material properties, and if necessary, unique
boundary conditions.  

The cross section now looks like this:
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It would seem that we have nine compartments, but recall that region 1 completely surrounds the
cylinder, so the left and right parts of region 1 above are joined above and below the plane of the paper.
 This results in six 3D volumes, denoted by the six colors in the figure.

We stress at this point that it is neither necessary nor correct to try to specify each compartment as a
separate entity.  You do not need a separate layer and region specification for each material
compartment, and repetition of identical regions in the base plane or layers in the extrusion will cause
confusion.  

The compartment structure is fully specified by the two coordinates REGION and LAYER, and any
compartment is identified by the intersection of the REGION in the base plane with the LAYER in the
extrusion.

2.6.4 Setting Material Properties by Region and Layer

In our 2D problem, we specified the conductivity of the blob inside the REGION definition for the blob,
and that continues to be the technique in 3D.  

The difference now is that we must also specify the LAYER to which the definition applies.  We do this
with a LAYER qualification clause:

REGION 2 'blob' { the embedded blob }
LAYER 'Can'  K = 0.001
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360

Without the LAYER qualification clause, the definition would apply to all layers lying above region 2 of the
base plane.  Here, the presence of the parameter definition inside a REGION and qualified by a LAYER

selects a specific 3D compartment to which the specification applies.

In the following diagram, we have labeled each of the six distinct compartments with a (region,layer)
coordinate.
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The comprehensive logical structure of parameter redefinitions in the BOUNDARIES section with the
location of parameter redefinition specifications in this grid can be described for the general case as
follows:

BOUNDARIES

REGION 1    
params(1,all) { parameter redefinitions for all layers of region 1 }
LAYER 1  

params(1,1){ parameter redefinitions restricted to layer 1 of region 1 }
LAYER 2  

params(1,2){ parameter redefinitions restricted to layer 2 of region 1 }
LAYER 3  

params(1,3){ parameter redefinitions restricted to layer 3 of region 1 }
START(,)   .... TO CLOSE { trace the perimeter }

REGION 2    
params(2,all) { parameter redefinitions for all layers of region 2 }

LAYER 1  
params(2,1)   { parameter redefinitions restricted to layer 1 of region 2 }

LAYER 2  
params(2,2)   { parameter redefinitions restricted to layer 2 of region 2 }

LAYER 3  
params(2,3)   { parameter redefinitions restricted to layer 3 of region 2 }

START(,)   .... TO CLOSE { trace the perimeter }

{ ... and so forth for all regions }

2.6.5 Void Compartments

The reserved word VOID is treated syntactically the same as a parameter redefinition.  If this word
appears in any of the LAYER-qualified positions above, then that (region,layer) compartment will be
excluded from the domain.

REGION 2 'blob' { the embedded blob }
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LAYER 'Can'  VOID
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360

The example problem "Samples | Usage | 3D_Domains | 3D_Void.pde " demonstrates this usage.

2.6.6 Limited Regions

In what we have discussed so far, the region structure specified in the 2D base plane has been
propagated unchanged throughout the extrusion dimension.  FlexPDE uses the specifier LIMITED

REGION to restrict the defined region to a specified set of layers and/or surfaces.

Instead of propagating throughout the extrusion dimension, a LIMITED REGION exists only in the layers
and surfaces explicitly referenced in the declarations within the region.  Mention of a layer causes the 
LIMITED REGION to exist in the specified layer and in its bounding surfaces.  Mention of a surface
causes the LIMITED REGION to exist in the specified surface.

In our ongoing example problem, we can specify:

LIMITED REGION 2 'blob' { the embedded blob }
LAYER 'Can'  K = 0.001

494
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START 'ring' (R,0) 
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

In this form, the canister is not propagated through the "Above" and "Underneath" layers:

2.6.7 Specifying Plots on Cut Planes

In two-dimensional problems, the CONTOUR, SURFACE, VECTOR, GRID output forms display data
values on the computation  plane.  

In three dimensions, the same displays are available on any cut plane through the 3D figure. The
specification of this cut plane is made by simply appending the equation of a plane to the plot command,
qualified by 'ON':

PLOTS
CONTOUR(Phi) ON x=0

Note: More uses of the ON clause, including plots on extrusion surfaces,  will be discussed
later .

We can also request plots of the computation grid (and by implication the domain structure) with the 

113
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GRID command:

GRID(x,z)  ON y=0

This command will draw a picture of the intersection of the plot plane with the tetrahedral mesh structure
currently being used by FlexPDE.  The plot will be painted with colors representing the distinct material
properties present in the cross-section.  3D compartments with identical properties will appear in the
same color.  The arguments of the GRID plot are the values to be displayed as the abscissa and ordinate
positions.  Deformed grids can be displayed merely by modifying the arguments.

2.6.8 The Complete 3D Canister

With all the described modifications installed, the full script for the 3D canister problem is as follows:

TITLE 'Heat flow around an Insulating Canister'
COORDINATES

Cartesian3
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }

EQUATIONS
Div(-k*grad(phi)) = 0

EXTRUSION
SURFACE 'Bottom'  z=-1/2

LAYER 'underneath'
SURFACE 'Can Bottom'  z=-1/4

LAYER 'Can'
SURFACE 'Can Top'  z=1/4

LAYER 'above'
SURFACE 'Top'  z=1/2

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

LIMITED REGION 2 'blob' { the embedded blob }
LAYER 2 k = 0.001 { the canister only }
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS

GRID(y,z) ON x=0
CONTOUR(Phi) ON x=0
VECTOR(-k*grad(Phi)) ON x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0) { note 3D coordinates }

END
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Since we have specified no boundary conditions on the top and bottom extrusion surfaces, they default
to zero flux.  This is the standard default, for reasons explained in an earlier section.

The first three of the requested PLOTS are:
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2.6.9 Setting Boundary Conditions in 3D

The specification of boundary conditions in 3D problems is an extension of the techniques used in 2D.  

Boundary condition specifications that in 2D applied to a bounding curve are applied in 3D to the
extruded sidewalls generated by that curve.
The qualifier LAYER number or LAYER "name" may be applied to such a sidewall boundary
condition to restrict its application to a specific layer of the sidewall.
Boundary conditions for extrusion surfaces are constructed as if they were parameter redefinitions
over a REGION or over the entire 2D domain.  In these cases, the qualifier SURFACE number or
SURFACE "name" must precede the boundary condition definition.

In the following figure, we have labeled the various surfaces which can be assigned distinct boundary
conditions.  Layer interface surfaces have been labeled with an "s", while sidewall surfaces have been
labeled with "w".  We have shown only a single sidewall intersection in our cross-sectional picture, but in
fact each segment of the bounding trace in the base plane can specify a distinct "w" type wall boundary
condition.
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The comprehensive logical structure of the BOUNDARIES section with the locations of the boundary
condition specifications in 3D can be diagrammed as follows:

BOUNDARIES
SURFACE 1  

s(all, 1)   { BC's on surface 1 over full domain }
SURFACE 2  

s(all, 2)   { BC's on surface 2 over full domain }
{…other surfaces }
REGION 1    

SURFACE 1  
s(1,1) { BC's on surface 1, restricted to region 1 }

SURFACE 2  
s(1,2) { BC's on surface 2, restricted to region 1 }

...
START(,)    { -- begin the perimeter of region m }

w(1,..) { BC's on following segments of sidewall of region 1 on all layers }
LAYER 1  

w(1,1) { BC's on following segments of sidewall of region 1, restricted to layer 1
}

LAYER 2  
w(1,2) { BC's on following segments of sidewall of region 1, restricted to layer 2
}

...
LINE TO ....     
{ segments of the base plane boundary with above BC's }         
LAYER 1  

w(1,1) { new BC's on following segments of sidewall of region 1, restricted to
layer 1 }

...
LINE TO ....
{  continue the perimeter of region 1 with modified boundary conditions }
TO CLOSE

REGION 2
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SURFACE 1  
s(2,1) { BC's on surface 1, restricted to region 2 }

SURFACE 2  
s(2,2) { BC's on surface 2, restricted to region 2 }

...
START(,)    { -- begin the perimeter of region m }

w(2,..) { BC's on following segments of sidewall of region 2 on all layers }
LAYER 1  

w(2,1){ BC's on following segments of sidewall of region 2, restricted to layer
1 }

LAYER 2  
w(2,2){ BC's on following segments of sidewall of region 2, restricted to layer
2 }

...
LINE TO ....     
{ segments of the base plane boundary with above BC's } 

LAYER 1  
w(2,1) { new BC's on following segments of sidewall of region 2, restricted
to layer 1 }

...
LINE TO ...
{  continue the perimeter of region 2 with modified boundary conditions }
TO CLOSE

Remember that, as in 2D, REGIONS appearing later in the script will overlay and cover up portions of
earlier regions in the base plane.  So the real extent of REGION 1 is that part of the base plane within the
perimeter of REGION 1 which is not contained in any later REGION.

For an example of how this works, suppose we want to apply a fixed temperature "Tcan" to the surface
of the canister of our previous example.  The canister portion of the domain has three surfaces, the
bottom, the top, and the sidewall.  

The layer dividing SURFACES that define the bottom and top of the canister are named 'Can Bottom' and
'Can Top'. The part we want to assign is that part of the surfaces which lies above region 2 of the base
plane.  We therefore put a boundary condition statement inside of the region 2 definition, together with a 
SURFACE qualifier.

The sidewall of the canister is the extrusion of the bounding line of REGION 2, restricted to that part
contained in the layer named 'Can'.  So we add a boundary condition to the bounding curve of REGION

2, with a LAYER qualifier.

The modified BOUNDARIES section then looks like this:

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
SURFACE 'Can Bottom' VALUE(Phi)=Tcan
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SURFACE 'Can Top' VALUE(Phi)=Tcan
{ parameter redefinition in the 'Can' layer only: }
LAYER 2 k = 0.001
START 'ring' (R,0) 

{ boundary condition in the 'Can' layer only: }
LAYER 'Can' VALUE(Phi)=Tcan  
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

2.6.10 Shaped Layer Interfaces

We have stated that the layer interfaces need not be planar.  But FlexPDE makes some assumptions
about the layer interfaces, which places some restrictions on the possible figures.

Figures must maintain an extruded shape, with sidewalls and layer interfaces (the sidewalls cannot
grow or shrink)
Layer interface surfaces must be continuous across region boundaries.  If a surface has a vertical
jump, it must be divided into layers, with a region interface at the jump boundary and a layer spanning

the jump. (Not this:    but this:    )
Layer interface surfaces may merge, but may not invert.  Use a MAX or MIN function in the surface
definition to block inversion.
Using these rules, we can convert the canister of our example into a sphere by placing spherical caps
on the cylinder.  
The equation of a spherical end cap is 

Z = Zcenter + sqrt( R^2 – x^2 – y^2)

Or,
Z = Ztop – R + sqrt(R^2 – x^2 – y^2)

To avoid grazing contact of this new sphere with the top and bottom of our former box, we will
extend the extrusion from –1 to 1.
To avoid arithmetic errors, we will prevent negative arguments of the sqrt.

Our modified script now looks like this:

TITLE 'Heat flow around an Insulating Sphere'
COORDINATES

Cartesian3
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { sphere radius }
{ shape of hemispherical cap: }
Zsphere = sqrt(max(R^2-x^2-y^2,0))

EQUATIONS
Div(-k*grad(phi)) = 0

EXTRUSION
SURFACE 'Bottom'  z=-1

LAYER 'underneath'
SURFACE 'Sphere Bottom'  z = -max(Zsphere,0)
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LAYER 'Can'
SURFACE 'Sphere Top'  z = max(Zsphere,0)

LAYER 'above'
SURFACE 'Top'  z=1

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

LIMITED REGION 2 'blob' { the embedded blob }
LAYER 2 K = 0.001
START 'ring' (RSphere,0) 

ARC(CENTER=0,0) ANGLE=360 
TO CLOSE

PLOTS
GRID(y,z) on x=0
CONTOUR(Phi) on x=0
VECTOR(-k*grad(Phi)) on x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0)

END

Cut-away and cross-section images of the LAYER x REGION compartment structure of this layout
looks like this:

     

The contour plot looks like this:
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Notice that because of the symmetry of the 3D figure, this plot looks like a rotation of the 2D contour
plot in "Putting It All Together".

2.6.11 Surface-Generating Functions

FlexPDE includes three surface-generation functions (PLANE, CYLINDER and SPHERE) to simplify the
construction of 3D domains (See Surface Functions  in the Problem Descriptor Reference)

With the SPHERE command, for example, we could modify the Zsphere definition above as 

{ shape of hemispherical cap: }
Zsphere = SPHERE( (0,0,0), R)

We can also build a duct with cylindrical top and bottom surfaces using the following script fragments:

DEFINITIONS
R0 = 1 { cylinder radius }
Len = 3 { cylinder length }
theta = 45 { axis direction in degrees }
c = cos(theta degrees)  { direction cosines of the axis direction }

224
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s = sin(theta degrees)
x0 = -(len/2)*c { beginning point of the cylinder axis }
y0 = -(len/2)*s
zoff = 10     { a z-direction offset for the entire figure }

{ The cylinder function constructs the top surface of a cylinder with azis along z=0.5. The
positive and negative values of this surface will be separated by a distance of one unit at
the diameter. }
zs = CYLINDER((x0,y0,0.5), (x0+Len*c,y0+Len*s, 0.5), R0)      

EXTRUSION
SURFACE z = zoff-zs      { the bottom half-surface }
SURFACE z = zoff+zs      { the top half-surface }

BOUNDARIES
REGION 1

START  (x0,y0) 
LINE TO (x0+R0*c,y0-R0*s) 
TO (x0+Len*c+R0*c,y0+Len*s-R0*s)
TO (x0+Len*c-R0*c,y0+Len*s+R0*s)
TO (x0-R0*c,y0+R0*s)
TO CLOSE

The constructed figure looks like this:

See the example problem "Samples | Usage | 3D_Domains | 3D_Cylspec.pde" for the complete cylinder
script.

2.6.12 Integrals in Three Dimensions

In three-dimensional problems, volume integrals may be computed over volume compartments selected
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by region and layer.

Result = VOL_INTEGRAL(<integrand>)

Computes the integral of the integrand over the entire domain.

Result = VOL_INTEGRAL(<integrand>, <region name>)

Computes the integral of the integrand over all layers of the specified region.

Result = VOL_INTEGRAL(<integrand>, <layer name>)

Computes the integral of the integrand over all regions of the specified layer.

Result = VOL_INTEGRAL(<integrand>, <region name>, <layer name>)

Computes the integral of the integrand over the compartment specified by the region and layer
names.

Result = VOL_INTEGRAL(<integrand>, <region number>, <layer number>)

Computes the integral of the integrand over the compartment specified by the region and layer
numbers.

Surface integrals may be computed over selected surfaces.  From the classification of various qualifying
names, FlexPDE tries to infer what surfaces are implied in a surface integral statement. In the case of
non-planar surfaces, integrals are weighted by the actual surface area.

Result = SURF_INTEGRAL(<integrand>)

Computes the integral of the integrand over the outer bounding surface of the total domain.

Result = SURF_INTEGRAL(<integrand>, <surface name> {, <layer_name>} )  
Computes the integral of the integrand over all regions of the named extrusion surface. If  the
optional <layer_name> appears, it will dictate the layer in which the computation is performed.

Result = SURF_INTEGRAL(<integrand>, <surface name>, <region name> {,
<layer_name>} )  

Computes the integral of the integrand over the named extrusion surface, restricted to the named
region.  If  the optional <layer_name> appears, it will dictate the layer in which the computation is
performed.

Result = SURF_INTEGRAL(<integrand>, <region name>, <layer name>)  
Computes the integral of the integrand over all surfaces of the compartment specified by the region
and layer names.  Evaluation will be made inside the named compartment.

Result = SURF_INTEGRAL(<integrand>, <boundary name> {, <region_name>} )  
Computes the integral of the integrand over all layers of the sidewall generated by the extrusion of
the named base-plane curve. If the optional <region name> argument appears, it controls on
which side of the surface the integral is evaluated.  Portions of the surface that do not adjoin the
named layer will not be computed.
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Result = SURF_INTEGRAL(<integrand>, <boundary name>, <layer name> {,

<region_name>} )  
Computes the integral of the integrand over the sidewall generated by the extrusion of the named
base-plane curve, restricted to the named layer.  If the optional <region name> argument appears,
it controls on which side of the surface the integral is evaluated. Portions of the surface that do not
adjoin the named layer will not be computed.

Note: The example problem "Samples | Usage | 3D_Integrals.pde " demonstrates several
forms of integral in a three-dimensional problem.

Let us modify our Canister problem to contain a heat source, and compare the volume integral of the
source with the surface integral of the flux, as checks on the accuracy of the solution:

TITLE 'Heat flow from an Insulating Canister'
COORDINATES

Cartesian3
VARIABLES

Phi { the temperature }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }
S = 0

EQUATIONS
Div(-k*grad(phi)) = S

EXTRUSION
SURFACE 'Bottom'  z=-1/2

LAYER 'underneath'
SURFACE 'Can Bottom'  z=-1/4

LAYER 'Can'
SURFACE 'Can Top'  z=1/4

LAYER 'above'
SURFACE 'Top'  z=1/2

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=0 LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { option: could be LIMITED }
LAYER 2 k = 0.001 { the canister only }
S = 1 { still the canister }
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS

GRID(y,z) on x=0
CONTOUR(Phi) on x=0
VECTOR(-k*grad(Phi)) on x=0
ELEVATION(Phi) FROM (0,-1,0) to (0,1,0)
SUMMARY

575
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REPORT(Vol_Integral(S,'blob','can')) AS 'Source Integral'
REPORT(Surf_Integral(NORMAL(-k*grad(Phi)),'blob','can')) 

AS 'Can Heat Loss'
REPORT(Surf_Integral(NORMAL(-k*grad(Phi))))

AS 'Box Heat Loss'
REPORT(Vol_Integral(S,'blob','can')-Surf_Integral(NORMAL(-k*grad(Phi))))

AS 'Energy Error'
END

The contour plot is as follows:

The summary page shows the integral reports:
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Note: The "Integral" reported at the bottom of the contour plot is the default
Area_Integral(Phi) reported by the plot processor.

2.6.13 More Advanced Plot Controls

We have discussed the specification of plots on cut planes in 3D.  You can, if you want, apply
restrictions to the range of such plots, much like the restrictions of integrals.

You can also specify plots on extrusion SURFACES (layer interface surfaces), even though these surfaces
may not be planar.

The basic control mechanism for plots is the ON <thing> statement.

For example, the statement

CONTOUR(Phi) ON 'Sphere Top' ON 'Blob'

requests a contour plot of the potential Phi on the extrusion surface named 'Sphere Top', restricted to the
region 'Blob'.

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob' ON 'Can'

requests a contour plot of the normal component of the heat flux on the top part of the sphere, with
evaluation to be made within layer 'Can', i.e., inside the sphere.

In general, the qualifier  ON <name>  will request a localization of the plot, depending on the type of
object named by <name>.
The qualifier  ON REGION <number>  selects a region by number, rather than by name.
The qualifier  ON SURFACE <number>  selects a layer interface surface by number, rather than by
name.
The qualifier  ON LAYER <number>  selects a layer by number, rather than by name.

As an example, let us request a plot of the heat flux on the top of the sphere, as shown above.  We will
add this command to the PLOTS section, and also request an integral over the same surface, as a cross
check.  The plot generator will automatically compute the integral over the plot grid. This computation
should give the same result as the SURF_INTEGRAL, which uses a quadrature on the computation mesh.  

CONTOUR(NORMAL(-K*GRAD(Phi))) ON 'Sphere Top' ON 'Blob' ON 'Can'
REPORT(SURF_INTEGRAL(NORMAL(-k*GRAD(Phi)),'Sphere Top','Blob','Can')) 

AS 'Surface Flux'

The result looks like this:
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Since in this case the integral is a cancellation of values as large as 7e-4, the reported "Surface Flux"
value of -5.2e-8 is well within the default error target of ERRLIM=0.002.  The automatically generated
plot grid integral, "Surf_Integral", shows greater error at -6.49e-5, due to poorer resolution of integrating
the area-weighted function in the plot plane.

2.7 Complex Variables

In previous versions of FlexPDE, it has been possible to treat complex variables and equations by
declaring each component as a VARIABLE and writing a real PDE for each complex component.

In version 6 and later, FlexPDE understands complex variables and makes provision for treating them
conveniently.

The process starts by declaring a variable to be COMPLEX, and naming its components:

VARIABLES
C = COMPLEX(Cr,Ci)

Subsequently, the complex variable C can be referenced by name, or its components can be accessed
independently by their names.
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In the EQUATIONS section, each complex variable can be given an equation, which will be interpreted as
dealing with complex quantities.  The complex equation will be processed by FlexPDE and reduced to
two real component equations, by taking the real and imaginary parts of the resulting complex equation.

For example, the time-harmonic representation of the heat equation can be presented as

EQUATIONS
C:   DIV(k*GRAD(C)) - COMPLEX(0,1)*C = 0

Alternatively, the individual components can be given real equations:

EQUATIONS
Cr:  DIV(k*GRAD(Cr)) + Ci = 0
Ci:  DIV(k*GRAD(Ci)) - Cr = 0

In a similar way, boundary conditions may be assigned either to the complex equation or to each
component equation individually:

VALUE(C) = COMPLEX(1,0) assigns 1 to the real part and 0 to the imaginary part of C 
or

VALUE(Cr) = 0   NATURAL(Ci) = 0

Any parameter definition in the DEFINITIONS section may be declared COMPLEX as well:

DEFINITIONS
complexname = COMPLEX(realpart, imaginarypart)

FlexPDE recognizes several fundamental complex operators :

REAL ( complex ) Extracts the real part of the complex number.
IMAG ( complex ) Extracts the imaginary part of the complex number.
CARG ( complex ) Computes the Argument (or angular component) of the complex

number, implemented as CARG(complex(x,y)) = Atan2(y,x).

CONJ ( complex ) Returns the complex conjugate of the complex number.
CEXP ( complex ) Computes the complex exponential of the complex number, given by 

CEXP(complex(x,y)) = exp(x+iy) = exp(x)*(cos(y)+i*sin(y)).

COMPLEX quantities can be the arguments of PLOT commands, as well.  Occurrence of a complex
quantity in a PLOT statement will be interpreted as if the real and imaginary parts had been entered
separately in the PLOT command.

ELEVATION(C) FROM A TO B

will produce a plot with two traces, the real and imaginary parts of C.

169
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2.7.1 The Time-Sinusoidal Heat

Suppose we wish to discover the time-dependent behavior of our example Cartesian blob  due to the
application of a time-sinusoidal applied temperature.

The time-dependent heat equation is Div(K*Grad(Phi)) = Cp*dt(Phi)

If we assume that the boundary values and solutions can be represented as

Phi(x,y,t) = Cphi(x,y)*exp(i*omega*t)

Substituting in the heat equation and dividing out the exponential term, we are left with a complex
equation

Div(K*Grad(Cphi)) - Complex(0,1)*Cphi = 0

The time-varying temperature Phi can be recovered from the complex Cphi simply by multiplying by the
appropriate time exponential and taking the real part of the result.

The modified script becomes:

TITLE 'Heat flow around an Insulating blob'
VARIABLES

Phi = Complex(Phir,Phii) { the complex temperature amplitude }
DEFINITIONS

K = 1 { default conductivity }
R = 0.5 { blob radius }

EQUATIONS
Phi:  Div(-k*grad(phi)) - Complex(0,1)*Phi = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=Complex(0,0) LINE TO (1,-1)
NATURAL(Phi)=Complex(0,0) LINE TO (1,1)
VALUE(Phi)=Complex(1,0) LINE TO (-1,1)
NATURAL(Phi)=Complex(0,0) LINE TO CLOSE

REGION 2  'blob' { the embedded blob }
k = 0.01 { change K for prettier pictures }
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360 TO CLOSE
PLOTS

CONTOUR(Phir)  CONTOUR(Phii)
VECTOR(-k*grad(Phir))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phir))) ON 'ring'

END

Running this script produces the following results for the real and imaginary components:

58
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The ELEVATION trace through the center shows:
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2.7.2 Interpreting Time-Sinusoidal Results

Knowledge of the real and imaginary parts of the complex amplitude function is not very informative. 
What we really want to know is what the time behavior of the temperature is.  We can investigate this
with the help of some other facilities of FlexPDE 6.

We can examine distributions of the reconstructed temperature at selected times using a REPEAT

statement 

PLOTS
REPEAT tx=0 BY pi/2 TO 2*pi

SURFACE(Phir*cos(tx)+Phii*sin(tx)) as "Phi at t="+$[4]tx
ENDREPEAT

We can also reconstruct the time history at selected positions using ARRAYS .  The ARRAY facility
allows us to declare arbitrary arrays of values, manipulate them and plot them.

We will declare an array of time points at which we wish to evaluate the temperature, and compute the
sin and cos factors at those times.  We also define an ARRAY-valued function to return the time history at
a point:

DEFINITIONS

200
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ts = ARRAY (0 BY pi/20 TO 2*pi) { An array of 40 times }
fr = cos(ts)     fi = sin(ts) { the arrays of trigonometric factors }
poft(px, py) = EVAL(phir,px,py)*fr + EVAL(phii,px,py)*fi

PLOTS
ELEVATION(poft(0,0), poft(0,0.2), poft(0,0.4), poft(0,0.5)) VS ts  

AS "Histories" 

Two of the plots produced by the addition of these script lines are:
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2.8 Vector Variables

FlexPDE supports the definition of VECTOR variables.  Each VECTOR variable is assumed to have a
component in each of the three spatial coordinates implied by the COORDINATES  section in the
script, regardless of the number of dimensions represented in the computation domain.

For example, you can construct a one-dimensional spherical model of three vector directions.  Values
will be assumed to vary only in the radial direction, but they can have components in the polar and
azimuthal directions, as well.

The use of VECTOR variables begins by declaring a variable to be a VECTOR , and naming its
components:

VARIABLES
V = VECTOR(Vx,Vy,Vz)

The component directions are associated by position with the directions implicit in the selected 
COORDINATES.  In YCYLINDER (R,Z,Phi) coordinates, the vector components will be (Vr,Vz,Vphi).

Components may be omitted from the right, in which case the missing components will be assumed to
have zero value.

193
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A component may be explicitly declared to have zero value, by writing a 0 in its component position, as
in 

V = VECTOR(0,0,Vphi)

This will construct a one-variable model, in which the variable is the azimuthal vector component.

Subsequently, the vector variable V can be referenced by name, or its components can be accessed
independently by their names.

In the EQUATIONS section, each vector variable can be given an equation, which will be interpreted as
dealing with vector quantities.  The vector equation will be processed by FlexPDE and reduced to as
many real component equations as are named in the declaration, by taking the corresponding parts of the
resulting vector equation.

For example, the three dimensional cartesian representation of the Navier-Stokes equations can be
presented as  

EQUATIONS
V:  dens*DOT(V,GRAD(V)) + GRAD(p) - visc*DIV(GRAD(V)) = 0

Alternatively, the individual components can be given real equations:

EQUATIONS
Vx:  dens*(Vx*DX(Vx)+Vy*DY(Vx)+Vz*DZ(Vx)) + DX(p) - visc*DIV(GRAD(Vx)) = 0
Vy:  dens*(Vx*DX(Vy)+Vy*DY(Vy)+Vz*DZ(Vy)) + DY(p) - visc*DIV(GRAD(Vy)) = 0
Vz:  dens*(Vx*DX(Vz)+Vy*DY(Vz)+Vz*DZ(Vz)) + DZ(p) - visc*DIV(GRAD(Vz)) = 0

In a similar way, boundary conditions may be assigned either to the complex equation or to each
component equation individually:

VALUE(V) = VECTOR(1,0,0)

or

VALUE(Vx) = 0   NATURAL(Vy) = 0

Any parameter definition in the DEFINITIONS section may be declared VECTOR as well:

DEFINITIONS
vectorname = VECTOR(xpart,ypart,zpart)

VECTOR quantities can be the arguments of PLOT commands, as well.  Occurrence of a vector quantity
in a PLOT statement will be interpreted as if the component parts had been entered separately in the
PLOT command.

ELEVATION(V) FROM A TO B

will produce a plot with as many traces as are active in the COORDINATES definition.

Examples:
Samples | Usage | Vector_Variables | Vector_Variables.pde 645
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2.8.1 Curvilinear Coordinates

An aspect of vector variables in curvilinear coordinates that is sometimes overlooked is that the
derivative of a vector is not necessarily the same as the vector of derivatives of the components.  This is
because in differentiating a vector, the unit vectors in the coordinate space must also be differentiated.

In cylindrical (R,Phi,Z) coordinates, for example, the radial component of the Laplacian of a vector V is

DEL2(Vr) - Vr/R^2 - 2*DPHI(Vphi)/R^2

The extra 1/R^2 terms have arisen from the differentiation of the unit vectors.

FlexPDE performs the correct expansion of the differential operators in all supported coordinate
systems.

2.8.2 Magnetic Vector Potential

Our Cylindrical torus problem  can easily be converted to a model of a current-carrying torus inside a
box.

The geometry is unchanged, but we now solve for the magnetic vector potential A.  We will also move
the location slightly outward in radius to avoid the singularity at R=0.

Maxwell's equation for the magnetic field can be expressed in terms of the magnetic vector potential as

Curl(Curl(A)/mu) = J

Here J is the vector current density and mu is the magnetic permeability.

The script becomes

TITLE 'Magnetic Field around a Current-Carrying Torus'
COORDINATES YCYLINDER { implicitly R,Z,Phi }
VARIABLES

A = VECTOR(0,0,Aphi)
DEFINITIONS

J = VECTOR(0,0,0) { default current density }
mu = 1
Rad = 0.5 { blob radius (renamed)}

EQUATIONS
A:  CURL(CURL(A)/mu)) = J

BOUNDARIES
REGION 1 'box'

START(1,-1) 
VALUE(A)=VECTOR(0,0,0)
LINE TO (3,-1) TO (3,1) TO (1,1) TO CLOSE

REGION 2 'blob' { the torus }
J = VECTOR(0,0,1) { current in the torus }
START 'ring' (2,Rad) 

ARC(CENTER=2,0) ANGLE=360 TO CLOSE
PLOTS

68
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CONTOUR(Aphi)  as "Vector Potential"
VECTOR(CURL(A)) as "Magnetic Induction"
ELEVATION(Aphi) ON 'ring' 

END

The resulting plots are:



FlexPDE 7 : User Guide125



User Guide : Vector Variables 126

2.9 Variables Inactive in Some Regions

FlexPDE supports the ability to restrict some variables and equations to act only in specified REGIONS. 
This feature is controlled by declaring variables to be INACTIVE in some regions.

VARIABLES
    var1, var2 {,...}
BOUNDARIES
  REGION 1
    INACTIVE(var1, var2 {,...} )

In solving the EQUATIONS for these variables, it will be as if the INACTIVE regions had not been
included in the domain definition.  Boundaries between regions in which the variables are active and
those in which they are inactive will be treated as exterior boundaries for these variables.  Boundary
conditions may be placed on these boundaries as if they were the exterior boundary of the system.

2.9.1 A Chemical Beaker

As an example of Regionally Inactive Variables, let us use the Cartesian Blob  test problem, and58
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modify it to represent a chemical beaker immersed in a cooling bath.

Inside the beaker we will place chemicals A and B that react to produce heat.  Temperature will be
allowed to diffuse throughout the beaker and into the cooling bath, but the chemical reactions will be
confined to the beaker.  The cooling bath itself is insulated on the outer wall, so no heat escapes the
system.  The modified script is as follows:

TITLE "A Chemical Beaker"
VARIABLES

Phi(0.1) { the temperature }
A(0.1), B(0.1) { the chemical components }

DEFINITIONS
Kphi = 1 { default thermal conductivity }
Ka = 0.01 Kb = 0.001 { chemical diffusivities }
H = 1 { Heat of reaction }
Kr = 1+exp(3*Phi) { temperature dependent reaction rate }
Cp = 1 { heat capacity of mixture }
R = 0.5 { blob radius }
A0 = 1     B0 = 2 { initial quantities of chemicals }

INITIAL VALUES
A = A0
B = B0

EQUATIONS
    Phi: Div(kphi*grad(phi)) + H*kr*A*B = Cp*dt(phi)
    A:   Div(ka*grad(A)) - kr*A*B = dt(A)
    B:   Div(kb*grad(B)) - kr*A*B = dt(B)
BOUNDARIES

REGION 1 'box'
INACTIVE(A,B) { inactivate chemicals in the outer region }
START(-1,-1) 

NATURAL(Phi)=0
LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE

REGION 2  'blob' { the embedded blob }
kphi = 0.02
START 'ring' (R,0) 

ARC(CENTER=0,0) ANGLE=360 TO CLOSE
TIME 0 TO 40
PLOTS

FOR t=0.1, 0.2, 0.3, 0.5, 1, 2, 5, 10, 20, ENDTIME
SURFACE(Phi)
SURFACE(A)
HISTORY(Phi) AT (0,0) (0,0.4) (0,0.49) (0,0.6) 
REPORT integral(Phi)/integral(1) AS "Average Phi"
REPORT integral(B,'blob')/integral(1,'blob') as "Residual B"

END
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This plot of temperature shows diffusion beyond the boundaries of the beaker.
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This plot of concentration A shows depression in the center where higher temperature increases the
reaction rate.  No chemical diffuses beyond the beaker boundary.
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This plot of temperature history shows an average value of 0.196348.  This agrees favorably with the
energy conservation value of H*pi*Rad^2/(Cp*Box^2) = 0.196350.  The residual quantity of B is
correct at 1.0.

2.10 Moving Meshes

FlexPDE supports methods for moving the domain boundaries and computation mesh during the course
of a problem run.

The mechanisms for specifying this capability are simple extensions of the existing script language. There
are three parts to the definition of a moving mesh:

Declare a surrogate variable for each coordinate you wish to move:

VARIABLES
Xm = MOVE(x)

Write equations for the surrogate variables: 
EQUATIONS

dt(xm) = umesh

Write boundary conditions for the surrogate variables: 
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BOUNDARIES
START (0,0) VELOCITY(xm) = umesh

The specification of ordinary equations is unaffected by the motion of the boundaries or mesh. 
EQUATIONS are assumed to be presented in Eulerian (Laboratory) form.  FlexPDE symbolically
applies motion correction terms to the equations.  The result of this approach is an Arbitrary Lagrange/
Eulerian (ALE) model, in which user has the choice of mesh velocities:

Locking the mesh velocity to a fluid velocity results in a Lagrangian model. (FlexPDE has no
mechanism for reconnecting twisted meshes, so this model is discouraged in cases of violent motion).

Specifying a mesh velocity different from the fluid velocity preserves mesh integrity while still allowing
deformation of the bounding surfaces or following bulk motion of a fluid.

If no mesh motion is specified, the result is an Eulerian model, which has been the default in previous
versions of FlexPDE.

EULERIAN and LAGRANGIAN EQUATIONS

The EQUATIONS section is assumed to present equations in the Eulerian (Laboratory) frame.

The EQUATIONS section can optionally labeled LAGRANGIAN EQUATIONS, in which case
FlexPDE will apply no motion corrections to the equations.  The user must then provide equations that
are appropriate to the moving nodes.

For clarity, the section label EULERIAN EQUATIONS can be used to specify that the equations are
appropriate to the laboratory reference frame.  This is the default interpretation.

2.10.1 Mesh Balancing

A convenient method for distributing the computation mesh smoothly within a moving domain boundary
is simply to diffuse the coordinates or the mesh velocities.

For example, suppose we change our basic example problem to model a sphere of oscillating size
Rm=0.5 + 0.25*cos(t).

Diffusing Mesh Coordinates

We define surrogate coordinates for X and Y:

VARIABLES 
Phi
Xm = MOVE(x)
Ym = MOVE(y)

For the EQUATIONS of the mesh coordinates, we will use simple diffusion equations to distribute the
positions smoothly in the interior, expecting the actual motions to be driven by boundary conditions:
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Div(Grad(Xm)) = 0
Div(Grad(Ym)) = 0

We can apply the boundary velocities directly to the mesh coordinates on the blob surface using the time
derivative of R and geometric rules:

VELOCITY(Xm) = -0.25*sin(t)*x/r
VELOCITY(Ym) = -0.25*sin(t)*y/r

Diffusing Mesh Velocities

Alternatively, we can define mesh velocity variables as well as the surrogate coordinates for X and Y:

VARIABLES 
Phi
Xm = MOVE(x)
Ym = MOVE(y)
Um 
Vm

The EQUATIONS for the mesh coordinates are simply the velocity relations:

dt(Xm) = Um
dt(Ym) = Vm

For the mesh velocities we will use a diffusion equation to distribute the velocities smoothly in the interior:

div(grad(Um)) = 0
div(grad(Vm)) = 0

The boundary conditions for mesh velocity on the blob are as above:

VALUE(Um) = -0.25*sin(t)*x/r
VALUE(Vm) = -0.25*sin(t)*y/r

Since the finite element equations applied at the boundary nodes are averages over the cells, we must
also apply the hard equivalence of velocity to the mesh coordinates on the blob boundary

VELOCITY(Xm) = Um
VELOCITY(Ym) = Vm

2.10.2 The Pulsating Blob

Using the position balancing form from the preceding paragraph, the modified script for our example
problem becomes:

TITLE 'Heat flow around an Insulating blob'
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VARIABLES
Phi { the temperature }
Xm = MOVE(x) { surrogate X }
Ym = MOVE(y) { surrogate Y }

DEFINITIONS
K = 1 { default conductivity }
R0 = 0.75 { initial blob radius }

EQUATIONS
Phi: Div(-k*grad(phi)) = 0
Xm: div(grad(Xm)) = 0
Ym: div(grad(Ym)) = 0

BOUNDARIES
REGION 1 'box'

START(-1,-1) 
VALUE(Phi)=0 VELOCITY(Xm)=0 VELOCITY(Ym)=0
LINE TO (1,-1)
NATURAL(Phi)=0 LINE TO (1,1)
VALUE(Phi)=1 LINE TO (-1,1)
NATURAL(Phi)=0 LINE TO CLOSE

REGION 2 'blob' { the embedded blob }
k = 0.001
START 'ring' (R,0) 

VELOCITY(Xm) = -0.25*sin(t)*x/r
VELOCITY(Ym) = -0.25*sin(t)*y/r
ARC(CENTER=0,0) ANGLE=360 TO CLOSE

TIME 0 TO 2*pi
PLOTS

FOR T = pi/2 BY pi/2 TO 2*pi
GRID(x,y)
CONTOUR(Phi)
VECTOR(-k*grad(Phi))
ELEVATION(Phi) FROM (0,-1) to (0,1)
ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

The extremes of motion of this problem are shown below. See Help system or online documentation for
an animation.
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The position and velocity forms of this problem can be seen in the following examples:

Samples | Usage | Moving_Mesh | 2D_Blob_Position.pde

Samples | Usage | Moving_Mesh | 2D_Blob_Velocity.pde

Three-dimensional forms of the problem can be seen in the following examples:

Samples | Usage | Moving_Mesh | 3D_Blob_Position.pde

Samples | Usage | Moving_Mesh | 3D_Blob_Velocity.pde

2.11 Controlling Mesh Density

There are several mechanisms available for controlling the cell density in the mesh created by FlexPDE.

Implicit Density

The cell density of the created mesh will follow the spacing of points in the bounding segments.  A very
small segment in the boundary will cause a region of small cells in the vicinity of the segment.

Maximum Density

The global command

SELECT NGRID = <number>   

controls the maximum cell size.  The mesh will be generated with approximately NGRID cells in the
largest dimension, and corresponding size in the smaller dimension, subject to smaller size requirements
from other criteria.  

Explicit Density Control

Cell density in the initial mesh may be controlled with the parameters MESH_SPACING  and
MESH_DENSITY .  MESH_SPACING controls the maximum cell dimension, while MESH_DENSITY is
its inverse, controlling the minimum number of cells per unit distance.  The mesh generator examines
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many competing effects controlling cell size, and accepts the smallest of these effects as the size of a cell.
 The MESH_SPACING and MESH_DENSITY controls therefore have effect only if they are the smallest of
the competing influences, and a large spacing request is effectively ignored.

The MESH_SPACING and MESH_DENSITY controls can be used with the syntax of either defined
parameters or boundary conditions.

Used as defined parameters, these controls may appear in the DEFINITONS section or may be redefined
in subsequent regional redefinition sections.  In this use, the controls specify the volume or area mesh
density over a region or over the entire domain.

For controlling the cell density along boundary segments, the controls MESH_SPACING and
MESH_DENSITY may be used with the syntax of boundary conditions, and may appear wherever a
boundary condition statement may appear.  In this usage, the controls specify the cell spacing on the
boundary curve or surface.

The value assigned to MESH_SPACING or MESH_DENSITY controls may be functions of spatial
coordinate.  In the example of the chapter "Generating a Mesh" , we could write:

REGION 2 'blob' { the embedded 'blob' }
MESH_DENSITY = 50*EXP(-50*(x^2+y^2))
START(1/2,0) 

ARC(CENTER=0,0) ANGLE=360

This results in the following initial mesh:

See also the example problems 

"Samples | Usage | Mesh_Control | Mesh_Spacing.pde"  

"Samples | Usage | Mesh_Control | Mesh_Density.pde"

Adaptive Mesh Refinement
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Once the initial mesh is constructed, FlexPDE will continue to estimate the solution error, and will refine
the mesh as necessary to meet the target accuracy.  In time dependent problems, an adaptive refinement
process will also be applied to the initial values of the variables, to refine the mesh where the variables
undergo rapid change.  Whereas cells created by this adaptive refinement  process can later be re-
merged, cells created by the initial explicit density controls are permanent, and cannot be un-refined.

Note: The adaptive refinement process relies on evaluation of the various sources and
derivatives at discrete points within the existing mesh.  Sources or other effects which are of
extremely small extent, such as thin bands or point-like functions, may not be discernible in
this discrete model.  Any effects of small extent should be brought to the attention of the
gridder by explicitly placing gridding features at these locations.  Use REGIONS or FEATURES

 wherever something interesting is known to take place in the problem. 

See also the FRONT  and RESOLVE  statements for additional controls.

2.12 Post-processing with FlexPDE

FlexPDE can be used to import both data and mesh structure from a previous run's TRANSFER  and
perform post-processing without gridding or solving any equations.

This is easily accomplished in a step-wise process:

Make a copy of the script that generated the exported data.  This will ensure that you have the same
domain structure in your post-processing script as you did in the exporting script.

Remove the VARIABLES  and EQUATIONS  sections.  This is how FlexPDE will know not to
try and solve any equations.

Remove any boundary conditions stated in the BOUNDARIES  section.  Since the variables have
been removed, any boundary condition statements will generate a parse error.

Add the TRANSFERMESH  statement in the DEFINITIONS  section.  This will read in the
exported mesh and data.

Add any new PLOTs  that you desire.  Now you can easily add plots that were not requested in the
initial run, without having to rerun the original script.  This is especially useful when you have a
computation that takes a lot of time.

Note: The domain structure must exactly match that of the exporting problem. 

Examples:

"Samples | Usage | Import-Export | Post_Processing.pde"

"Samples | Usage | Import-Export | 3D_Post_Processing.pde"
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2.13 Exporting Data to Other Applications

FlexPDE supports several mechanisms for exporting data to other applications or visualization software.
 

The EXPORT Qualifier

The simplest method is to append the modifier "EXPORT" (or "PRINT") to a plot command.  In this case,
the plot data will be written to a text file in a predefined format suitable for importing to another FlexPDE
problem using the TABLE input function.  For ELEVATIONS or HISTORIES, the output will consist of a
list of the times or X-, Y- or Z- coordinates of the data followed by a list of the data values (see the
description of the TABLE input function).  For 2D plots, a regular rectangular grid will be constructed,
and the data written in TABLE input format.

The FORMAT String

The format of the text file created by the EXPORT modifier may be controlled by the inclusion of the
modifier FORMAT "string".  
If this modifier appears together with the EXPORT or PRINT modifier, then the file will contain one text
line for each data point in the grid.  The contents of the line will be exactly that specified by the 
string.  

All characters except "#" will be copied literally into the output line.
"#" will be interpreted as an escape character, and various options will be selected by the character
following the "#":  
 #x, #y, #z and #t will print the value of the spatial coordinates or time of the data point;  
 #1 through #9 will print the value of the corresponding element of the plot function list; 
 #b will write a tab character;  
 #r will cause the remainder of the format string to be repeated for each plot function in the plot list;  
 #i inside a repeated string will print the value of the current element of the plot function list.  

In all cases of FORMATTED export, a header will be written containing descriptive information about the
origin of the file.  This header will be delimited by "{" and "}".  In 2D grids, table points which are outside
the problem domain will also be bracketed by "{" and "}" and marked as "exterior".  If these commenting
forms are unacceptable to the importing application, then the data files must be manually edited before
import.

TABLE Output

The TABLE  plot command may also be used to generate tabular export.  This command is identical to
a CONTOUR command with an EXPORT qualifier, except that no graphical output is generated.  The
FORMAT "string" qualifier may also be used with TABLE output.

Transferring Data to another FlexPDE problem

208
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FlexPDE supports the capability of direct transfer of data defined on the Finite Element mesh.  The 
TRANSFER output function writes the current mesh structure and the requested data values to an ASCII
text file.  Another FlexPDE problem can read this file with the TRANSFER input function.  The
transferred data will be interpolated on the output mesh with the Finite Element basis of the creating
problem.  The TRANSFER input mesh need not be the same as the computation mesh, as long as it spans
the necessary area.

The data format of the TRANSFER file is similar to the TECPLOT file described below.  The TRANSFER

file, however, maintains the quadratic or cubic basis of the computation, while the TECPLOT format is
converted to linear basis.  Since this is an ASCII text file, it can also be used for data transfer to user-
written applications.  The format of the TRANSFER file is described in the Problem Descriptor Reference
chapter "Transfer File Format "

Output to Visualization Software

FlexPDE can export solution data to third-party visualization software.  Data export is requested by
what is syntactically a PLOT command, with the type of plot (such as CONTOUR) replaced by the format
selector.  Two formats are currently supported, CDF and TECPLOT.  

CDF

CDF(arg1 [,arg2,…] )  selects output in netCDF version 3 format.  CDF stands for "common data
format", and is supported by several software products including SlicerDicer (www.visualogic.com ). 
Information about CDF, including a list of software packages supporting it, can be viewed at the website
www.unidata.ucar.edu/packages/netcdf .

CDF data are constrained to be on a regular rectangular mesh, but in the case of irregular domains, parts
of the rectangle can be absent.  This regularity implies some loss of definition of material interfaces, so
consider using a ZOOMed domain to resolve small features.  

The CDF "plot" statement can be qualified by ZOOM or  "ON SURFACE" modifiers, and its density can be
controlled by the POINTS modifier.  For global control of the grid size, use the statement "SELECT

CDFGRID=n", which sets all dimensions to n.  The default gridsize is 50.

Any number of arguments can be given, and all will be exported in the same file.  The output file is by
default "<problem>_<sequence>.cdf", but specific filenames can be selected with the FILE modifier.

TECPLOT

TECPLOT(arg1 [,arg2,…] ) selects output in TecPlot format.  TecPlot is a visualization package which
supports finite element data format, and so preserves the material interfaces as defined in FlexPDE.  No 
ZOOM or POINTS control can be imposed.  The full computation mesh is exported, grouped by material
number.  TecPlot can selectively enable or disable these groups.  Any number of arguments can be
given, and all will be exported in the same file.  The output file is by default
"<problem>_<sequence>.dat", but specific filenames can be selected with the FILE modifier.

261
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Information about TecPlot can be viewed at www.amtec.com .

VTK

VTK(arg1 [,arg2,…] ) selects output in Visual Tool Kit format.  VTK is a freely available library of
visualization software, which is beginning to be used as the basis of many visualization packages.  The file
format can also be read by some visualization packages that are not based on VTK, such as VisIt
(www.llnl.gov/visit).  The format preserves the mesh structure of the finite element method, and so
preserves the material interfaces as defined in FlexPDE.  No ZOOM or POINTS control can be imposed.
 The full computation mesh is exported.  Particular characteristics of the visualization system are outside
the control of FlexPE.  Any number of arguments can be given, and all will be exported in the same file. 
The output file is by default "<problem>_<sequence>.vtk", but specific filenames can be selected with
the FILE modifier.

The VTK format supports quadratic finite element basis directly, but not cubic.  To export from cubic-
basis computations, use VTKLIN.

VTKLIN(arg1 [,arg2,…] ) produces a VTK format file in which the native cells of the FlexPDE
computation have been converted to a set of linear-basis finite element cells.  

Information about VTK can be viewed at public.kitware.com/VTK/.

Examples:
Samples | Usage | Import-Export | Export.pde

Samples | Usage | Import-Export | Export_Format.pde

Samples | Usage | Import-Export | Export_History.pde

Samples | Usage | Import-Export | Transfer_Export.pde

Samples | Usage | Import-Export | Transfer_Import.pde

Samples | Usage | Import-Export | Table.pde

Note: 

Reference to products from other suppliers does not constitute an endorsement by PDE Solutions Inc.

2.14 Importing Data from Other Applications

The TABLE  facility can be used to import data from other applications or from manually created data
lists.
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Suppose that in our example problem  we wish to define a thermal conductivity that varies with
temperature (called "Phi" in the example script).  We could simply define a temperature-dependent
function for the conductivity.  But if the dependency is derived from observation, there may be no simple
analytic relationship.  In this case, we can use a TABLE to describe the dependency.

A table file describing conductivity vs temperature might look like this:

{ Conductivity vs temperature }
Phi  6
1 2 10 22 67 101
Data
0.01  0.02  0.05  0.11  0.26  3.8

Supposing that we have named this file "conductivity.tbl", our script will simply include the following
definition:

K = TABLE("conductivity.tbl")

Notice that within the table file, the name Phi is declared as the table coordinate.  When FlexPDE reads
the table file, this name is compared to the names of defined quantities in the script, and the connection is
made between the data in the table and the value of "Phi" at any point in the computation where a value
of "K" is required.

If the table file had defined the table coordinate as, say, "Temp", we could still use the table in our
example by over-riding the table file definition with a new dependency coordinate:

K = TABLE("conductivity.tbl", Phi)

This statement would cause FlexPDE to ignore the name given in the file itself and associate the table
coordinate with the local script value "Phi".

Other forms of TABLE command are available.  See the Problem Descriptor Reference chapter "Table
Import Definitions"  for more information.

2.15 Using ARRAYS and MATRICES

FlexPDE includes expanded capabilities for using ARRAYS and MATRICES.

ARRAYS  and MATRICES  differ from other objects in FlexPDE, such as VARIABLES or VECTORS,
in that no assumptions are made about associations between the ARRAY or MATRIX and the geometry or
mesh structure of the PDE model.  ARRAYS and MATRICES are simply lists of numbers which can be
defined, manipulated and accessed independently of any domain definition or coordinate geometry.
Typically, an ARRAY is created and filled with data using one of the available declaration statements, e.g.,

A = array(1,2,3,4,5,6,7,8,9,10)
B = array for x(0 by 0.1 to 10)  : sin(x)+1.1

New ARRAYS can be created by performing arithmetic operations on existing arrays:
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C = exp(A) { each element of C is the exponential of the corresponding element of
A }
D = C+A { each element of D is the sum of the corresponding elements of C and A }
E = 100*B { each element of E is 100 times the corresponding element of B }

Elements can be accessed individually by indexing operations:

E[12] = B[3]+9

ARRAYS can be used in PLOT statements:

ELEVATION (D) VS A

Similarly, MATRICES can be created and filled with data using one of the available declaration
statements, e.g.,

M = MATRIX((1,2,3),(4,5,6),(7,8,9))
N = MATRIX FOR x(0 BY 0.1 TO 10)

FOR y(0 BY 0.1 TO 10) : sin(x)*sin(y)+1.1

New ARRAYS or MATRICES can be created by performing element-by-element arithmetic operations
on existing ARRAYS and MATRICES:

P = 1/M { each element of matrix P is the reciprocal of the corresponding element of
M }
Q = P+M

The special operators ** and // are defined for specifying conventional matrix-array arithmetic:

R = N**B { R is an ARRAY representing the conventional matrix-array multiplication of B
by N }
S = B//N { S is the solution of the equation N**S=B (i.e., S is the result of multiplying B
by the inverse of N) }

Elements of MATRICES can be accessed individually by indexing operations:

U = N[3,9]

ARRAYS and MATRICES may also be used to define domain boundaries.  See "Boundary Paths"  in
the Problem Descriptor Reference.

All operations on ARRAYS and MATRICES are checked for compatible sizes, and incompatibilities will
be reported as errors.

Note: You must remember that the FlexPDE script is not a procedural program.  Objects in
the script describe the dependencies of quantities, and are not "current state" records of
values that can be explicitly modified by subsequent redefinition or looping.

Examples:

See the example folder "Samples | Usage | Arrays+Matrices"  
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2.16 Solving Nonlinear Problems

FlexPDE automatically recognizes when a problem is nonlinear and modifies its strategy accordingly. 
The solution method used by FlexPDE is a modified Newton-Raphson iteration procedure.  This is a
"descent" method, which tries to fall down the gradient of an energy functional until minimum energy is
achieved (i.e. the gradient of the functional goes to zero). If  the functional is nearly quadratic, as it is in
simple diffusion problems, then the method converges quadratically (the relative error is squared on each
iteration).  The default strategy implemented in FlexPDE is frequently sufficient to determine a solution
without user intervention.  But in cases of strong nonlinearities, it may be necessary for the user to help
guide FlexPDE to a valid solution.  There are several techniques that can be used to help the solution
process.

Time-Dependent Problems

In nonlinear time-dependent problems, the default behavior is to take a single Newton step at each
timestep, on the assumption that any nonlinearities will be sensed by the timestep controller, and that
timestep adjustments will guarantee an accurate evolution of the system from the given initial conditions.
In this mode, the derivatives of the solution with respect to the variables is computed once at the
beginning of the timestep, and are not updated.

Steady-State Problems

In the case of nonlinear steady-state problems, the situation is somewhat more complicated.  We are not
guaranteed that the system will have a unique solution, and even if it does, we are not guaranteed that
FlexPDE will be able to find it.  

Start with a Good Initial Value
Providing an initial value which is near the correct solution will aid enormously in finding a solution. 
Be particularly careful that the initial value matches the boundary conditions.  If it does not, serious
excursions may be excited in the trial solution, leading to solution difficulties.

Use STAGES to Gradually Activate the Nonlinear Terms
You can use the staging facility of FlexPDE to gradually increase the strength of the nonlinear terms. 
Start with a linear or nearly linear system, and allow FlexPDE to find a solution which is consistent
with the boundary conditions.  Then use this solution as a starting point for a more strongly nonlinear
system.  By judicious use of staging, you can creep up on a solution to very nasty problems.

Use artificial diffusion to stabilize solutions
Gibbs phenomena are observed in signal processing when a discontinuous signal is reconstructed
from its Fourier components. The characteristic of this phenomenon is ringing, with overshoots and
undershoots in the recovered signal. Similar phenomena can be observed in finite element models
when a sharp transition is modeled with an insufficient density of mesh cells.  In signal processing, the
signal can be smoothed by use of a "window function".  This is essentially a low-pass filter that
removes the high frequency components of the signal.  In partial differential equations, the diffusion
operator Div(grad(u)) is a low-pass filter that can be used to smooth oscillations in the solution. 
See the Technical Note "Smoothing Operators in PDE's " for technical discussion of this operator.  In348
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brief, you can use a term eps*Div(Grad(u)) in a PDE to smooth oscillations of spatial extent D by
setting eps=D^2/pî 2 in steady state or eps=2*D*c/pi in time dependence (where c is the signal
propagation velocity).  The term should also be scaled as necessary to provide dimensional
consistency with the rest of the terms of the equation. Use of such a term merely limits the spatial
frequency components of the solution to those which can be adequately resolved by the finite
element mesh.

Use CHANGELIM to Control Modifications
The selector CHANGELIM  limits the amount by which any nodal value in a problem may be
modified on each Newton-Raphson step.  As in a one-dimensional Newton iteration, if the trial
solution is near a local maximum of the functional, then shooting down the gradient will try to step an
enormous distance to the next trial solution.  FlexPDE applies a backtracking algorithm to try to find
the step size of optimal residual reductions, but it also limits the size of each nodal change to be less
than CHANGELIM times the average value of the variable.  The default value for CHANGELIM is 0.5,
but if the initial value (or any intermediate trial solution) is sufficiently far from the true solution, this
value may allow wild excursions from which FlexPDE is unable to recover.  Try cutting CHANGELIM

to 0.1, or in severe cases even 0.01, to force FlexPDE to creep toward a valid solution.  In
combination with a reasonable initial value, even CHANGELIM=0.01 can converge in a surprisingly
short time.  Since CHANGELIM multiplies the RMS average value, not each local value, its effect
disappears when a solution is reached, and quadratic final convergence is still achieved.

Watch Out for Negative Values
FlexPDE uses piecewise polynomials to approximate the solution.  In cases of rapid variation of the
solution over a single cell, you will almost certainly see severe under-shoot in early stages.  If you are
assuming that the value of your variable will remain positive, don't.  If your equations lose validity in
the presence of negative values, perhaps you should recast the equations in terms of the logarithm of
the variable.  In this case, even though the logarithm may go negative, the implied value of your actual
variable will remain positive.

Recast the Problem in a Time-Dependent Form
Any steady-state problem can be viewed as the infinite-time limit of a time-dependent problem. 
Rewrite your PDE's to have a time derivative term which will push the value in the direction of
decreasing deviation from solution of the steady-state PDE.  (A good model to follow is the time-
dependent diffusion equation DIV(K*GRAD(U)) = DT(U).  A negative value of the divergence
indicates a local maximum in the solution, and results in driving the value downward.)  In this case,
"time" is a fictitious variable analogous to the "iteration count" in the steady-state N-R iteration, but
the time-dependent formulation allows the timestep controller to guide the evolution of the solution.

2.17 Using Multiple Processors

FlexPDE version 6 and later uses multi-threaded computation to support modern multi-core and multi-
processor hardware configurations.  Only shared-memory multi-processors are supported, not clusters.

Each opened problem runs in its own computation thread, and can use up to twenty-four additional
computation threads.  A single main thread controls the graphic interface and screen display.

185
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Matrix construction, residual calculations, linear system solvers and plot mesh generation are all multi-
threaded.  Computation mesh generation and plot display functions are not, although graphics load is
shared between the problem thread and the main graphics thread.

Individual Problem Control
Each individual script can declare the number of worker threads to be used in the computation:

SELECT THREADS = <number>

requests that <number> worker threads be used, in addition to the main graphics thread and the
individual problem thread.

Setting the Default
The default number of worker threads can be changed in the General Settings  tab of the Preferences
Window .

Command-Line Control
If you run FlexPDE from a command line and include the switch -T<number>, the default thread count
will be set to <number>.  For example, the command line

flexpde7 -T4 problem

will set the default to 4 threads and load the script file "problem.pde".  The selected thread count will be
written to the .ini file on conclusion of the flexpde session and become the default next time FlexPDE is
run.

Speed Effects of Multiple Processors
There are many factors that will influence the timing of a multi-thread run. 

The dominant factor is the memory bandwidth. If the memory cannot keep up with the processor
speed, then more threads will run slower due to the overhead of constructing and synchronizing
threads and merging data. 

The size of the problem will also affect the speedup, because with a larger problem a smaller
proportion of data can be held in cache memory. The memory bandwidth limitation will therefore be
greater with a larger problem. 

The following chart shows our experience with speeds in versions 5 and 6. These tests were run on a 4-
core AMD Phenom with 667 MHz 128-bit memory. Notice that the Black_Oil problem is significantly
faster in version 6, even though it is taking many more timesteps. This timestep count indicates that the
timestep control in V6 is more pessimistic than V5.  The speedup with V6 1 thread is partly due to the
fact that graphic redraws are run in a separate thread in V6 but not in V5. 

Notice that in this machine, the memory saturates at 3 threads, so that the fourth thread produces no
significant speed improvement (and in fact may be slower).

29
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Black_Oil.pde 3D_FlowBox.pde

Version Threads CPU time timesteps CPU time

5 1 14:37 534 8:15

5 2 12:17 540 6:09

6 1 10:21 688 8:06

6 2 6:58 684 4:14

6 3 6:16 696 3:30

6 4 7:13 703 3:22

2.18 Running FlexPDE from the Command Line

When FlexPDE is run from a command line or as a subtask from another application, there are some
command-line switches that can be used to control its behavior:

-R Run the file which is named on the command line. Do not enter edit mode.

-V View the file which is named on the command line.  Do not enter edit mode.

-X Exit FlexPDE when the problem completes.

-M Run in "minimized" mode (reduced to an icon).

-Q Run "quietly".  Combines -R -X -M.

-S Run "silently".  -Q with all error reports suppressed. Also, no icon should appear in the
system taskbar.

-T Set the default thread count. Append the number : -T6 will use six threads.

-L License FlexPDE. For Internet Key, append A for activate, R for release, then serial
number : -LA668668886. For local or network dongle, append D or N followed by
dongle ID : -LD2-2428250.

-NC Turn off consolidation of output.

-NM Turn off automatic import of previous mesh.

-NI Turn off loading and saving of preferences from .ini file.
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For example, the command line

flexpde7  -R   problem

will load and run the script file "problem.pde".

Note : On the Mac, the actual executable code is located inside of an application "bundle",
which is simply a directory hierarchy that is hidden from the user in graphics mode. The
complete path to the executable would be "FlexPDE7.app/Contents/MacOS/flexpde7". See the
Apple developer website for more information about application bundles.

2.19 Running FlexPDE Without A Graphical Interface

Starting in version 6.30, there is a FlexPDE executable that does not use any graphical interface. This is
necessary for users to run FlexPDE on systems that do not provide interactive graphics. The executable
is suffixed with 'n' (for "no graphics") to distinguish it from the graphical version.

The graphics-less FlexPDE must be run from a command line. For example, the command line

flexpde7n   problem

will load and run the script file "problem.pde".

The run can be interrupted by typing 'Q'. The user is then prompted whether to interrupt or not. Type 'Y'
to complete the interrupt.

2.20 Getting Help

We're here to help.

Of course, we would rather answer questions about how to use FlexPDE than about how to do the
mathematical formulation of your problem.

FlexPDE is applicable to a wide range of problems, and we cannot be experts in all of them.

If you have what appears to be a malfunction of FlexPDE, or if it is doing something you don't
understand or seems wrong, 

Send us an Email describing the problem. 
Attach a descriptor file that demonstrates the difficulty, and explain clearly what you think is
wrong. 
The more concise you can make your question, the more promptly we will be able to answer.  
Tell us what version of FlexPDE you are using; your problem may have been solved in a later
release.
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Send your enquiry to support@pdesolutions.com and we will answer as soon as we can, usually within a
day or two.
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3 Problem Descriptor Reference

This section presents a detailed description of the components of FlexPDE problem descriptors.  No
attempt is made here to give tutorial explanations of the use of these components.  See Part I Getting
Started  for user interface information and Part II User Guide  for tutorial guidance in the use of
FlexPDE.

3.1 Introduction

FlexPDE is a script-driven system. It reads a description of the equations, domain, auxiliary definitions
and graphical output requests from a text file referred to as a "problem descriptor" or "script".

The problem descriptor file can be created either with the editor facility in FlexPDE, or with any other
ASCII text editor.  A word processor can be used only if there is an optional "pure text" output, in which
formatting codes have been stripped from the file.

Problem descriptors use an easy to learn natural language originally developed by Robert G. Nelson for
use in the PDS2 system at Lawrence Livermore National Lab and later in the PDEase2 system from
Macsyma, Inc. The language is also described in Dr. Gunnar Backstrom's book, "Simple Fields of
Physics by Finite  Element Analysis". 

As FlexPDE has evolved, a number of  extensions have been added to extend its processing capabilities.
 The language as currently implemented in FlexPDE is described in this document.

While similar in some ways to a computer programming language, FlexPDE scripting language is more
natural, and is oriented to the description of PDE systems.  Most intermediate level college students,
engineers, and scientists who have had at least an introductory course in partial differential equations can
quickly master the language well enough  to prepare simple problem descriptor files and begin solving
problems of their own devising. 

The FlexPDE problem descriptor language can be viewed as a shorthand language for creating Finite
Element models.  The statements of the descriptor provide the information necessary for FlexPDE to
assemble a numerical process to solve the problem.

It is important to understand that the language of FlexPDE problem descriptors is not a procedural one. 
The user describes how the various components of the system relate to one another. He does not

describe a sequence of steps to be followed in forming the solution, as would be done in a procedural
programming language such as C or FORTRAN.  Based on the relations between problem elements,
FlexPDE decides on the sequence of steps needed in finding the solution.

FlexPDE makes various assumptions about the elements of the problem descriptor.  

For example, if a variable is named in the VARIABLES section, it is assumed that: 
the variable is a scalar or vector field which takes on values over the domain of the problem, 

2 44
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it will be approximated by a finite element interpolation between the nodes of a computation mesh, 
the values of the variable are continuous over the domain, and 
a partial differential equation will be defined describing the behavior of the variable.

If a definition appears in the DEFINITIONS section, it is assumed that the named quantity  
is ancillary to the PDE system, 
may be discontinuous over the domain, 
does not (necessarily) obey any PDE.

In the chapters that follow, we describe in detail the rules for constructing problem descriptors.

3.1.1 Preparing a Descriptor File

Problem descriptor files for use with FlexPDE are most easily prepared and edited using FlexPDE's
built-in editor, which uses syntax highlighting to enhance the readability of the user's script.  Recognized
grammatical keywords are displayed in red, comments in green, and text strings in blue. 

To begin a new descriptor file, simply click "File | New Script" from the FlexPDE main menu bar.  

To edit an existing descriptor, click "File | Open Script" instead.  

A convenient way to create a new descriptor is to start with a copy of an existing descriptor for a similar
problem and to modify it to suit the new problem conditions.

FlexPDE's built-in editor is similar to the Windows Notepad editor and produces a pure ASCII text file
without any imbedded formatting characters.  Descriptor files can also be prepared using any ASCII text
editor or any editor capable of exporting a pure ASCII text file.  Descriptor files prepared with word
processors that embed formatting characters in the text will cause FlexPDE to report parsing errors.

3.1.2 File Names and Extensions

A problem descriptor file can have any name which is consistent with the host operating system.  Even
though permitted by some operating systems, names with imbedded blank characters should be avoided.
 It is best to choose a name that is descriptive of the problem.  

Problem descriptor files must have the extension '.pde'.  When saving a file using the built-in editor,
FlexPDE will automatically add the extension  '.pde'.  When using a separate or off-line editor, be sure to
give the file a '.pde' extension instead of the default extension.

Windows operating systems by default hide the file name extension.  FlexPDE script files can still be

recognized by the  icon.  Alternatively, Windows can be configured to display file extensions.

See also "FlexPDE Working Files". 4
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3.1.3 Problem Descriptor Structure

Problem descriptors organize a problem by breaking it into sections of related items.  

Each section is headed by a proper name followed by one or more statements which define the problem.
 

The permitted section names are:

TITLE - defines the problem title
SELECT - sets various options and controls
COORDINATES - defines the coordinate system
VARIABLES - names the problem variables
DEFINITIONS - defines ancillary quantities and parameters
MATERIALS - defines sets of parameters that can be applied by name
BOUNDARY
CONDITIONS

- defines sets of boundary conditions that can be applied by
name

INITIAL VALUES - sets initial values of variables
EQUATIONS - defines the partial differential equation system
CONSTRAINTS - defines optional integral constraints
EXTRUSION - extends the domain to three dimensions
BOUNDARIES - describes the 2D or projected 3D domain
RESOLVE - optionally supplements mesh refinement control
FRONT - optionally supplements mesh refinement control for

advancing fronts
TIME - defines the time domain
MONITORS - selects interim graphic display
PLOTS - selects final graphic display
HISTORIES - selects time-summary displays
END - identifies the end of the descriptor

The number of sections used in a particular problem descriptor can vary, subject only to the requirement
that all files must contain a BOUNDARIES section and an END section.

While some flexibility exists in the placement of  these sections, it is suggested that the user adhere to the
ordering described above.  

DEFINITIONS and SELECT can appear more than once.  

Because descriptors are dynamically processed from top to bottom, they cannot contain forward
references. Definitions may refer to variables and other defined names, provided these variables and
names have been defined in a preceding section or previously in the same section.

For detailed description of these sections, see "The Sections of a Descriptor" .182
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3.1.4 Problem Descriptor Format

While not strictly required, we suggest use of the following indentation pattern for all problem
descriptors: 

section 1
statement

section 2
statement 1
statement 2

*
*

section 3
statement 1
statement 2

*
*

This format is easy for both the person preparing the file and for others to read and understand.

3.1.5 Case Sensitivity

With the exception of quoted character strings, which are reproduced exactly as they appear in a
problem descriptor, words, characters and other text items used in problem descriptors are NOT case
sensitive.  

Upper case letters and lower case letters are equivalent.  

The text items  variables,  VARIABLES,  Variables and mixed case text like  VaRiAbles  are all
equivalent.   

Judicious use of capitalization can improve the readability of the script.

3.1.6 "Include" Files

FlexPDE supports the C-language mechanism of including external files in the problem descriptor.  The
statement 

#INCLUDE  "filename"  

will cause the named file to be included bodily in the descriptor in place of the #INCLUDE "filename"

statement.  
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If the file does not reside in the same folder as the descriptor, the full path to the file must be given.

An include statement can be placed anywhere in the descriptor, but for readability it should be placed on
its own line.

This facility can be used to insert common definition groups in several descriptors.

Note: Although FlexPDE is not case sensitive, the operating system which is being asked for
the included file may be case sensitive.  The quoted file name must conform to the usage of the
operating system.

3.1.7 A Simple Example

As a preview example to give the flavor of a FlexPDE descriptor file, we will construct a model of
heatflow on a square domain.

The heatflow equation is       

      div(K*grad(Temp)) + Source = 0

If K is constant and Source = 4*K, the heat equation will be satisfied by the function      

      Temp = Const - x^2 - y^2 .    

We define a square region of material of conductivity K = 1, with a uniform heat source of 4 heat units
per unit area. 

We further specify the boundary value

      Temp = 1 - x^2 - y^2    

Since we know the analytic solution, we can compare the accuracy of the FlexPDE solution.

The text of the descriptor is as follows: 

{ *******************************************************************  

SIMPLE.PDE 

This sample demonstrates the simplest application of FlexPDE to 
heatflow problems.       

******************************************************************* 
}

    
TITLE "Simple Heatflow"
  
VARIABLES

temp { Identify "Temp" as the system variable }
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DEFINITIONS

k = 1 { declare and define the conductivity }
source = 4 { declare and define the source }
texact = 1-x^2-y^2 { exact solution for reference }

     
INITIAL VALUES

temp = 0 { unimportant in linear steady-state problems,
but necessary for time-dependent or nonlinear
systems }

EQUATIONS { define the heatflow equation :}
div(k*grad(temp)) + source = 0       

  
BOUNDARIES   { define the problem domain: }             

REGION 1 { ... only one region }
START(-1,-1) { specify the starting point }
   { specify Dirichlet boundary at exact solution: }
   VALUE(temp)=texact
LINE TO (1,-1) { walk the boundary }

TO (1,1) 
TO (-1,1) 
TO CLOSE { bring boundary back to starting point }

     
MONITORS 

CONTOUR(temp) { show the Temperature during solution }
     
PLOTS    { write these plots to disk at completion: }
    

CONTOUR(temp) { show the solution }
SURFACE(temp) { show a surface plot as well }

{ display the solution error :}
CONTOUR(temp-texact) AS "Error"
 { show a vector flow plot: }
VECTOR(-dx(temp),-dy(temp)) AS "Heat Flow" 

     
END { end of descriptor file }

3.2 The Elements of a Descriptor

The problem descriptors or 'scripts' which describe the characteristics of a problem to FlexPDE are
made up of a number of basic elements, such as names and symbols, reserved words, numeric constants,
etc.  These elements are described in the sections that follow.

3.2.1 Comments

Problem descriptors can be annotated by adding comments.  

Multi-line comments can be placed anywhere in the file.  Multi-line comments are formed by enclosing
the desired comments in either curly brackets { and } or the paired symbols /* and */.  Comments can be
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nested, but comments that begin with a curly bracket must end with a curly bracket and comments that
begin with '/*' must end with '*/'.  

Example:  
{ this is a comment
so is this.
}

End-of-line comments are introduced by  the exclamation mark !. End-of-line comments extend from
the ! to the end of the line on which they occur.  Placing the line comment symbol ! at the beginning of a
line effectively removes the whole line from the active portion of the problem descriptor, in a manner
similar to 'rem' at the beginning of a line in a DOS batch file or "//" in C++.  

Example:  

! this is a comment
this is not

Comments can be used liberally during script development to temporarily remove lines from a problem
descriptor. This aids in localizing errors or focusing on specific aspects of a problem.

3.2.2 Reserved Words and Symbols

FlexPDE assigns specific meanings and uses to a number of predefined 'reserved' words and symbols in
descriptors.  
Except when they are included as part of a comment or a literal string, these words may only be used for
their assigned purpose. 

The following parser keywords are highlighted by the FlexPDE editor:

ACUMESH ALIAS ALIGN_MESH
AND ANGLE ANTIPERIODIC
ARC ARRAY AS
ASK_USER  AT

BATCH BC BEVEL
BLOCK BOUNDARIES BOUNDARY
BY BYLAYER BYSURFACE

CDF CELL_SIZE CENTER
CLOSE COMPLEX CONDITIONS
CONST CONSTRAINTS CONTACT
CONTOUR COORDINATES CRITICAL
CYLINDER

DEBUG DEFINITIONS DEGREES
DELAY DELTAT DIR
DIRECTION DISTANCE

ELEVATION ELSE END
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ENDLABEL ENDREPEAT EQUATION
EQUATIONS EULERIAN EVAL
EXCLUDE EXPORT EXTRUSION

FEATURE FILE FILLET
FINALLY FINISH FIXED
FOR FORMAT FRAME
FREEZE FROM FRONT

GLOBAL GLOBALMAX GLOBALMAX_X
GLOBALMAX_Y GLOBALMAX_Z GLOBALMIN
GLOBALMIN_X GLOBALMIN_Y GLOBALMIN_Z
GRID

HALT HISTORIES HISTORY

IF INACTIVE INITIAL

JUMP

LABEL LAGRANGIAN LAMBDA 
LAYER LAYERED LAYERS
LEVELS LIMIT LIMITED
LINE LIST LOAD
LOOKUP

MAP MATERIALS MATRIX
MAXIMIZE MERGE MESH_DENSITY
MESH_SPACING MINIMIZE MODE
MODE_SUMMARY MONITORS MOVE

NATURAL NEUMANN NOBC
NODE NOT

OBJ OFF ON
ONLY OR

PERIODIC PLANE PLOTS
POINT POINT_LOAD POINT_NATURAL
POINT_VALUE POINT_VELOCITY POINTS
PRINT           PRINTONLY

RADIANS RADIUS RANGE
REFINEOBJ REGION REGIONS
REPEAT REPORT RESOLVE
ROTATE

SCALAR SELECT SIZEOF
SMOOTH SPHERE SPLINE
SPLINETABLE SPLINETABLEDEF STAGE
STAGED START SUM
SUMMARY SURFACE

TABLE TABLEDEF TABULATE
TECPLOT TENSOR THEN
TIME TITLE TO
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TRANSFER TRANSFER6 TRANSFERMESH
TRANSFERMESHTIME

UNORMAL USE

VAL VALUE VALUES
VARIABLES VECTOR VELOCITY
VERSUS VIEWANGLE VIEWPOINT
VOID VOLJ VS
VTK VTKLIN

WINDOW

ZOOM

The following names of built-in functions and identifiers are not recognized by the FlexPDE editor's syntax
highlighter, but may be used only for their assigned purpose:

ABS AINTEGRAL ARCCOS
ARCSIN ARCTAN AREA_INTEGRAL
ATAN2 ATAN2V6

BESSI BESSJ BESSK
BESSY BINTEGRAL

CARG CEXP CLOG
CONJ COS COSH
CROSS CURL

DEL2 DIFF DIV
DOT

ENDTIME ERF ERFC
EXPINT EXP

FEATURE_INDUCTION FIT

GAMMAF GLOBALMAX GLOBALMAX_X
GLOBALMAX_Y GLOBALMAX_Z GLOBALMIN
GLOBALMIN_X GLOBALMIN_Y GLOBALMIN_Z
GRAD

IMAG INTEGRAL INTEGRATE

JACOBIAN

LINE_INTEGRAL LN LOG10
LUMP

MAGNITUDE MAX MIN
MOD

NORMAL

PARTS PASSIVE PI
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RAMP RANDOM REAL

SAVE SIGN SIN
SINH SINTEGRAL SPACE_ERROR
SQRT SURF_INTEGRAL SWAGE

TAN TANGENTIAL TANH
TIME_ERROR TIME_INTEGRAL TIME_MAX
TIME_MIN TIMEMAX TIMEMAX_T
TIMEMIN TIMEMIN_T TINTEGRAL

UPULSE UPWIND URAMP
USTEP

VINTEGRAL VOL_INTEGRAL

XBOUNDARY XCOMP XXCOMP
XYCOMP XZCOMP YBOUNDARY
YCOMP YXCOMP YYCOMP
YZCOMP ZBOUNDARY ZCOMP
ZXCOMP ZYCOMP ZZCOMP

3.2.3 Separators

White Space

Spaces, tabs, and new lines, frequently referred to as "white space", are treated as separators and may
be used freely in problem descriptors to increase readability.  Multiple white spaces are treated by
FlexPDE as a single white space.

Commas

Commas are used to separate items in a list, and should be used only where explicitly required by the
descriptor syntax.

Semicolons

Semicolons are not significant in the FlexPDE grammar.  They are treated as equivalent to commas.

3.2.4 Literal Strings

Literal strings are used in problem descriptors to provide optional user defined labels, which will appear
on softcopy and hardcopy outputs.  

The label that results from a literal string is reproduced on the output exactly (including case) as entered
in the corresponding literal string.  

Literal strings are formed by enclosing the desired label in either single or double quote marks .  Literal
strings that begin with a double quote mark must end in a double quote mark, and literal strings that begin
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with a single quote mark must end in a single quote mark.  

A literal string may consist of any combination of alphanumeric characters, separators, reserved words,
and/or symbols including quote marks, provided only that strings that begin with a double quote mark
may contain only single quote marks and strings that begin with a single quote mark may contain only
double quote marks.

Example:

TITLE "This is a literal 'string' used as a problem title"
 

3.2.5 Numeric Constants

Integers

Integers must be of the form XXXXXX where X is any decimal digit from 0 to 9.  Integer constants can
contain up to 9 digits.

Decimal Numbers

Decimal numbers must be of the form XXXXX.XXX where X is any decimal digit from 0 to 9 and '.' is the
decimal separator.  Decimal numbers must not include commas ','. Using the European convention of a
comma ',' as a decimal separator will result in an error.  Commas are reserved as item separators. 
Decimal numbers may include zero to nine digits to the left of the decimal separator and up to a total of
308 digits total.  FlexPDE considers only the first fifteen digits as significant.

Engineering Notation Numbers

Engineering notation numbers must be of the form XXXXXEsYYY  where X is any digit from 0 to 9 or the
decimal separator '.', Y is any digit from 0 to 9, E is the exponent separator, and s is an optional sign
operator.  Engineering notation numbers must not include commas ','. Using the European convention of
a comma ',' as a decimal separator will result in an error.  Commas are reserved as item separators.  The
number to the left of the exponent separator is treated as a decimal number and the number to the right
of the exponent separator is treated as an integer and may not contain a decimal separator or more than
3 digits.   The range of permitted engineering notation numbers is 1e-307 to 1e308.

3.2.6 Built-in Functions

Functions and Arguments

All function references must include at least one argument. Arguments can be either numerical constants
or expressions that evaluate to numerical values.  The following functions are supported in problem
descriptors:
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3.2.6.1 Analy tic Functions

The following analytic functions are supported by FlexPDE:

Function Comments

ABS(x) Absolute value
ARCCOS(x) Inverse cosine (returns radians)
ARCSIN(x) Inverse sine (returns radians)
ARCTAN(x) Inverse tangent (returns radians)
ATAN2(y,x) Arctan(y/x) with numerically safe implementation*
ATAN2V6(y,x) Arctan(y/x) with numerically safe implementation*
BESSI(order,x) Modified Bessel function I for real x
BESSJ(order,x) Bessel Function J
BESSK(order,x) Modified Bessel function K for real x
BESSY(order,x) Bessel Function Y
COS(x) cosine of x (angle in radians)**
COSH(x) Hyperbolic cosine
ERF(x) Error Function
ERFC(x) Complementary Error Function
EXP(x) Exponential function
EXPINT(x) Exponential Integral Ei(x) for real x>0 ***
EXPINT(n,x) Exponential Integral En(x) for n>=0, real x>0 ***
GAMMAF(x) Gamma function for real x>0
GAMMAF(a,x) Incomplete gamma function for real a>0, x>0
LOG10(x) Base-10 logarithm
LN(x) Natural logarithm
SIN(x) sine of x (angle in radians)**
SINH(x) Hyperbolic sine
SQRT(x) Square Root
TAN(x) tangent of x (angle in radians)**
TANH(x) Hyperbolic tangent

*  Note that in version 7 the definition has changed to use the standard range of -π to π. 
ATAN2V6 is provided for compatibility with old behavior.

**  Use for example COS(x DEGREES) to convert arguments to radians.

*** as defined in Abramowitz & Stegun, "Handbook of Mathematical Functions".

Examples:
Samples | Usage | Functions | Standard_Functions.pde 551



FlexPDE 7 : Problem Descriptor Reference161

3.2.6.2 Non-Analy tic Functions

The following non-analytic functions are supported in FlexPDE:

MAX(arg1,arg2)

The maximum function requires two arguments.  MAX is evaluated on a point by point basis and is
equal to the larger of the two arguments at each point.

MIN(arg1,arg2)

The minimum function requires two arguments.  MIN is evaluated on a point by point basis and is equal
to the lessor of the two arguments at each point.

MOD(arg1,arg2)

The modulo function requires two arguments.  MOD is evaluated on a point by point basis and is equal
to the remainder of (arg1/arg2) at each point. This is a direct implementation of the C function
fmod(arg1,arg2) : "Computes the floating-point remainder of the division operation arg1/arg2. The
floating-point remainder of the division operation arg1/arg2 calculated by this function is exactly the
value arg1 - n*arg2, where n is arg1/arg2 with its fractional part truncated. The returned value has the
same sign as arg1 and is less or equal to arg2 in magnitude."

GLOBALMAX(arg)
GLOBALMAX(arg, region_name)
GLOBALMAX(arg, region_name, layer_name)

With one argument GLOBALMAX is equal to the largest value of the argument over the problem
domain. The search can be restricted to a specific region and layer using the second two arguments.  
GLOBALMAX is tabulated, and is re-evaluated only when components of the argument change.

GLOBALMAX_X(arg)
GLOBALMAX_Y(arg)
GLOBALMAX_Z(arg)

Returns the specified coordinate of the associated GLOBALMAX.  Global searches are tabulated by
argument expression, and repeated calls to GLOBALMAX and its related coordinates do not cause
repeated evaluation.

GLOBALMIN(arg)
GLOBALMIN(arg, region_name)
GLOBALMIN(arg, region_name, layer_name)

With one argument GLOBALMIN is equal to the smallest value of the argument over the problem
domain. The search can be restricted to a specific region and layer using the second two arguments.  
GLOBALMIN is tabulated, and is re-evaluated only when components of the argument change.

GLOBALMIN_X(arg)
GLOBALMIN_Y(arg)
GLOBALMIN_Z(arg)

Returns the specified coordinate of the associated GLOBALMIN.  Global searches are tabulated by
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argument expression, and repeated calls to GLOBALMIN and its related coordinates do not cause
repeated evaluation.

RANDOM(arg)

The random function requires one argument.  The result is a pseudo-random number uniformly
distributed in (0,arg).  The only reasonable application of the RANDOM function is in initial values. 
Use in other contexts will probably result in convergence failure.

ROUND(arg)

The round function requires one argument.  The result is an integer following standard rounding
behavior : e.g. 1.49 rounds down to 1, 1.5 rounds up to 2.

SPACE_ERROR()
SPACE_ERROR(variable)

The space error function returns the average spatial error over all variables. If a variable name is
given, it returns the spatial error for the named variable only. The return is a field value.

TIME_ERROR()
TIME_ERROR(variable)

The time error function returns the average time error over all variables. If a variable name is given, it
returns the time error for the named variable only. The return is a scalar value.

SIGN(arg)

The sign function requires one argument.  SIGN is equal to 1 if the argument is positive and -1 if the
argument is negative.

TIMEMAX(arg)

The time maximum function requires one argument.  TIMEMAX is equal to the largest value of the
argument over the  time span of the problem. TIMEMAX is tabulated, and is re-evaluated only when
components of the argument change.

TIMEMAX_T(arg)

Returns the time at which the associated TIMEMAX of the argument occurs. Time searches are
tabulated by argument expression, and repeated calls to TIMEMAX and its related times do not cause
repeated evaluation.

TIMEMIN(arg)

The time minimum function requires one argument.  TIMEMIN is equal to the smallest value of the
argument over the  time span of the problem. TIMEMIN is tabulated, and is re-evaluated only when
components of the argument change.

TIMEMIN_T(arg)

Returns the time at which the associated TIMEMIN of the argument occurs. Time searches are
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tabulated by argument expression, and repeated calls to TIMEMIN and its related times do not cause
repeated evaluation.

See examples in the "Samples | Usage | Functions" directory.

3.2.6.3 Unit Functions

The following unit-valued functions are supported in FlexPDE:

USTEP(arg)

The unit step function requires one argument.  USTEP is 1 where the argument is positive and 0 where
the argument is negative.  For example, USTEP(x-x0) is a step function at x=x0.

UPULSE(arg1,arg2)

The unit pulse function requires two arguments.  UPULSE is 1 where arg1 is positive and arg2 is
negative and 0 everywhere else.  UPULSE(t-t0, t-t1) is a pulse from t0 to t1 if t1>t0.  [Note:
because instantaneous switches cause serious trouble in time dependent problems, the UPULSE

function automatically ramps the rise and fall over 1% of the total pulse width.]

URAMP(arg1,arg2)

The unit ramp function requires two arguments.  URAMP is like UPULSE, except it builds a ramp
instead of a rectangle.  URAMP is 1 where arg1 and arg2 are both positive,  linearly interpolated
between 0 and 1 when arg1 is positive and arg2 is negative, and 0 everywhere else.

Examples:

Samples | Usage | Unit_Functions.pde

3.2.6.4 String Functions

FlexPDE provides support for dynamically constructing text strings.

$number (i.e. <dollar> number)

This function returns a text string representing the integer value of number.  number may be a literal
value, a name or a parenthesized expression.  If number has integral value, the string will have
integer format.  Otherwise, the string will be formatted as a real number with a default length of 6
characters.

$[width]number

This form acts as the form above, except that the string size will be width.

These functions may be used in conjunction with the concatenation operator "+" to build boundary or

554
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region names or plot labels.  For example

REPEAT i=1 to 4
   START   "LOOP"+$i  (x,y) 
   { path_info ... }
ENDREPEAT

This is equivalent to 

START "LOOP1" (x,y) <path_info> ...
START "LOOP2" (x,y) <path_info> ...
START "LOOP3" (x,y) <path_info> ...
START "LOOP4" (x,y) <path_info> ...

Example:

See "Samples | Usage | Misc | Repeat.pde"

3.2.6.5 T he FIT  Function

The following two forms may be used to compute a finite-element interpolation of an arbitrary argument:

result = FIT(expression)

computes a Finite Element fit of the given expression using the current computational mesh and basis. 
Nodal values are computed to return the correct integral over each mesh cell.

result = FIT(expression, weight)

as with FIT(expression), but with a smoothing diffusion with coefficient equal to weight (try 0.1 or
1.0, and modify to suit).  

weight may be an arbitrary expression, involving spatial coordinates, time, or variables of the
computation.  In this way it can be used to selectively smooth portions of the mesh.  The value of 
weight has a well-defined meaning: it is the spatial wavelength over which variations are damped: 
spatial variations with wavelength much smaller than weight will be smoothed, while spatial variations
with wavelength much greater than weight will be relatively unmodified.

Note: FIT() builds a continuous representation of the data across the entire domain, and
connot preserve discontinuities in the fitted data.  In some cases, multiplying the data by an
appropriate material parameter can result in a continuous function appropriate for fitting.   An
exception to this rule is in the case of CONTACT boundaries, where the mesh nodes are
duplicated, and discontinuities can be preserved in FIT functions.

FIT() may be used to smooth noisy data, to block ill-behaved functions from differentiation in the
derivative computation for Newton's method, or to avoid expensive re-computation of complex

591
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functions.

See also the SAVE  function, in which nodal values are directly computed.

Example:

Samples | Usage | fit+weight.pde

3.2.6.6 T he LUMP Function

The LUMP function creates a field on the finite element mesh, and saves a single value of the argument
expression in each cell of the finite element mesh.  The value stored for each cell is the average value of
the argument expression over the cell, and is treated as a constant over the cell.

The LUMP function may be used to block ill-behaved functions from differentiation in the derivative
computation for Newton's method, or to avoid expensive re-computation of complex functions.

The normal use for LUMP is in the DEFINITIONS section, as in

name = LUMP ( expression )

Note: This definition of LUMP(F) is NOT the same as the "lumped parameters" frequently
referred to in finite element literature.

Example:

Samples | Usage | Lump.pde

3.2.6.7 T he RAMP Function

The RAMP function is a modification of the URAMP  function, intended to make the usage more
nearly like an IF..THEN  statement.

It has been introduced to provide an alternative to discontinuous functions like USTEP  and the
discontinuous IF..THEN  construct.  

Discontinuous switching can cause serious difficulties, especially in time dependent problems, and is
strongly discouraged.  FlexPDE is an adaptive system.  Its procedures are based on the assumption that
by making timesteps and/or cell sizes smaller, a scale can be found at which the behavior of the solution
is representable by polynomials.  Discontinuities do not satisfy this assumption.  A discontinuity is a
discontinuity, no matter how close you look.  Instantaneous turn-on or turn-off introduces high-frequency
spatial or temporal components into the solution, including those which are far beyond the physical limits
of real systems to respond.  This makes the computation slow and possibly physically meaningless.

The RAMP function generates a smooth transition from one value to another, with the transition taking
place as "expression" changes by and amount "width".  It can be thought of as a "fuzzy IF", and has a
usage very similar to an IF.. THEN, but without the harsh switching characteristics.
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The form is:

value = RAMP(expression, left_value, right_value, width)

This expression is logically equivalent to 

value = IF expression < 0 THEN left_value ELSE right_value

except that the transition will be linear over width. If the left and right values are functions, then you may
not get a straight line as the ramp. The result will be a linear combination of the two functions.

See the SWAGE  function for a similar function with both smooth value and derivative.

Example:
see "Samples | Usage | Swage_test.pde"  for a picture of the SWAGE and RAMP transitions and
their derivatives.

3.2.6.8 T he SAVE Function

The SAVE function creates a field on the finite element mesh, and saves the values of the argument
expression at the nodal points for subsequent interpolation.  SAVE builds a continuous representation of
the data within each material region, and can preserve discontinuities in the saved data.

The SAVE function may be used to block ill-behaved functions from differentiation in the derivative
computation for Newton's method, or to avoid expensive re-computation of complex functions.

The normal use for SAVE is in the DEFINITIONS section, as in

name = SAVE ( expression )

Note: SAVE() builds a continuous representation of the data across the entire domain, and
cannot preserve discontinuities in the fitted data. In some cases, multiplying the data by an
appropriate material parameter can result in a continuous function appropriate for saving. An
exception to this rule is in the case of CONTACT boundaries, where the mesh nodes are
duplicated, and discontinuities can be preserved in SAVE functions.

Example:
"Samples | Usage | Save.pde"  
See the FIT()  function for a similar function with integral conservation and variable smoothing
capabilities.
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3.2.6.9 T he SUM Function

The SUM function produces the sum of repetitive terms.  The form is:

value = SUM( name, initial, final, expression )

The expression argument is evaluated and summed for name = initial, initial+1, initial+2,...final.

For example, the statement:

source = SUM(i,1,10,exp(-i))

forms the sum of the exponentials exp(-1)+exp(-2)+...+exp(-10).

The SUM function may be used with data ARRAYs, as in 

DEFINITIONS
    A = ARRAY(1,2,3,4,5,6,7,8,9,10)
    source = SUM(i,1,10,A[i])

Example:
Samples | Usage | Sum.pde

3.2.6.10 T he SWAGE Function

The SWAGE function has been introduced to provide an alternative to discontinuous functions like
USTEP  and the discontinuous IF..THEN  construct.  Discontinuous switching can cause serious
difficulties, especially in time dependent problems, and is strongly discouraged.  

FlexPDE is an adaptive system.  Its procedures are based on the assumption that by making timesteps
and/or cell sizes smaller, a scale can be found at which the behavior of the solution is representable by
polynomials.  Discontinuities do not satisfy this assumption.  A discontinuity is a discontinuity, no matter
how close you look.  Instantaneous turn-on or turn-off introduces high frequency spatial or temporal
components into the solution, including those which are far beyond the physical limits of real systems to
respond.  This makes the computation slow and possibly physically meaningless.

The SWAGE function generates a smooth transition from one value to another. The slope at the center of
the transition is the same as a RAMP  of the given width, but the curve extends to five times the given
width on each side, reaching the end values exactly.  It also has smooth derivatives, except for a one
percent jump at the cutoff points.  It can be thought of as a "fuzzy IF", and has a usage very similar to an 
IF.. THEN, but without the harsh switching characteristics.

The form is:

value = SWAGE(expression, left_value, right_value, width )

This expression is logically equivalent to 

552

163 180

165



Problem Descriptor Reference : The Elements of a Descriptor 168

value = IF expression < 0 THEN left_value ELSE right_value

except that the transition will be smeared over width.

See the RAMP  function for a similar function which is smooth in value, but not in derivative.

Example:
see "Samples | Usage | Swage_test.pde"  for a picture of the SWAGE and RAMP transitions and
their derivatives.

-------------------------------------------------------------------------------------------------------
Wiktionary:
swage 1.(noun) A tool, variously shaped or grooved on the end or face, used by blacksmiths and other workers in
metals, for shaping their work. 2.(verb)To bend or shape using a swage.

3.2.6.11 T he VAL and EVAL functions

There are two ways to evaluate an arbitrary expression at selected coordinates, VAL and EVAL.

value = VAL(expression, x, y )
value = VAL(expression, x, y, z )

The value of expression is computed at the specified coordinates.  The coordinates must be constants. 

The value is computed and stored at each phase of the solution process, allowing efficient reference in
many computations.

FlexPDE maintains a "scoreboard" of dependencies and re-evaluates the expression whenever the
dependency changes. If the expression depends on a variable, it will also create an implicit coupling
between the expression and its point of use, causing the value to be solved simultaneously during the
solution phase. 

Expression can include derivative terms, but the VAL itself cannot be differentiated.

value = EVAL(expression, x, y )
value = EVAL(expression, x, y, z )

The value of expression is computed at the specified coordinates.  The coordinates may be dynamically

variable. The value is recomputed at each reference, possibly leading to increased run time.

This form does NOT allow FlexPDE to compute implicit couplings between computation nodes
referencing and evaluating the value.  

Derivative operators applied to EVAL will be passed through and applied to expression.
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Note:  The value returned from these functions must be scalar.

3.2.6.12 Boundary  Search Functions

The functions XBOUNDARY, YBOUNDARY and ZBOUNDARY allow the user to search for the position of a
system boundary from an evaluation point:

XBOUNDARY("boundary name")
YBOUNDARY("boundary name")
ZBOUNDARY("surface name") 
ZBOUNDARY(surface_number) 

In each case, the function returns the X,Y or Z coordinate of the named boundary at the (Y,Z), (X,Z) or
(X,Y) coordinates of the current evaluation.  

3.2.7 Operators

3.2.7.1 Arithm etic Operators

The following customary symbols can be use in arithmetic expressions:

Operator Action

- Unary negate, Forms the negative of a single operand
+ Binary add, Forms the sum of two operands
- Binary subtract, Forms the difference of two operands
* Binary multiply, Forms the product of two operands
/ Binary divide, Divides the first operand by the second
^ Binary power, Raises the first operand to the power of the second

These operators can be applied to scalars, arrays or matrices.  When used with arrays or
matrices, the operations are applied element-by-element.

Special operators are defined to designate conventional matrix and array operations. 

Operator Action
** Binary MATRIX multiply. Forms the product of two matrices or the product

of a MATRIX and an ARRAY.  Applied to tensors, the result is the same as
the DOT operator.

// Matrix "division".  A1 = A2 // M produces the ARRAY A1 satisfying the
equation A2 = M**A1.

3.2.7.2 Com plex Operators

The following operators perform various transformations on complex quantities. 

REAL ( complex )
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Extracts the real part of the complex number.

IMAG ( complex )

Extracts the imaginary part of the complex number.

CABS ( complex )

Computes the magnitude of the complex number, given by 
CABS(complex(x,y)) = sqrt(x^2 + y^2).

CARG ( complex )

Computes the Argument (or angular component) of the complex number, implemented as 
CARG(complex(x,y)) = Atan2(y,x).

CEXP ( complex )

Computes the complex exponential of the complex number, given by 
CEXP(complex(x,y)) = exp(x + iy) = exp(x)*(cos(y) + i*sin(y)).

CLOG ( complex )

Computes the natural logarithm of the complex number, given by 
CLOG(complex(x,y)) = ln(x + iy) = ln(sqrt(x^2 + y^2)) + i*arctan(y/x).

CONJ ( complex )

Returns the complex conjugate of the complex number.

CSQRT ( complex )

Computes the complex square root of the complex number, given by 
CSQRT(complex(x,y)) = complex( sqrt((r + x)/2), sign(y)*sqrt((r - x)/2) )
where r = CABS(x,y).

3.2.7.3 Differential Operators

Differential operator names are constructed from the coordinate names for the problem, either as defined
by the user, or as default names.  

First derivative operators are of the form "D<name>", where <name> is the name of the coordinate.  
Second-derivative operators are of the form "D<name1><name2>".  

In the default 2D Cartesian case, the defined operators are "DX", "DY", "DXX", "DXY", and "DYY".

All differential operators are expanded internally into the proper forms for the active coordinate system
of the problem.

D<n> ( arg )
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First order partial derivative of arg with respect to coordinate <n>, eg. DX(arg).

D<n><m> ( arg )

Second order partial derivative of arg with respect to coordinates <n> and <m>, eg. DXY(arg).

DIV ( vector_arg )

Divergence of vector argument. Produces a scalar result.

DIV ( argx, argy {, argz } )

Divergence of the vector whose components are argx and argy (and possibly argz in 3D).  This is
the same as DIV(vector(argx,argy,argz), and is provided for convenience.

DIV ( tensor_arg )

Divergence of tensor argument. Produces a vector result.  In curvilinear geometry,
DIV(GRAD(vector)) is NOT the same as the Laplacian of the components of the vector, because
differentiation of the unit vectors introduces additional terms.  FlexPDE handles these expansions
correctly in all supported geometries.

GRAD ( scalar_arg )

Gradient of scalar argument.  Produces a vector result.

GRAD ( vector_arg )

Gradient of vector argument.  This operation produces a tensor result.  In curvilinear geometry, this
creates additional terms due to the differentiation of the unit vectors.  It is NOT equivalent to the
gradient of the vector components except in Cartesian geometry.  FlexPDE handles these expansions
correctly in all supported geometries.

CURL ( vector_arg )

Returns the vector result of applying the curl operator to vector_arg.

CURL ( scalar_arg )

Curl of a scalar_arg (2D only). Assumes arg to be the magnitude of a vector normal to the
computation plane, and returns a vector result in the computation plane.

CURL ( argx, argy {, argz } )

Curl of a vector whose components in the computation plane are argx and argy (and possibly argz in
3D).  This is the same as CURL(vector(argx,argy,argz)), and is provided for convenience.

DEL2 ( scalar_arg )

Laplacian of scalar_arg. Equivalent to DIV(GRAD(scalar_arg)).

DEL2 ( vector_arg )
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Laplacian of vector_arg. Equivalent to DIV(GRAD(vector_arg)).

3.2.7.4 Integral Operators

Integrals may be formed over volumes, surfaces or lines. The specific interpretation of the integral
operators depends on the coordinate system of the current problem.  Integral operators can treat only
scalar functions as arguments.  You cannot integrate a vector field.

Examples

Samples | Applications | Heatflow | Heat_Boundary.pde
Samples | Usage | 3d_Domains | 3D_Integrals.pde
Samples | Usage | Constraints | Boundary_Constraint.pde
Samples | Usage | Constraints | 3D_Constraint.pde
Samples | Usage | Constraints | 3D_Surf_Constraint.pde
Samples | Usage | Tintegral.pde

3.2.7.4.1  T im e In t egra ls

The operators TINTEGRAL and TIME_INTEGRAL are synonymous, and perform explicit time integration
of arbitrary scalar values from the problem start time to the current time:  

TINTEGRAL ( integrand )
TIME_INTEGRAL ( integrand )

Note: This operator cannot be used to create implicit linkage between variables.  Use a
GLOBAL VARIABLE instead.

3.2.7.4.2  Lin e In t egra ls

The operators BINTEGRAL and LINE_INTEGRAL are synonymous, and perform line integrations of
scalar integrands.  

The integral is always taken with respect to distance along the line or curve.

The basic form of the LINE_INTEGRAL operator is:

BINTEGRAL ( integrand, named_boundary )

LINE_INTEGRAL ( integrand, named_boundary )

The boundary specification may be omitted, in which case the entire outer boundary is implied.

2D Line Integrals
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In 2D Cartesian geometry, LINE_INTEGRAL is the same as SURF_INTEGRAL.  

In 2D cylindrical geometry, SURF_INTEGRAL will contain the 2*pi*r weighting, while LINE_INTEGRAL

will not.

2D Line integrals may be further qualified by specifying the region in which the evaluation is to be made:

LINE_INTEGRAL ( integrand, named_boundary, named_region )

named_region must be one of the regions bounded by the selected boundary.

3D Line Integrals

3D Line integrals may be computed only on extrusion surfaces of the 3D domain.

LINE_INTEGRAL ( integrand, named_boundary, surface_number )
LINE_INTEGRAL ( integrand, named_boundary, named_surface )

The named_boundary must exist in the named_surface (ie, it must not have been excluded by
LIMITED REGION commands).

3.2.7.4.3  2D Su rfa ce In t egra ls

The synonymous prototype forms of surface integral functions in 2D are:

SINTEGRAL ( integrand, named_boundary )
SURF_INTEGRAL ( integrand, named_boundary )

Here named_boundary may be specified by name, or it can be omitted, in which case the entire outer
boundary of the domain is implied.

In two-dimensional Cartesian problems, the surface element is formed by extending the two-dimensional
line element a single unit in the Z-direction, so that the surface element is dl*1.  In this case, the surface
integral is the same as the line integral.

In two-dimensional cylindrical problems, the surface element is formed as 2*pi*r*dl, so the surface
integral is NOT the same as the line integral.

The region in which the evaluation is made can be controlled by providing a third argument, as in

SURF_INTEGRAL (  integrand, named_boundary, named_region )

named_region must be one of the regions bounded by the selected surface.
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3.2.7.4.4  3D Su rfa ce In t egra ls

In three-dimensional problems, there are several forms for the surface integral:

1. Integrals over extrusion surfaces are selected by surface name or number and qualifying region name
or number:

SINTEGRAL ( integrand, surface, region )
SURF_INTEGRAL ( integrand, surface, region ) 

If region is omitted, the integral is taken over all regions of the specified surface.  
If both surface and region are omitted, the integral is taken over the entire outer surface of the
domain.  

Integrals of this type may be further qualified by selecting the layer in which the evaluation is to be
made:

SURF_INTEGRAL ( integrand, surface, region, layer ) 

layer must be one of the layers bounded by the selected surface.

2. Integrals over "sidewall" surfaces are selected by boundary name and qualifying layer name:

SINTEGRAL ( integrand, named_boundary, named_layer )
SURF_INTEGRAL ( integrand, named_boundary, named_layer ) 

If layer is omitted, the integral is taken over all layers of the specified surface.    

Integrals of this type may be further qualified by selecting the region in which the evaluation is to be
made:

SURF_INTEGRAL( integrand, named_boundary, named_layer, named_region ) 

named_region must be one of the regions bounded by the selected surface.

3. Integrals over entire bounding surfaces of selected subregions are selected by region name and layer
name, as with volume integrals:

SINTEGRAL ( integrand, named_region, named_layer )
SURF_INTEGRAL ( integrand, named_region, named_layer ) 

If named_layer is omitted, the integral is taken over all layers of the specified surface.    
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3.2.7.4.5  2D V olu m e In t egra ls

The synonymous prototype forms of volume integral functions in 2D are:

INTEGRAL ( integrand, region )
VOL_INTEGRAL ( integrand, region )

Here region can be specified by number or name, or it can be omitted, in which case the entire domain is
implied.

In two-dimensional Cartesian problems, the volume element is formed by extending the two-dimensional
cell a single unit in the Z-direction, so that the volume integral is the same as the area integral in the
coordinate plane.

In two-dimensional cylindrical problems, the volume element is formed as 2*pi*r*dr*dz, so that the
volume integral is NOT the same as the area integral in the coordinate plane. For the special case of 2D
cylindrical geometry, the additional operator

AREA_INTEGRAL ( integrand, region )

computes the area integral of the integrand over the indicated region (or the entire domain) without the 
2*pi*r weighting.
 

3.2.7.4.6  3D V olu m e In t egra ls

The synonymous prototype forms of volume integral functions in 3D are:

INTEGRAL ( integrand, region, layer )
VOL_INTEGRAL ( integrand, region, layer )

Here layer can be specified by number or name, or it can be omitted, in which case the entire layer stack
is implied.

region can also be specified by number or name, or it can be omitted, in which case the entire projection
plane is implied.

If region is omitted, then layer must be specified by name or omitted.  If both region and layer are
omitted, the entire domain is implied.

For example, 
INTEGRAL(integrand, region, layer)  means the integral over the subregion contained in the selected
region and layer.
INTEGRAL(integrand, named_layer)  means the integral over all regions of the named layer.
INTEGRAL(integrand, region)  means the integral over all layers of the selected region.
INTEGRAL(integrand)  means the integral over the entire domain.
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3.2.7.5 Relational Operators

The following operators may be used in constructing conditional expressions:

Relational Operators

Operator Definition

= Equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to

Relational Combinations

Operator Definition

AND Both conditions true
OR Either condition true
NOT (Unary) reverses condition

Assignment Operator

In addition to its use as an equal operator, problem descriptors use the '=' symbol to assign (associate)
values functions and expressions with defined names.

3.2.7.6 String Operators

The following operators can be used in expressions that construct string constants:

Operator Action

+ Binary add, Forms the catenation of two text-string operands

3.2.7.7 Vector Operators

The following operators perform various transformations on vector quantities. 
 
Vector quantities are assumed to have one component in each of the three coordinate directions implied
by the COORDINATES selection, whether the selected model geometry is one, two or three dimensional.
 For example, a Vector can have a Z-component in a two-dimensional X,Y geometry.  The restricted
geometry simply means that there is no computable variation of the solution in the missing directions.  In
the explicit construction of Vectors, the third component may be omitted, in which case it is assigned a
value of zero.
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CROSS ( vector1, vector2 )

Forms the cross product of two vectors and returns the resulting vector.  In 2D geometries, the
CROSS product of two vectors lying in the computation plane returns a vector with a nonzero
component only in the direction normal to the problem plane. Where appropriate, FlexPDE will
interpret this vector as a scalar, suitable for arithmetic combination with other scalars.

DOT ( vector1, vector2 )

Forms the dot product of two vectors and returns a scalar value equal to the magnitude of the vector
dot product.

MAGNITUDE ( vector )

Returns a scalar equal to the magnitude of a vector argument.

MAGNITUDE ( argx, argy  {, argz } )*

Returns a scalar equal to the magnitude of a vector whose components are argx and argy (and
possibly argz).

NORMAL ( vector )
NORMAL ( argx, argy {, argz} )*

Returns a scalar equal to the component of a vector argument normal to a boundary.  This operator
may be used only in boundary condition definitions or in boundary plots or integrals, where the
reference surface is clear from the context of the statement.  (See also UNORMAL below).

TANGENTIAL(vector)
TANGENTIAL ( argx,  argy {, argz } )*

Returns a scalar equal to the component of a vector argument tangential to a boundary.  This
operator may be used only in boundary condition definitions or in boundary plots or integrals, where
the reference surface is clear from the context of the statement.

VECTOR ( argx {, argy {, argz }} )*

Constructs a vector whose components are the scalar arguments.  Omitted arguments are assumed
zero.

Vector Component Operators

In a standard cartesian coordinate system, the operators XCOMP, YCOMP, and ZCOMP provide access
to the components of a vector :

XCOMP ( vector )

<coord1>COMP ( vector )

Returns a scalar whose value is the first component of the vector argument.
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YCOMP ( vector )

<coord2>COMP ( vector )

Returns a scalar whose value is the second component of the vector argument.

ZCOMP ( vector )

<coord3>COMP ( vector )

Returns a scalar whose value is the third component of the vector argument.

Beginning in version 7, in non-cartesian coordinate systems and cartesian systems where the coordinates
have been renamed (aliased), the coordinate name will be used instead of X, Y, or Z. E.g. in the
CYLINDER1 coordinate system, the first component would be accessed with RCOMP; in a CARTESIAN2

coordinate system with coordinates aliased to "A" and "B", the first and second components would be
accessed using ACOMP and BCOMP.

In an attempt to support backward compatibility, the XCOMP, YCOMP, and ZCOMP operators are
defined as the first, second, and third components whenever possible. If the coordinate system defines X,
Y, or Z, the coordinate defined order takes precedence.

The Special Function UNORMAL

UNORMAL is a built-in function which returns the unit-normal vector at the location of evaluation. It's use
is valid only in expressions computed on a system boundary. UNORMAL takes no arguments, as it's
arguments are implicitly the coordinates at the point of evaluation.

---------------------------------------------------------------------
* Note: arguments in brackets {} are optional.

3.2.7.8 T ensor Operators

FlexPDE supports limited use of TENSOR quantities, to parallel the results of GRAD(vector).

A TENSOR is a vector of vectors, potentially 3 x 3 components.  

TENSOR( ( T11, T12, T13) , (T21, T22, T23) , (T31, T32, T33))

This operator returns a TENSOR object with the indicated components.  Each of the Tij may be any
scalar expression.

DOT(vector, tensor)

This operator returns a  VECTOR with components ( (V1*T11+V2*T21+V3*T31), (V1*T12

+V2*T22+V3*T32), (V1*T13+V2*T23+V3*T33) ).

DOT(tensor, vector)
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This operator returns a  VECTOR with components ( (T11*V1+T12*V2+T13*V3), (T21*V1

+T22*V2+T23*V3), (T31*V1+T32*V2+T33*V3) ).

DOT(tensor, tensor)

This operator returns a  TENSOR representing the matrix product of the tensors.  The operator **
can be used to produce the same result (i.e. tensor**tensor).

DIV(tensor)

This operator returns a VECTOR value whose components depend on the metric coefficients of the
selected problem geometry.  In Cartesian geometry, the result is a VECTOR made up of the
divergences of the tensor columns.

TRANSPOSE(tensor)

This operator returns a TENSOR which is the transpose of the argument tensor.

vector * vector  

produces a tensor of all combinations of component products.

XXCOMP ( tensor )
XYCOMP ( tensor )
XZCOMP ( tensor )
YXCOMP ( tensor )
YYCOMP ( tensor )
YZCOMP ( tensor )
ZXCOMP ( tensor )
ZYCOMP ( tensor )
ZZCOMP ( tensor )

These operators returns a scalar whose value is the indicated component of the tensor argument ( X
indicates the first coordinate component, Y the second and Z the third, regardless of the actual
assigned names of the coordinates).

3.2.8 Predefined Elements

The problem descriptor language predefines the following elements :

PI 3.14159265358979

For Cartesian coordinates in which 'R' is not specified as a coordinate name or a defined name, the
problem descriptor language predefines the following elements:

R          
 

R=SQRT(x^2 + y^2) radius vector length in 2D

           
 

R=SQRT(x^2 + y^2 + z^2) radius vector length in 3D

THETA      
 

THETA = ARCTAN(y/x) azimuthal angle in 2D or 3D
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Note: If "R" or "Theta" appear on the left side of a definition before any use in an expression,
then the new definition will become the meaning of the name, and the predefined meaning will
be hidden.

In all problems, 

CELL_SIZE      

         
an internally declared value representing the size of the current evaluation
cell.

In staged problems where " STAGES = integer"  is declared in the SELECT section, 

STAGE                an internally declared index which increments from 1 to integer.

In modal analysis (eigenvalue and eigenfunction) problems where "MODES = integer" is declared in
the SELECT section,  

LAMBDA an internally declared name which represents the various eigenvalues.

In time-dependent problems, the current timestep interval is available: 

DELTAT an internally declared name which returns the size of the current timestep.

3.2.9 Expressions

Value Expressions
Problem descriptors are composed predominantly of arithmetic expressions made of one or more
operators, variables, defined values and pairs of parentheses that evaluate to numerical values.  In
evaluating value expressions, FlexPDE follows the  algebraic rules of precedence in which unary
operators are evaluated first, followed by binary operators in the following order:

power
multiplication and division
addition and subtraction
relational operators (<, <=, =, <>, >=, >)
relational combinations (AND, OR)

When included in expressions, subexpressions enclosed in pairs of parentheses are evaluated first,
without regard to the precedence of any operators which precede or follow them.  Parentheses may be
nested to any level, with inner subexpressions being evaluated first and proceeding outward. 
Parentheses must always be used in pairs.

Examples:
a = b*(c+d)
div(k*grad(u))
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Conditional-Value Expressions
Problem descriptors can contain conditional expressions of the form 

IF condition THEN subexpression ELSE subexpression .

This form selects one of the two alternative values as the value of the expression.  It is used in
expressions like 

y = IF a THEN b ELSE c  
analogous to the expression "y = a ? b : c" in the C programming language. 

It is not the procedural alternative construct 
IF a THEN y=b ELSE y=c { Wrong ! } 

familiar in procedural programming languages. 

The THEN or ELSE subexpressions my contain nested IF...THEN...ELSE expressions.  Each ELSE will
bind to the nearest previous IF.

Conditional expressions used in material parameters can cause numerical trouble in the solution of a PDE
system, because they imply an instantaneous change in the result value.  This instantaneous change
violates assumptions of continuity upon which the solver algorithms are based.

See URAMP , RAMP  and SWAGE  for switching functions that transition smoothly between
alternative values.

3.2.10 Repeated Text

The REPEAT..ENDREPEAT construct allows the repetition of sections of input text.  

The syntax looks like a FOR loop in procedural languages, but we emphasize that in FlexPDE this feature

constitutes a textual repetition, not a procedural repetition.

The form of a repeat clause is

REPEAT name = initial TO final
REPEAT name = initial BY delta TO final

These statements specify that the following lines of descriptor text should be repeated a number of times. 
The given name is defined as if it had appeared in the DEFINITIONS section, and is given the value
specified by initial.

The repeated section of text is terminated by the statement

ENDREPEAT

At this point, the value of name is incremented by delta (or by one, if no delta is given).  If the new value is
not greater than final, the repeated text is scanned again with the new value in place of name.  If delta is
negative, the value of name is decremented and the termination test is modified accordingly.

The REPEAT statement can appear in the following locations:

in BATCH file lists

163 165 167
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in VARIABLE lists
in EXTRUSION lists
in INITIAL VALUE lists
anywhere the REGION, START or LINE keywords are legal.
around any plot command or group of plot commands.
around any DEFINITION or group of DEFINITIONS.
around any REPORT command or group of REPORT commands.
around AT points in a HISTORY list

Use of ARRAYS and the $integer string function can extend the power of the REPEAT loop.

Examples:

REPEAT xc=1/4 by 1/4 to 7/4 
REPEAT yc=1/4 by 1/4 to 7/4 

START(xc+rad,yc)  ARC(CENTER=xc,yc) ANGLE=360 CLOSE

ENDREPEAT
ENDREPEAT

This double loop constructs a 7 x 7 array of circles, all part of the same REGION.

See the sample problems:

Samples | Usage | Repeat.pde

Note:  REPEAT..ENDREPEAT replaces the older FOR..ENDFOR facility used in earlier versions of
FlexPDE.  The older facility is no longer supported, and will produce parsing errors.

3.3 The Sections of a Descriptor

The SECTIONS of a descriptor were outlined in the introduction .  In the following pages we present
a detailed description of the function and content of each section.

3.3.1 Title

The optional  TITLE section can contain one literal string.  

When a TITLE is used, the literal string it contains  is used as a title label for all MONITORS and PLOTS.

If TITLE is not specified, the plots will not have a title label.

Example:
TITLE "this is my first model"

3.3.2 Select

The SELECT section, which is optional, is used when it is necessary to override some of  the default
selectors internal to the program.   

591
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Selectors are used to control the flow of the process used to solve a problem.  

The SELECT section may contain one or more selectors and their associated values.  The default
selectors have been chosen to optimize how FlexPDE handles the widest range of problems.  

The SELECT section should be used only when the default behavior of FlexPDE is somehow inadequate.

Unlike the other elements used in program descriptors, the proper names used for the selectors are not
part of the standard language, are not reserved words, and are not meaningful in other descriptor
sections.  

The selectors implemented in FlexPDE are specific to a version of FlexPDE, and may not correspond to
those available in previous versions of FlexPDE or in other applications using the FlexPDE descriptor
language.

3.3.2.1 Mesh Generation Controls

The following controls can be used in the SELECT section to modify the behavior of the mesh generator.
Logical selectors can be turned on by selector = ON, or merely mentioning the selector

Logical selectors can be turned off by selector = OFF.
Numeric selectors are set by selector = number.
Some selectors can be STAGED .

ASPECT type: Numeric default: 2.0 
Maximum cell aspect ratio for mesh generation in 2D problems and 3D surface meshes.  Cells may be
stretched to this limit of edge-size ratio.

AUTOMESH type: Logical default: On (settable in Preferences  panel).
If ON, previously generated mesh will be loaded if possible.

AUTOTRANSFER type: Logical default: On (settable in Preferences  panel).
If ON, automatically saves a TRANSFER  output file with all primary variables.

CELL_LIMIT type: Numeric default: See below  
Specifies the maximum cell count.  (Note that in version 7 this selector has replaced the NODELIMIT
selector of previous versions.)  If mesh refinement tries to create more cells than the limit, the cell-merge
threshold will be raised to try to balance errors across a mesh of the specified size.  This control cannot
be used to reduce the size if the initial mesh construction, which is dictated by NGRID , user density
controls, and domain boundary feature sizes.   This selector can be STAGED.  Default values are shown
below, although these limits will likely not be reachable within the resources of most computers :

1D 2D 3D
Professional 1,000,000 10,000,000 50,000,000

Lite 100 400 1200

CHECK_DUP_REGIONS type: Logical default: On
If ON, defined regions will be tested to see if they are identical and an error diagnostic presented if there
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are any duplicates. Duplication of regions will cause the first definition to be ignored and an erroneous
model may be generated.
If OFF, regions will not be tested for duplication.

CURVEGRID type: Logical default: On
If ON, cells will be bent to follow curved boundaries, and a 3D mesh will be refined to resolve surface
curvature.
If OFF, neither of these modifications will be attempted, and the computation will proceed with straight-
sided triangles or flat-sided tetrahedra.  (It may be necessary to turn this option OFF when surfaces are
defined by TABLES , because the curvature is infinite at table breaks.)

FEATURE_INDUCTION type: Numeric default: 2
In the initial domain layout, FlexPDE attempts to discover cell sizes necessary to resolve domain
elements, iterating to propagate the influence of small features. In complex domains this can become
expensive. If feature sizes are relatively uniform, or if the user controls the cell size manually, the iteration
can be bypassed by setting FEATURE_INDUCTION to 0.

GRIDARC type: Numeric default: 30 degrees
Arcs will be gridded with no cell exceeding this angle.  Other factors may cause the sizes to be smaller.

GRIDLIMIT type: Numeric default: 8
Maximum number of regrids before a warning is issued. Batch runs stop at this limit.

INITGRIDLIMIT type: Numeric default: 5
Maximum number of regridding passes in the initial refinement to define initial values.  INITGRIDLIMIT=0

suppresses initial refinement.

MERGEDIST type: Numeric default: Automatic
In the initial domain layout, points closer than MERGEDIST will be coalesced into a single point.  This
helps overcome the effects of roundoff and input number precision in generation of domains.  A default
merge distance is computed during initial layout. MERGEDIST will over-ride this default value.  Individual
values for X, Y and Z coordinates can be set with XMERGEDIST , YMERGEDIST  and
ZMERGEDIST  respectively.  (These controls should be used only in unusual cases, when the default
value performs incorrectly.)

NGRID type: Numeric default: See below
Specifies the number of mesh rows in each dimension.  Use this control to set the maximum cell size in
open areas.  This is a convenient way to control the overall mesh density in a problem.  Default values
are shown below:

1D 2D 3D
Professional 100 20 12
Student/Lite 25 10 5

REGRID type: Logical default: On
By default, FlexPDE implements adaptive mesh refinement.  This selector can be used to turn it off and
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proceed with a fixed mesh.    This selector can be STAGED .

SMOOTHINIT type: Logical default: On
Implements a mild initial-value smoothing for time dependent problems, to help ameliorate discontinuous
initial conditions. 

STAGEGRID type: Logical default: Off
Forces regeneration of mesh with each stage of a staged problem.  FlexPDE attempts to detect stage
dependencies in the domain and regenerate the mesh, but this selector may be used to override the
automatic detection.

XMERGEDIST type: Numeric default: Automatic
See MERGEDIST .

YMERGEDIST type: Numeric default: Automatic
See MERGEDIST .

ZMERGEDIST type: Numeric default: Automatic
See MERGEDIST .

Note: See the "Mesh Control Parameters " section in this manual and the "Controlling
Mesh Density " section in the User Guide for more discussion of mesh control.

3.3.2.2 Solution Controls

The following controls can be used in the SELECT section to modify the solution methods of FlexPDE.
Logical selectors can be turned on by selector = ON, or merely mentioning the selector.
Logical selectors can be turned off by selector = OFF.
Numeric selectors are set by selector = number.

PRIMARY SOLUTION CONTROLS

AUTOSTAGE type: Logical default: On
In STAGED problems, this selector causes all stages to be run consecutively without pause. Turning this
selector OFF causes FlexPDE to pause at the end of each stage, so that results can be examined before
proceeding.

CHANGELIM type: Numeric default: 2.0(steady state), 0.5(time dependent)
Steady state: Specifies the maximum change in any variable allowed on any Newton iteration step
(measured relative to the variable norm).  In severely nonlinear problems, it may be necessary to force a
slow progress (small CHANGELIM) toward the solution in order to avoid pathological behavior of the
nonlinear functions.
Time dependent: Specifies the maximum change in one timestep of any variable derived from a steady-
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state equation. Changes larger than CHANGELIM will cause the timestep to be cut.

CHECK_TABLES type: Logical default: On
Check table references for access out of the defined range. Issue an error diagnostic if accessed out of
the defined range. See also TABLE .

CUBIC type: Logical default: On
Use cubic Finite Element basis (same as ORDER=3 ).  The default selection can be changed in the
General Settings  tab of the Preferences Window .

DELAY type: Numeric default: 0
In STAGED  problems using AUTOSTAGE , this selector causes each stage to pause for this many
seconds before proceeding to the next stage. This allows for casual examination of the results at each
stage without needing to click the continue button. In BATCH  scripts, this selector causes each
problem to pause before running the next problem.

DIRECT type: Logical default: Off
This selects use of a direct matrix solver instead of the default iterative solver. There is an internal limit to
the size of the matrix that FlexPDE will allow using this method. The limit is based on the number of
unknowns in the model. The direct solver requires a large amount of memory and problems larger than
this can cause the system to go to virtual memory which is extremely slow. The default limit can be
dictated by the selector DIRECTLIMIT .

DIRECTLIMIT type: Numeric default: 20,000
Sets the internal limit to the size of the matrix that FlexPDE will allow when using the DIRECT  matrix
solver.

ERRLIM type: Numeric default: 0.002
This is the primary accuracy control.  Both the spatial error control XERRLIM  the temporal error
control TERRLIM  are set to this value unless over-ridden by explicit declaration.  This selector can be
STAGED .
[Note: ERRLIM is an estimate of the relative error in the dependent variables.  The solution is not
guaranteed to lie within this error.  It may be necessary to adjust ERRLIM or manually force greater mesh
density to achieve the desired solution accuracy.]

FIRSTPARTS type: Logical default: Off
By default, FlexPDE integrates all second-order terms by parts, creating the surface terms represented
by the Natural boundary condition.  This selector causes first-order terms to be integrated by parts as
well. Use of this option may require adding terms to Natural boundary condition statements.

FIXDT type: Logical default: Off
Disables the automatic timestep control.  The timestep is fixed at the value given in the TIME  section.
(In most cases, this is not advisable, as it is difficult to choose a single timestep value that is both accurate
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and efficient over the entire time range of a problem.  Consider modifying the ERRLIM  control
instead.)

ITERATE type: Numeric default: 4000
Primary conjugate gradient iteration limit.  This count may be enlarged automatically for large systems. 
Iteration may terminate before this count if convergence criteria are met.

LINUPDATE type: Numeric default: 5
In linear steady-state problems, FlexPDE repeats the linear system solution until the computed residuals
are below tolerance, up to a maximum of LINUPDATE passes.

MODES type: Numeric default: 0
Selects the Eigenvalue solver and specifies the  desired number of modes.  For computational reasons,
FlexPDE will solve the system for more modes than specified (see SUBSPACE ), but only the
requested number will be reported.

NEWTON type: Numeric default: 40 (steady_state)
default: 1 (time-dependent)

Sets the maximum Newton iteration limit.  PREFER_SPEED  and PREFER_STABILITY  will override
this number.

NONLINEAR type: Logical default: Automatic
Selects the nonlinear (Newton-Raphson) solver, even if the automatic detection process does not require
it.

NONSYMMETRIC type: Logical default: Automatic
Selects the nonsymmetric Lanczos conjugate gradient solver, even if the automatic detection process
does not require it.

NOTIFY_DONE type: Logical default: Off
Requests that FlexPDE emit a beep and a "DONE" message at completion of the run.

NRMINSTEP type: Numeric default: 0.009
Sets the minimum fraction of the computed stepsize which will be applied during Newton-Raphson
backtracking.  This number only comes into play in difficult nonlinear systems.  Usually the computed
step is unmodified.

NRSLOPE type: Numeric default: 0.1
Sets the minimum acceptable residual improvement in Newton-Raphson backtracking of steady-state
solutions.

OPTERRLIM type: Numeric default: 0.001*ERRLIM

This is the accuracy control for the optimizer. See MAXIMIZE  and MINIMIZE .
[Note: OPTERRLIM is an estimate of the relative error in the optimizer parameter.  The solution is not
guaranteed to lie within this error.  It may be necessary to adjust OPTERRLIM to achieve the desired
solution accuracy.]
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ORDER type: Numeric default: 3
Selects the order of finite element interpolation (1, 2 or 3).  The selectors QUADRATIC and CUBIC are
equivalent to ORDER=2 and ORDER=3, respectively.  This selector can be STAGED .  The default
selection can be changed in the General Settings  tab of the Preferences Window .

OVERSHOOT type: Numeric default: 0.0001
Sub-iteration convergence control. Conjugate-Gradient solutions will iterate to a tolerance of 
OVERSHOOT*ERRLIM .  (Some solution methods may apply additional multipliers.)

PRECONDITION type: Logical default: On
Use matrix preconditioning in conjugate-gradient solutions.  The default preconditioner is the diagonal-
block inverse matrix.

PREFER_SPEED type: Logical default: On
This selector chooses parameters for nonlinear time-dependent problems that result in greatest solution
speed for well-behaved problems.  Equivalent to NEWTON=1 , REMATRIX=Off .

PREFER_STABILITY type: Logical default: Off
This selector chooses parameters for nonlinear time-dependent problems that result in greatest solution
stability in ill-behaved problems.  Equivalent to NEWTON=3 , REMATRIX=On .

QUADRATIC type: Logical default: Off
Selects use of quadratic Finite Element basis. Equivalent to ORDER=2 .

RANDOM_SEED type: Numeric default: random
Specifies the seed for random number generation.  May be used to create repeatable solution of
problems using random numbers.

REINITIALIZE type: Logical default: Off
Causes each Stage of a STAGED  problem to be reinitialized with the INITIAL VALUES

specifications, instead of preserving the results of the previous stage.

REMATRIX type: Logical default: Off
Forces a re-calculation of the Jacobian matrix for each step of the Newton-Raphson iteration in
nonlinear problems.   The matrix is also recomputed whenever the solution changes appreciably, or when
the residual is large.  This selector is set by PREFER_STABILITY  and cleared by PREFER_SPEED .
 

STAGES type: Numeric default: 1
Parameter-studies may be run automatically by selecting a number of stages. Unless the geometric
domain parameters change with stage, the mesh and solution of one stage are used as a starting point for
the next.  The STAGED  qualifier on a parameter definition sets the number of stages, so you need not
use STAGES unless you want to override the automatic count. 

SUBSPACE type: Numeric default: MIN(2*modes,modes+8)

If MODES  has been set to select an eigenvalue problem, this selector sets the dimension of the
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subspace used to calculate eigenvalues. Normally, it is not necessary to use this selector, as the default is
usually sufficient.

TERRLIM type: Numeric default: 0.002
This is the primary temporal accuracy control.  In time dependent problems, the timestep will be cut if the
estimated relative error in time integration exceeds this value. The timestep will be increased if the
estimated temporal error is smaller than this value. TERRLIM is automatically set by the ERRLIM

control.  This selector can be STAGED .
Note: TERRLIM is an estimate of the relative error in the dependent variables. The solution is not
guaranteed to lie within this error.  It may be necessary to adjust TERRLIM to achieve the desired
solution accuracy.

THREADS type: Numeric default: 1 
Selects the number of worker threads to use during the computation.  This control is useful in increasing
computation speed on computers with multiple shared-memory processors.  FlexPDE does not support
clusters.  The maximum number of threads for a script is 24, but increasing the thread count doesn't
always increase computation speed. See "Using Multiple Processors" for more information.  The
default selection can be changed in the General Settings  tab of the Preferences Window .

UPFACTOR type: Numeric default: 1
Multiplier on upwind diffusion terms.  Larger values can sometimes stabilize a marginal hyperbolic
system.

UPWIND type: Logical default: On
In the presence of convection terms, this adds a diffusion term along the flow direction to stabilize the
computation.

XERRLIM type: Numeric default: 0.002
This is the primary spatial accuracy control.  Any cell in which the estimated relative spatial error in the
dependent variables exceeds this value will be split (unless CELL_LIMIT  is exceeded).  XERRLIM is
set automatically by the  ERRLIM  selector.   This selector can be STAGED .
Note: XERRLIM is an estimate of the relative error in the dependent variables. The solution is not
guaranteed to lie within this error.  It may be necessary to adjust XERRLIM or manually force
greater mesh density to achieve the desired solution accuracy.

CONJUGATE GRADIENT METHOD CONTROLS

LANCZOS type: Logical default: On for nonsymmetric systems
Use the Lanczos/Orthomin Conjugate-Gradient iteration method of Jea and Young for nonsymmetric

system matrices.  This method essentially solves the extended system 
0

0t t t

A x r

A x r
 instead

of Ax = r.
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ORTHOMIN type: Logical default: On for symmetric systems
Use Orthomin Conjugate-Gradient iteration method of Jea and Young for symmetric system matrices.  

VANDENBERG type: Logical default: Off
Use Vandenberg Conjugate-Gradient iteration (useful if hyperbolic systems fail to converge).  This
method essentially solves (AtA)x = (At)b instead of Ax=b.  This squares the condition number and slows
convergence, but it makes all the eigenvalues positive when the standard CG methods fail.

CONJUGATE GRADIENT PRECONDITIONING METHOD CONTROLS

ICCG type: Logical default: On for symmetric systems
Use an Incomplete Choleski factorization as a preconditioner in symmetric problems. This method
usually converges much more quickly. If ICCG=OFF or the factorization fails, then a block-inverse
preconditioner will be used.  ICCG=ON is equivalent to ILUPRECON below.

ILUPRECON type: Logical default: On for symmetric systems
Use an incomplete LU factorization as a preconditioner.  With symmetric systems this is an incomplete
Choleski factorization, equivalent to ICCG above.  If the factorization fails, a block-inverse
preconditioner will be used.

BIPRECON type: Logical default: On for nonsymmetric systems
Use the inverse of each diagonal block as a preconditioner.  

DIPRECON type: Logical default: On for single-variable systems
Use the inverse of each diagonal element as a preconditioner.  

3.3.2.3 Global Graphics Controls

The following controls can be used in the SELECT section to modify the behavior of the graphics
subsystem.

Logical selectors can be turned on by selector = ON, or merely mentioning the selector.
Logical selectors can be turned off by selector = OFF.
Numeric selectors are set by selector = number.

In the usual case, these selectors can be over-ridden by specific controls in individual plot commands
(see Graphic Display Modifiers ).

ALIAS ( coord ) type: string default: Coordinate name
Defines an alternate label for the plot axes.  Example:  ALIAS(x)="distance".

AUTOHIST type: Logical default: On
Causes history plots to be updated when any other plot is drawn.

BLACK type: Logical default: Off
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Draw all graphic output in black only.  Use GRAY to select grayscale output.

BOLD type: Logical default: Off
Draw all graphic plot labels in bold font.

CDFGRID type: Numeric default: 51
Specifies the default size of CDF output grid (ie, 51x51).

CONTOURGRID type: Numeric default: 101
Resolution specification for contour plots, in terms of the number of plot points along the longest plot
dimension.  The actual plot grid will follow the computation mesh, with subdivision if the cell size is
greater than that implied by the CONTOURGRID control.

CONTOURS type: Numeric default: 15
Target number of contour levels.  Contours are selected to give "nice" numbers, and the number of
contours may not be exactly as specified here.

ELEVATIONGRID type: Numeric default: 401
Elevation plot grid size used by From..To elevation plots. The actual plot grid will follow the computation
mesh, with subdivision if the cell size is greater than that implied by the EVATIONGRID control. 
Elevations on boundaries ignore this number and use the actual mesh points.

FEATUREPLOT type: Logical default: Off
If this selector is ON, FEATURE boundaries will be plotted in gray. 

FONT type: Numeric default: 2
Font=1 selects sans-serif font.  Font=2 selects serif font.

GRAY type: Logical default: Off
Draws all plots with a gray scale instead of the default color palette.

HARDMONITOR type: Logical default: Off
Causes MONITORS to be written to the PLOTS output file.

ITALIC type: Logical default: Off
Draw all graphic plot labels in italic font.

LOGLIMIT type: Numeric default: 15
The range of data in logarithmic plots is limited to LOGLIMIT decades below the maximum data value. 
This is a global control which may be overridden by the local LOG(number) qualifier on the plot
command.

NOMINMAX type: Logical default: Off
Deletes "o" and "x" marks at min and max values on all contour plots.

NOTAGS type: Logical default: Off
Suppresses level identifying tags on all contour and elevation plots.
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NOTIPS type: Logical default: Off
Plot arrows in vector plots without arrowheads. Useful for bi-directional stress plots.

PAINTED type: Logical default: Off
Draw color-filled contour plots.  Plots can be painted individually by selecting PAINT in the plot
modifiers.

PAINTGRID type: Logical default: On
Draw color-filled grid plots.  Colors represent distinct materials, as defined by parameter matching.

PAINTMATERIALS type: Logical default: On
Synonymous with PAINTGRID, included for symmetry with individual PLOT modifiers.

PAINTREGIONS type: Logical default: Off
Sets PAINTGRID, but selects a different coloring scheme.  Colors represent logical regions in 2D, or
logical (region x layer) compartments in 3D, instead of distinct material parameters.  

PENWIDTH type: Numeric default: 0
Sets the on-screen pen width for all plots.  Value is an integer (0,1,2,3,...) which specifies the width of
the drawn lines, in thousandths of the pixel width (0 means thin).

PLOTINTEGRATE type: Logical default: On
Integrate all spatial plots. Default is volume and surface integrals, using 2*pi*r weighting in cylindrical
geometry. Histories are not automatically integrated, and must be explicitly integrated.

PRINTMERGE type: Logical default: Off
Send all stages or plot times of each EXPORT statement to a single file. By default, EXPORTS create a
separate file for each time or stage. Individual EXPORTS can be controlled by the plot modifier MERGE.

SERIF type: Logical default: Off
Draw all graphic plot labels in serif font.

SANSERIF type: Logical default: On
Draw all graphic plot labels in sanserif font.

SPECTRAL_COLORS type: Logical default: Off
Sets the order of colors used in labeling plots. ON puts red at the bottom (lowest spectral color). OFF
puts red at the top (hot). This selector is the reverse of THERMAL_COLORS.

SURFACEGRID type: Numeric default: 101
Selects the minimum resolution for Surface plots, in terms of the number of plot points along the longest
plot dimension.  The actual plot grid will follow the computation mesh, with subdivision if the cell size is
greater than that implied by the SURFACEGRID control.

TEXTSIZE type: Numeric default: 35
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Controls size of text on plot output.  Value is number of  lines per page, so larger numbers mean smaller
text.  

THERMAL_COLORS type: Logical default: On
Sets the order of colors used in labeling plots. ON puts red at the top (hot). OFF puts red at the bottom
(lowest spectral color).  This selector is the reverse of SPECTRAL_COLORS.

VECTORGRID type: Numeric default: 71
Sets resolution of Vector plots.  Arrows are placed on a regular grid with the selected number of points
along the longest plot dimension.

VIEWPOINT ( x, y, angle ) default: negative X&Y, 30
Defines default viewpoint for SURFACE plots and 3D GRID plots.  Angle is in degrees. (In 3D cut plane
plots, this specifies a position in the cut plane coordinates)

3.3.3 Coordinates

The optional COORDINATES section defines the coordinate geometry of the problem.  

Each geometry selection has an implied three-dimensional coordinate structure.  In 2D and 1D
geometries, the solution if the PDE system is assumed to have no variation in one or two of the
coordinate directions.  The finite element mesh is therefore constructed in the remaining space, and
derivatives in the absent coordinates are assumed to be zero.

In 3D geometry the X & Y coordinates are the projection plane in which a figure is constructed, and the
Z coordinate is the direction of extrusion.

The first coordinate in the order of listing is used as the horizontal axis in graphical output, while the
second is used as the vertical axis.

The basic form of the COORDINATES section is:

COORDINATES  geometry

where geometry may be any of the following:

Name Coordinate system Modeled Coordinates

CARTESIAN1 Cartesian (X,Y ,Z) X

CYLINDER1 Cy lindrical (R,Phi,Z) R

SPHERE1 Spherical (R,Theta,Phi) R

CARTESIAN2 Cartesian (X,Y ,Z) X,Y

XCYLINDER Cy lindrical (Z,R,Phi) Z,R
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YCYLINDER Cy lindrical (R,Z,Phi) R,Z

CARTESIAN3 Cartesian (X,Y ,Z) X,Y ,Z

If no COORDINATES section is specified, a CARTESIAN2 coordinate system is assumed.

Renaming Coordinates

A second form of the COORDINATES section allows renaming (aliasing) of the coordinates:

COORDINATES  geometry ( 'Xname'  [,'Yname'  [,'Zname'] ])

In this case, the 'Xname' argument renames the coordinate lying along the horizontal plot axis,
and 'Yname' renames the coordinate lying along the vertical plot axis. 'Zname' renames the
extrusion coordinate. Names may be quoted strings or unquoted names.  Renaming
coordinates does not change the fundamental nature of the coordinate system.  In cylindrical
geometries, for example, the radial coordinate will continue to be the radial coordinate, even if
you name it "Z".

In time-dependent problems, the time coordinate may be renamed using TIME ('Tname') in the
COORDINATES section :

COORDINATES  geometry TIME ('Tname')

This may be used in conjunction with the renaming of spatial coordinates.

Differential Operators

Renaming coordinates causes a redefinition of the differential operators.  DX becomes D<Xname>, etc.

The  DIV, GRAD, and CURL operators are expanded correctly for the designated geometry.  Use of these
operators in the EQUATIONS section can considerably simplify problem specification.

Other Geometries

Since FlexPDE accepts arbitrary mathematical forms for equations, it is always possible to construct
equations appropriate to an arbitrary geometry.  

For example, using the CARTESIAN2 coordinate system and renaming coordinates, one can write the
heat equation for cylindrical geometry as

COORDINATES cartesian2("R","Z")
VARIABLES u
...
EQUATIONS
u:  dr(k*r*dr(u)) + r*dz(k*dz(u)) + r*source = 0

This equation derives from expanding the DIV and GRAD operators in cylindrical coordinates and
multiplying by the volume weighting factor "r", and is the same as the equation that FlexPDE itself will
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construct in XCYLINDER geometry.

Coordinate Transformations

The function definition facility of FlexPDE can be used to simplify the transformation of arbitrary
coordinates to Cartesian (X,Y,Z) coordinates.   

The example problem "Samples | Usage | polar_coordinates.pde"   uses this facility to pose equations
in polar coordinates:

DEFINITIONS
     dr(f) = (x/r)*dx(f) + (y/r)*dy(f)      { functional definition of polar derivatives... }
     dphi(f) = (-y)*dx(f) + x*dy(f)     {... in cartesian coordinates }

EQUATIONS  { equation expressed in polar coordinates }
                { (and Multiplied by r^2 to clear the r=0 singularity) }
U:    r*dr(r*dr(u)) + dphi(dphi(u)) + r*r*s = 0   

Graphic output using this procedure is always mapped to the fundamental Cartesian coordinate system.

3.3.4 Variables

The VARIABLES section is used to define and assign names to all the primary dependent variables used in
a problem descriptor.  The form of this section is

VARIABLES variable_name_1 , variable_name_2 ,...

All names appearing in the VARIABLES section will be represented by a finite element approximation
over the problem mesh.  Each variable is assumed to define a continuous field over the problem domain.
 It is further assumed that each variable will be accompanied by a partial differential equation listed in the 
EQUATIONS section.

Each variable_name may be followed by various qualifiers, which will be described in subsequent
sections.  These qualifiers allow you to control mesh motion, declare complex and vector variables,
declare arrays of variables, and control some of the ways FlexPDE treats the variable.

In assigning names to the dependent variables, the following rules apply:

Variable names must begin with an alphabetic character.   They may not begin with a number or
symbol.

Variable names may be a single character other than the single character "t", which is reserved for the
time variable.

Variable names may be of any length and any combination of characters, numbers and/or symbols
other than reserved words. 

Variable names may not contain any separators.  Compound names can be formed with the '_' symbol
(e.g. temperature_celsius).
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Variable names may not contain the character '-' which is reserved for the minus sign.

Example:

VARIABLES
U,V

3.3.4.1 T he T HRESHOLD Clause

An optional THRESHOLD clause may be associated with a variable name.  

The THRESHOLD value determines the minimum range of values of the variable for which FlexPDE must
try to maintain the requested ERRLIM accuracy. In other words, THRESHOLD defines the level of
variation at which the user begins to lose interest in the details of the solution.

Error estimates are scaled to the greater of the THRESHOLD value or the observed range of the variable,
so the THRESHOLD value becomes meaningless once the observed variation of a variable in the problem
domain exceeds the stated THRESHOLD.  If you make the THRESHOLD too large, the accuracy of the
solution will be degraded.  If you make it too small, you will waste a lot of time computing precision you
don't need.  So if you provide a THRESHOLD, make it a modest fraction of the expected range (max
minus min) of the variable.

The THRESHOLD clause has two alternative forms:

variable_name ( THRESHOLD = number )
variable_name ( number )

Note: In most cases, the use of THRESHOLD is meaningful only in time-dependent or nonlinear
steady-state problems with uniform initial values, or that ultimately reach a solution of
uniform value. 

3.3.4.2 T he ORDER Clause

An optional ORDER clause may be associated with a variable name.  

The ORDER value determines the interpolation order  for a given variable. It may be used in
conjunction with THRESHOLD.

The ORDER clause has the form:

variable_name ( ORDER = number )

3.3.4.3 Com plex Variables

You may declare that a VARIABLE name represents a complex quantity.  The format of a complex
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declaration is:

variable_name = COMPLEX ( real_name , imaginary_name )  

This declaration tells FlexPDE that variable_name represents a complex quantity, and assigns the
real_name and imaginary_name to the real and imaginary parts of variable_name.  You may
subsequently assign EQUATIONS and boundary conditions either to the variable_name, or to its
components individually.  Similarly, you can perform arithmetic operations or request graphical output of
either the variable_name itself, or its components individually.

Example:
VARIABLES

U,V
C = COMPLEX(Cr,Ci)

3.3.4.4 Moving Meshes

FlexPDE can be configured to move the finite element mesh in time-dependent problems.

In order to do this, you must assign a VARIABLE as a surrogate for each coordinate you wish to modify.
 This specification uses the form 

variable_name = MOVE ( coordinate_name )  

This declaration assigns variable_name as a surrogate variable for the coordinate_name.  You may
subsequently assign EQUATIONS and boundary conditions to the surrogate variable in the normal way,
and these equations and boundary conditions will be imposed on the values of the selected mesh
coordinate at the computation nodes.

Example:
VARIABLES

U,V
Xm = MOVE(X)

See Moving Meshes  later in this document and the Moving Meshes chapter in the User Guide .

3.3.4.5 Variable Array s

You may declare that a VARIABLE name represents an array of variables.  The format of a variable array
declaration is:

variable_name = ARRAY [ number ]  

This declaration tells FlexPDE that variable_name represents an array of variable quantities, each one
a scalar field on the problem domain.  FlexPDE creates internal names for the elements of the array by
subscripting variable_name with "_" and the element number (e.g. U_7).  You can access the
components either by this internal name or by an indexed reference variable_name[index].

You may subsequently assign EQUATIONS and boundary conditions either to the individual
components, or in a REPEAT loop by indexed reference.  Similarly, you can perform arithmetic
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operations or request graphical output of either the indexed array name, or by the individual component
names.

Example:

VARIABLES
    A = ARRAY[10] { declares ten variables A_1 through A_10 }
     { also accessible as  A[1] through A[10] }

See example problems:
Samples | Usage | Variable_Arrays | array_variables.pde

3.3.4.6 Vector Variables

You may declare that a VARIABLE name represents a vector quantity.  The format of a vector
declaration is:

variable_name = VECTOR ( component1 )  
variable_name = VECTOR ( component1 , component2 )  
variable_name = VECTOR ( component1 , component2 ,component3 )  

This declaration tells FlexPDE that variable_name represents a vector quantity, and assigns the
component names to the geometric components of variable_name.  You may subsequently assign
EQUATIONS and boundary conditions either to the variable_name, or to its components individually. 
Similarly, you can perform arithmetic operations or request graphical output of either the 
variable_name itself, or its components individually.

The three component names correspond to the coordinate directions as implied in the COORDINATES

section of the problem descriptor.  You can declare any or all of the three component directions, even if
the model domain treats only one or two.  

Any of the component names can be replace by "0" to indicate that this component of the vector is not
to be modeled by FlexPDE, but is to be assumed zero.  Similarly, omitted names cause the
corresponding vector components to be assumed zero.

Example:
In XCYLINDER geometry, which has coordinates (Z,R,Phi), you can tell FlexPDE to model only the
Phi component of a vector quantity as follows:

VARIABLES
    A = Vector(0,0,Aphi)

See example problems:
Samples | Usage | Variable_Types | Vector_Variables.pde
Samples | Applications | Fluids | 3d_Flowbox.pde
Samples | Applications | Fluids | Swirl.pde
Samples | Applications | Magnetism | 3D_Vector_Magnetron.pde
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3.3.5 Global Variables

The GLOBAL VARIABLES section is used to define auxiliary or summary values which are intricately
linked to the field variables.  

Each GLOBAL VARIABLE takes on a single value over the entire domain, as opposed to the nodal finite
element field representing a VARIABLE.  

GLOBAL VARIABLES differ from simple DEFINITIONS in that DEFINITIONS are algebraically substituted
in place of their references, while GLOBAL VARIABLES represent stored values which are assigned a row
and column in the master coupling matrix and are solved simultaneously with the finite element equations.

The GLOBAL VARIABLES section must follow immediately after the VARIABLES section. 

Rules for declaring GLOBAL VARIABLES are the same as for VARIABLES, and a GLOBAL VARIABLE may
have a THRESHOLD, and may be declared to be COMPLEX, VECTOR or ARRAY, as with VARIABLES.

Each GLOBAL VARIABLE will be associated with an entry in the EQUATIONS section, with rules identical
to those for VARIABLES.  

GLOBAL VARIABLES do not have boundary conditions.  They may be either steady-state or time-
dependent, and may be defined in terms of integrals over the domain, or by point values of other
functions.

Examples:
Samples | Applications | Control | Control_Steady.pde  
Samples | Applications | Control | Control_Transient.pde 

Note: In previous versions of FlexPDE, Global Variables were referred to as SCALAR
VARIABLES.  This usage is still allowed for compatibility, but the newer terminology is
preferred.

3.3.6 Definitions

The DEFINTIONS section is used to declare  and assign names to special numerical constants,
coefficients, and functions used in a problem descriptor.  

In assigning names to the definitions, the following rules apply:

Must begin with an alphabetic character.   May not begin with a number or symbol.

May be a single character other than the single character t , which is reserved for the time
variable.
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May be of any length and any combination of characters, numbers, and symbols other
than reserved words, coordinate names or variable names. 

May not contain any separators.  Compound names can be formed with the '_' symbol
(e.g. temperature_celsius).

May not contain the '-' which is reserved for the minus sign.

Normally, when a definition is declared it is  assigned a value by following it with the assignment operator
'=' and either a value or an expression.  Definitions are dynamic elements and when a value is assigned, it
will be the initial value only and will be updated, if necessary, by the problem solution.   

Example: 

Viscosity = 3.02e-4*exp(-5*Temp)

Definitions are expanded inline in the partial differential equations of the EQUATIONS section.  They are
not represented by a finite element approximation over the mesh, but are calculated as needed at various
times and locations.

Redefining Regional Parameters

Names defined in the DEFINITIONS section may be given overriding definitions in some or all of the
REGIONS of the BOUNDARIES section.  In this case, the quantity may take on different region-specific
values.   Quantities which are completely specified in subsequent REGIONS may be stated in the
DEFINITIONS section without a value.

Note: See the User Guide section "Setting Material Properties by Region"  for examples of
redefined regional parameters.

Defining Constant Values

Normally,  DEFINITIONS are stored as the defining formulas, and are recomputed as needed.  In rare
cases (as with RANDOM elements), this is inappropriate.  The qualifier CONST() can be used to force the
storage of numeric values instead of defining formulas.  Values will be computed when the script is
parsed, and will not be recomputed.

name = CONST (expression )

Note: Scripts with staged geometry  will reparse the script file and regenerate any CONST values.

3.3.6.1 ARRAY Definitions

Names may be defined as representing arrays or lists of values.  ARRAY definition can take several forms:
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name = ARRAY ( value_1 , value_2 ... value_n )

defines name to be an n-element array of values value_1 ... value_n.

name = ARRAY ( initial BY step TO final )

defines name to be an array of values initial, initial + step, initial + 2*step, and so forth up to
final.

name = ARRAY [ number ]

defines name to be an array of number elements.  Values are as yet undefined, and must be supplied
later in the script.

name = ARRAY [ number ] ( value_1 , value_2 ... value_number )

defines name to be an array of number elements, whose values are value_1, value_2, etc.

name = ARRAY FOR param (initial BY step TO final)  :  expression

defines name to be an array of values generated by evaluating expression with param set to initial,
initial + step, initial + 2*step, and so forth up to param = final.

name = ARRAY FOR param ( P1 , P2 { , P3 ...} )  :  expression

defines name to be an array of values generated by evaluating expression with param set to P1, P2,
and so forth up to the end of the listed parameters.

The values assigned to ARRAY elements must evaluate to scalar numbers.  They may contain coordinate
or variable dependencies, but must not be VECTOR, COMPLEX or TENSOR quantities.

Examples:

u = array[11]
v = array(0,1,2,3,4,5,6,7,8,9,10)
w = array(0 by 0.1 to 10)
alpha =array for x(0 by 0.1 to 10)  : sin(x)+1.

Referencing ARRAY values

Within the body of the descriptor, ARRAY values may be referenced by the form

name [ index ]

The value of the selected ARRAY element is computed and used as though it were entered literally in the
text.

ARRAY elements that have not been previously assigned may be given values individually by conventional
assignment syntax:

name [ index ] = expression

Arithmetic Operations on ARRAYS
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Arithmetic operations may be performed on ARRAYS as with scalar values.  Names defined as the result
of ARRAY arithmetic will be implicitly defined as ARRAYS.  Arithmetic operations and functions on
ARRAYS are applied element-by-element.

ARRAYS may also be operated on by MATRICES  (q.v.)

Example:

beta = sin(w)+1.1 { beta is an ARRAY with the same data as alpha }
gamma = sin(v)+0.1 { gamma is an ARRAY with the dimension of v }

The SIZEOF operator

The operator SIZEOF may be used to retrieve the allocated size of an ARRAY.

Example:
n = SIZEOF(v) { returns 11, the allocates size of the example array "v" above }

ARRAYS of Constant Values

Normally,  ARRAYS are stored as the defining formulas for the elements, and are recomputed as needed.
 In rare cases (as with RANDOM elements), this is inappropriate.  The qualifier CONST can be prepended
to the ARRAY definition to force the storage of numeric values instead of defining formulas.  Elements will
be computed when the script is parsed, and will not be recomputed.  For example:

name = CONST ARRAY ( value_1 , value_2 ... value_n )

Note: Scripts with staged geometry  will reparse the script file and regenerate any CONST  values.

See Also:  "Using ARRAYS and MATRICES"

3.3.6.2 MAT RIX Definitions

Names may be defined as representing matrices or tables of values.  MATRIX definition can take several
forms:

name = MATRIX ( ( value_11 , value_12 ... value_1m ) , 
... ( value_n1 , value_n2 ... value_nm) )

defines name to be a matrix of values with n rows and m columns.
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name = MATRIX [ rows , columns ]

defines name to be an matrix of elements with the stated dimensions.  Values are as yet undefined,
and must be supplied later in the script.

name = MATRIX [ n , m ] ( ( value_11 , value_12 ... value_1m ) , 
... ( value_n1 , value_n2 ... value_nm) )

defines name to be an array of number elements, whose values are as listed.

name = MATRIX FOR param1 (initial1 BY step1 TO final1 ) 
FOR param2 (initial2 BY step2 TO final2 )  :  expression

defines name to be a matrix of values generated by evaluating expression with param1 and param2

set to the indicated range of values.  param2 is cycled to create columns, and param1 is cycled to
create rows.

name = MATRIX FOR param1 ( P11 , P12 { , P13 ...} )   
FOR param1 ( P21 , P22 { , P23 ...} )  :  expression

defines name to be a matrix of values generated by evaluating expression with param1 and param2

set to the indicated range of values.  param2 is cycled to create columns, and param1 is cycled to
create rows.

The values assigned to MATRIX elements must evaluate to scalar numbers.  They may contain coordinate
or variable dependencies, but must not be VECTOR, COMPLEX or TENSOR quantities.

Examples:

    m1 = matrix((1,2,3),(4,5,6),(7,8,9))
    
    m2 = matrix for x(0.1 by 0.1 to 5*pi/2)  { a 79x79 diagonal matrix of amplitude 10 }

      for y(0.1 by 0.1 to 5*pi/2)  :   if(x=y) then 10 else 0

    m3 = matrix for x(0.1 by 0.1 to 5*pi/2)     { a 79x79 matrix of sin products }
                    for y(0.1 by 0.1 to 5*pi/2)      :    sin(x)*sin(y) +1

    

Referencing MATRIX values

Within the body of the descriptor, MATRIX values may be referenced by the form

name [ row_index , column_index ]

The value of the selected MATRIX element is computed and used as though it were entered literally in the
text.

MATRIX elements that have not been previously assigned may be given values individually by
conventional assignment syntax:

name [ row_index , column_index ] = expression

Arithmetic Operations on MATRICES
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Arithmetic operations may be performed on MATRICES.  Names defined as the result of MATRIX

arithmetic will be implicitly defined as MATRICES or ARRAYS, as appropriate to the operation.  

Standard arithmetic operations and functions on MATRICES are applied element-by-element.

The special operator ** is defined for conventional matrix multiplication

Examples:

N = M1 * M2 { N is a MATRIX, each element of which is the product of corresponding
elements in M1 and M2 }

S = sin(M) { S is a MATRIX, each element of which is the sine of the corresponding element
of M }

N = M1 ** M2 { N is a MATRIX, each element of which is the dot product of corresponding row
in M1 and column in M2 (ie, conventional matrix multiplication) }

Arithmetic Operations of MATRICES on ARRAYS

Arithmetic operations may be performed by MATRICES on ARRAYS.  Names defined as the result of
these operations will be implicitly defined as ARRAYS, as appropriate to the operation. The MATRIX and
ARRAY appearing in such operations must agree in dimensions or the operation will be rejected. 

The special operator ** is defined for conventional (matrix x vector) multiplication, in which each
element of the result vector is the dot product of the corresponding matrix row with the argument
vector.

The special operator // is defined for (vector / matrix) division. This operation is defined as
multiplication of the vector by the inverse of the argument matrix.

Examples:

V2 = M ** V1{ V2 is an ARRAY, each element of which is the dot product of the corresponding
row of M with the ARRAY V1 }

V2 = V1 // M { V2 is an ARRAY that satisfies the equation M**V2 = V1 }

The TRANSPOSE operator

The operator TRANSPOSE may be used to retrieve the transpose of a MATRIX.

The SIZEOF operator

The operator SIZEOF may be used to retrieve the allocated size of a MATRIX.
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Example:
n = SIZEOF(v) { returns 11, the allocates size of the example array "v" above }

MATRICES of Constant Values

Normally,  MATRICES are stored as the defining formulas for the elements, and are recomputed as
needed.  In rare cases (as with RANDOM elements), this is inappropriate.  The qualifier CONST can be
prepended to the MATRIX definition to force the storage of numeric values instead of defining formulas. 
Elements will be computed when the script is parsed, and will not be recomputed.  For example:

name = CONST MATRIX ( ( value_11 , value_12 ... value_1m ) , 
... ( value_n1 , value_n2 ... value_nm) )

See Also:  "Using ARRAYS and MATRICES"

3.3.6.3 COMPLEX Definitions

You may declare that a DEFINITION name represents a complex quantity.  The format of a complex
declaration is:

name = COMPLEX ( real_name , imaginary_name )  

This declaration tells FlexPDE that name represents a complex quantity, and assigns the real_name

and imaginary_name to the real and imaginary parts of name.  You can perform arithmetic operations
or request graphical output of either the name itself, or its components individually.

Example:
DEFINITIONS

Cr = 5
Ci = 7
C = COMPLEX(Cr,Ci)

3.3.6.4 Function Definitions

Definitions can be made to depend on one to three explicit arguments, much as with a Function definition
in a procedural language.  The syntax of the parameterized definition is 

name ( argname )  =  expression
name ( argname1 , argname2 )  =  expression
name ( argname1 , argname2 , argname3 )  =  expression

The construct is only meaningful if expression contains references to the argnames.  Names defined in
this way can later be used by supplying actual values for the arguments.  As with other definitions in

140



Problem Descriptor Reference : The Sections of a Descriptor 206

FlexPDE, these actual parameters may be any valid expression with coordinate or variable dependences.
 The argnames used in the definition are local to the definition and are undefined outside the scope of the
defining expression.

Note that it is never necessary to pass known definitions, such as coordinate names, variable names, or
other parameters as arguments to a parameterized definition, because they are always globally known
and are evaluated in the proper context.  Use the parameterized definition facility when you want to pass
values that are not globally known.

Note: This construct is implemented by textual expansion of the definitions in place of the
function reference.  It is not a run-time call, as in a procedural language.

Example:  

DEFINITIONS
sq(arg) = arg*arg
...

EQUATIONS
div(a*grad(u)) + sq(u+1)*dx(u) +4 = 0;

     
In this case, the equation will expand to 

div(a*grad(u)) + (u+1)*(u+1)*dx(u) + 4 = 0.

See also "Samples | Usage | Function_Definition.pde"

3.3.6.5 ST AGED Definitions

FlexPDE can perform automated parameter studies through use of the STAGE facility.  In this mode,
FlexPDE will run the problem a number of times, with differing parameters in each run.  Each STAGE begins
with the solution and mesh of the previous STAGE as initial conditions.

HISTORY  plots can be used to show the variation of scalar values as the STAGES proceed.

Note: The STAGE facility can only be used on steady-state problems. It cannot be used with time
dependent problems.

The STAGES Selector

In the SELECT section, the statement

STAGES = number 

specifies that the problem will be run number times.  A parameter named STAGE is defined, which takes
on the sequence count of the staged run.  Other definitions may use this value to vary parameter values,
as for example:

Voltage = 100*stage
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STAGED Definitions

A parameter definition may also take the form:

param = STAGED ( value_1, value_2, ... value_n )

In this case, the parameter param takes on value_1 in stage 1, value_2 in stage 2, etc.
If STAGED parameters are defined, the STAGES selector is optional.  If the STAGES selector is not
defined, the length of the STAGED list will be used as the number of stages.  If the STAGES selector is
defined, it overrides the length of the STAGED list. Commas are optional.

See the example "Samples | Usage | Stages.pde" .

STAGED Definitions by incrementation

Any value in the STAGED form above may be replaced by the incrementation form

value_i BY increment TO value_j

STAGED Geometry

If the geometric domain definition contains references to staged quantities, then the solution and mesh will
not be retained, but the mesh will be regenerated for the new geometry.  History plots can still be
displayed for staged geometries.

See the example "Samples | Usage | Staged_Geometry.pde" .

FlexPDE attempts to detect stage dependence in the geometrical domain definition and automatically
regenerate the mesh.  If for any reason these dependencies are undetected, the global selector 
STAGEGRID can be used to force grid staging.

Note: Scripts with staged geometry will reparse the script file and regenerate any CONST  values.

3.3.6.6 POINT  Definitions

A name may be associated with a coordinate point by the construct 

point_name = POINT(a,b)

Here a and b must be computable constants at the time the definition is made.  They may not depend on
variables or coordinates.  They may depend on stage number.

The name of the point can subsequently appear in any context in which the literal point (a,b) could
appear.

Individual coordinates of a named point can be extracted using vector component operators .
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Movable Points

The qualifier MOVABLE can be used with named points that are used in boundary definitions in moving-
mesh problems. These points become locked to the mesh, and will move as the mesh moves.

Such points can be used in "AT" selectors for histories to track values at points that move with the mesh. 

Examples:
Samples | Usage | Moving_Mesh | 2D_Movepoint.pde

3.3.6.7 T ABLE Im port Definitions

FlexPDE supports the import of tabular data in several script commands. In each case, the model
assumes that a text file contains data defining one or more functions of one, two or three coordinates. 
The coordinates may be associated with any quantity known to FlexPDE, such as a spatial coordinate, a
variable, or any defined quantity.  At each point of evaluation, whether of a plot or a quadrature
computation of coupling matrix, or any other context, the values of the declared coordinates of the table
are computed and used as lookup parameters to interpolate data from the table.

This feature is useful for modeling systems where experimental data is available and for interfacing with
other software programs.

The names of quantities to be used as table coordinates may be declared inside the table file, or they may
be imposed by the TABLE input statement itself.  

Table coordinates must be in monotonic increasing order.

TABLE data are defined on a rectangular grid, and interpolated with linear, bilinear or trilinear
interpolation.  Modifiers can be prepended to table definitions to create spline interpolation or histogram
interpretation, or to smooth the imported data.

Table import files are ASCII text files, and can be generated with any ASCII text editor, by user
programs designed to generate tables, or by FlexPDE itself, using the EXPORT plot modifier or the
TABLE output statement (see MONITORS and PLOTS ).

See TABLE File Format  for a definition of the table file format.
See Importing Data from other applications  for a discussion of TABLE usage.

3.3.6.7.1  T h e T A BLE In pu t  fu n ct ion

A single imported data function may be declared by one of the forms:

name = TABLE ( 'filename' )
name = TABLE ( 'filename', coord1 [,coord2...] )
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Both forms import a data table from the named file and associate the data with the defined name. 

In the first form, the coordinates of the table must be named in the file.
In the second form, the coordinates are named explicitly in the command.
In either case, the declared coordinates must be names known to FlexPDE at the time of reading the file.

The format of the TABLE file describes a function of one, two or three coordinates.

The TABLE statement must appear in a parameter definition (in the DEFINITIONS section or as a regional
parameter definition in a REGION clause), and the table data are associated with the given name.  Note:
FlexPDE version 6 and later do not allow TABLE to be used directly in arithmetic expressions.

When the parameter name is used in subsequent computations, the current values of the table
coordinates will be used to interpolate the value.  For instance, if the table coordinates are the spatial
coordinates X and Y, then during computations or plotting, the named parameter will take on a spatial
distribution corresponding to the table data spread over the problem domain.

In version 7.11 and later, FlexPDE will issue an error diagnostic if table data is accessed outside of the
defined range. This was added as a warning to the user since extrapolated data may not be trustworthy.
This table bounds check can be turned off using the selector CHECK_TABLES .

Examples:
Samples | Usage | Import-Export | Table.pde
Samples | Usage | Import-Export | Blocktable.pde
Samples | Usage | Import-Export | Smoothtable.pde
Samples | Usage | Import-Export | Splinetable.pde

3.3.6.7.2  T h e T A BLEDEF in pu t  st a t em en t

The TABLEDEF input statement is similar to the TABLE  input function, but can be used to directly
define one or several parameters from a multi-valued table file.

The format is

TABLEDEF('filename' , name1 { , name2 , ... } )

Whereas in the TABLE statement the additional arguments are coordinate reassignments, in the
TABLEDEF statement the additional arguments are the names to be defined and associated with the table
data.  The TABLEDEF statement is not able to redefine the names of the table coordinates, and the names
in the table file must be those of values known to FlexPDE at the time of reading the table.  

The TABLEDEF statement is syntactically parallel to the TRANSFER statement.

TABLEDEF may optionally be preceded by TABLE modifiers .
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3.3.6.7.3  T A BLE Modifiers

The default interpolation for table data is linear (or bilinear or trilinear) within the table cells.  Alternative
treatments of the data can be specified by prefixes attached to the TABLE statement.

Modifier Effect

SPLINE A cubic spline is fit to the table data (one- and two-dimensional tables
only)

BLOCK Data points are assumed to denote the beginning of a histogram level.  The
data value at a given point will apply uniformly to the coordinate interval
ending at the next coordinate point.  A ramped transition will be applied to
the interpolation, transitioning from one level to the next in 1/10 of the
combined table cell widths.

BLOCK(fraction) Data are interpreted as with BLOCK, but fraction is used as the transition
width factor in place of the default 1/10.

SMOOTH(wavelength
)

A diffusive smoothing is applied to the TABLE data, in such a way that the
integral of the data is preserved, but sharp transitions are blurred.  This can
result in more efficient solution times if the data are used as sources or
parameters in time-dependent problems.
Fourier components with spatial wavelengths less than wavelength will be
damped. (See Technical Note: Smoothing Operators in PDE's ). 

Examples:
Data = SMOOTH(0.1) TABLE("input_file")
Data = SPLINE TABLE("input_file")

3.3.6.7.4  T A BLE File form a t

Data files for use in TABLE or TABLEDEF input must have the following form:

{ comments }
name_coord1   datacount1
   value1_coord1   value2_coord1   value3_coord1 …
name_coord2   datacount2
   value1_coord2   value2_coord2   value3_coord1 …
name_coord3   datacount3
   value1_coord3   value2_coord3   value3_coord3 …
data { comments }
data111   data211   data311 …
data121   data221   data321 …
data131   data231   data331 …
  …            …            …
  …            …            …
data112   data 212   data312 …
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data122   data 222   data322 …
data132   data 232   data 332 …
  …            …            …
  …            …            …

where

name_coordN is the coordinate name in the N direction.  Names must match defined names in
the importing script unless table coordinate redefinition is used.

valueN_coordM is the Nth value of the Mth coordinate. These must be in monotonic increasing
order.

datacountN is the number of data points in the N direction.

DataJKL is the data at coordinate point (J,K,L)

 …  ellipses indicate extended data lists, which may be continued over multiple lines.

Note that in presenting data, coord1 is cycled first, then coord1, then coord3.
Coordinate lists and data lists are free-format, and may be arbitrarily spaced, indented or divided into
lines.

Example:

{ this is an example table.  }
x   6

-0.01 2 4 6 8 10.01
y   6

-0.01 2 4 6 8 10.01
data

1.1 2.1 3.1 4.1 5.1 6.1
1.2 2.2 3.2 4.2 5.2 6.2
1.3 2.3 3.3 4.3 5.3 6.3
1.4 2.4 3.4 4.4 5.4 6.4
1.5 2.5 3.5 4.5 5.5 6.5
1.6 2.6 3.6 4.6 5.6 6.6

3.3.6.8 T ABULAT E definitions

The TABULATE statement can be used to generate a TABLE internally from arithmetic expressions.  The
result is a TABLE identical to one produced externally and read by the TABLE or TABLEDEF statements.

This facility can be used to tabulate parameters that are very expensive to compute, resulting in an
improvement in the efficiency of the system solution.

The TABULATE statement has a syntax identical to that of ARRAY and MATRIX definition, with the
addition of a possible third table dimension.

name = TABULATE FOR param1 (first1 BY step1 TO final1 ) : expression
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name = TABULATE FOR param1 (first1 BY step1 TO final1 ) 
FOR param2 (first2 BY step2 TO final2 ) : expression

name = TABULATE FOR param1 (first1 BY step1 TO final1 ) 
           FOR param2 (first2 BY step2 TO final2 ) 

FOR param3 (first3 BY step3 TO final3 ) : expression

These statements define name to be a TABLE of values generated by evaluating expression at all
combinations of the specified parameters.  param1, param2 and param3 must be names already defined
in the script, and they become the coordinate values of the table.

As with MATRICES and ARRAYS, table points can be stated explicitly

name = TABULATE FOR param1 ( p11 , p12 { , p13 ...} ) : expression

The two forms of coordinate definition can be mixed at will, as in

name = TABULATE FOR param1 ( p1 , p2 , p3 BY step TO final , pN ) :  expression

The expression can also be an explicit list of values :

name = TABULATE FOR param1 (first1 BY step1 TO final1 ) : LIST (value1,
value2, ...)

Interpretation of the resulting table can be modified as with the TABLE statement, by prefixing the
TABULATE clause by the modifiers SPLINE, BLOCK or SMOOTH.

Examples:
Samples | Usage | Misc | Tabulate.pde

3.3.6.9 T RANSFER Im port Definitions

FlexPDE supports a TRANSFER facility for exchanging data between FlexPDE problem runs.  The
format is unique to FlexPDE, and is not supported by other software products.  The file format for
version 7 is different from that of previous versions, but files written by version 6 can also be read by
version 7.  See TRANSFER file format  and TRANSFER6 file format  for descriptions of the file
formats.

A TRANSFER file contains data defined on the same unstructured triangle or tetrahedral mesh as used in
the creating FlexPDE computation, and maintains the full information content of the original computation.
 It also contains a description of the problem domain definition of the creating run.

Note: Unlike FlexPDE Version 6, Version 7 TRANSFER import restores the state of HISTORY plots (if
the file was written by Version 7).

The TRANSFER input statement has three forms :
TRANSFER ( 'filename' , name1  { , name2 , ... } )
TRANSFERMESH ( 'filename', name1 { ,name2,.. } )
TRANSFERMESHTIME ( 'filename', name1 { ,name2,.. } )
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The file specified in the transfer input function must have been written by FlexPDE using the TRANSFER

output function.  The names listed in the input function will become defined as if they had appeared in a 
"name="  definition statement.  The names will be positionally correlated with the data fields in the
referenced output file.

With the TRANSFER form, the mesh structure of the imported file is stored independently from the
computation mesh, and is not influenced by refinement or merging of the computation mesh.  

The TRANSFERMESH input statement not only imports data definitions stored on disk, but also
IMPOSES THE FINITE ELEMENT MESH STRUCTURE of the imported file onto the current
problem, bypassing the normal mesh generation process.  In order for this imposition to work, the
importing descriptor file must have EXACTLY the same domain definition structure as the exporting file.
 Be sure to use a copy of the exporting domain definition in your importing descriptor.  You may change
the boundary conditions, but not the boundary positions and ordering.

The TRANSFERMESHTIME statement acts precisely as the TRANSFERMESH statement, except that the
problem time is imported from the transfer file as well as the mesh.  This statement can be used to
resume a time-dependent problem from the state recorded in the transfer file. In version 7 the 
TRANSFERMESHTIME statement is depricated and has been replaced by the RESTART statement.

Restart :

The RESTART input statement has the form :

RESTART ( 'filename' )

The file specified in the transfer input function must have been written by FlexPDE using the RESTART

output function or the automatic .

Examples:

Samples | Usage | Import-Export | Transfer_Export.pde 
Samples | Usage | Import-Export | Transfer_Import.pde 
Samples | Usage | Import-Export | Mesh_Export.pde
Samples | Usage | Import-Export | Mesh_Import.pde
Samples | Usage | Stop+Restart | Restart_Export.pde
Samples | Usage | Stop+Restart | Restart_Import.pde

3.3.6.10 T he PASSIVE Modifier

Definitions may be specified as PASSIVE, in which case they will be blocked from differentiation with
respect to system variables in the formation of the global Jacobian matrix.  In strongly nonlinear systems,
this sometimes prevents pathological behavior, at the expense of slower convergence.
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Example:

Viscosity = Passive(3.02*exp(-5*Temp))

The derivative of Viscosity with respect to Temp will be forced to zero, instead of the true value (-5)

*3.02*exp(-5*Temp).

3.3.6.11 Mesh Control Param eters

FlexPDE uses an adaptive initial mesh generation procedure.  Cell sizes are generated to conform with
local boundary feature sizes, and cell sizes will grow gradually from locales of small cell size to locales of
large cell size.  Cells sides always match everywhere, and there is never a mismatch between adjacent
cells.  

It is possible, however, to override the default cell size logic by use of the controls MESH_SPACING and
MESH_DENSITY. These parameters have special meaning in controlling the initial mesh layout.  They
may appear in the context of a parameter definition or redefinition (ie, in the DEFINITIONS section or in
a REGION), or in the context of a boundary condition.  There may be more than one control active in any
locale, and the control (default or explicit) resulting in the smallest mesh cells will dominate.

MESH_SPACING dictates the desired spacing between mesh nodes.  

MESH_DENSITY is the reciprocal of MESH_SPACING, and dictates the desired number of mesh nodes
per unit distance.  

Appearing in the DEFINITIONS section, these parameters specify a global default mesh density function
in the volume of the domain.

Appearing in a REGION, these parameters specify a mesh density function in the volume of the current
region (in 3D they may be qualified by LAYER or SURFACE). 

Appearing in the context of a boundary condition (ie, inside a path) they dictate the mesh density along
the curve or sidewall surface currently being defined. In 3D they may be qualified by LAYER or
SURFACE to restrict the application of the density function.

MESH_SPACING and MESH_DENSITY specifications may be any function of spatial coordinates (but not
of VARIABLES).

Examples:

MESH_DENSITY = exp(-(x^2+y^2+z^2)

This will create a Gaussian density distribution around (0,0,0), with spacing ultimately overridden by
the size limit implied by NGRID.

See the User Guide section "Controlling Mesh Density " for more information.
See also 
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"Samples | Usage | Mesh_Control | Mesh_Density.pde"
"Samples | Usage | Mesh_Control | Mesh_Spacing.pde"
"Samples | Usage | Mesh_Control | Boundary_Density.pde"
"Samples | Usage | Mesh_Control | Boundary_Spacing.pde"

3.3.7 Materials

The MATERIALS section is used to create sets of DEFINITIONS that can be applied to a REGION by
the USE MATERIAL statement.

Example:
MATERIALS

"wood" :
   a=1
   b=2
   c=3
"plastic" :
   a=10
   b=20
   c=30

BOUNDARIES

REGION 1
USE MATERIAL "wood"
... ! a is 1 in this region

REGION 2
USE MATERIAL "plastic"
... ! a is 10 in this region

Examples:
Samples | Usage | Misc | Material_Sets.pde

3.3.8 Boundary Conditions

The BOUNDARY CONDITIONS section is used to create sets of boundary conditions that can be
applied to a boundary path by the USE BC statement.

Example:
BOUNDARY CONDITIONS

"outside" :
   VALUE(u)=1
   NATURAL(v)=0
"inside" :
   NATURAL(u)=100
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   VALUE(v)=10

BOUNDARIES

REGION 1
START(...)
USE BC "outside"
... ! value of u is 1 on this path

REGION 2
START(...)
USE BC "inside"
... ! natural of u is 100 on this path

Examples:
Samples | Usage | Misc | BC_Sets.pde

3.3.9 Initial Values

The INITIAL VALUES section is used to initialize the dependent variables. 

When not specifically initialized, the dependent variables are initialized to zero. 

For steady state problems the INITIAL VALUES section is optional. 

For time dependent problems, the INITIAL VALUES section should include a value assignment statement
for each dependent variable.  

Initial value statements are formed by following the dependent variable name with the assignment
operator '=' and either a constant, function, expression or previously defined definition.

Example:
INITIAL VALUES

U = 1.0-x

Setting Initial Values from an imported table:

For syntactic reasons, initial values cannot be set directly from TABLE  or TRANSFER .  
An intermediate name must be defined by the TABLE or TRANSFER command, and then assigned to the
initial value:

DEFINITIONS
TRANSFER("initial_U.xfr",U0)

INITIAL VALUES
U = U0

Setting Initial time derivatives:

In some problems, especially moving mesh problems, it is important to specify initial time derivatives that

584

208 212



FlexPDE 7 : Problem Descriptor Reference217

are not zero.
This can be done by specifying DT(variable) = expression

Example:
INITIAL VALUES

DT(U) = V0

See script examples :

Samples | Usage | Moving_Mesh | 1d_stretch_x.pde
Samples | Usage | Moving_Mesh | 2d_stretch_x.pde
Samples | Usage | Moving_Mesh | 2d_stretch_xy.pde

3.3.10 Equations

The EQUATIONS section is used to list the partial differential equations that define the dependent
variables of the problem.

There must be one equation for each dependent variable listed in the VARIABLES and GLOBAL

VARIABLES sections.  

Each equation must be prefixed by variable_name: in order to associate the equation with a variable
and with boundary condition declarations. (If there is only a single equation, the prefix may be omitted.)

Equations are entered into a problem descriptor in much the same way as they are written on paper.  In
their simplest form they can be written using the DIV (divergence), GRAD (gradient), CURL and
DEL2(Laplacian) operators.  FlexPDE will correctly expand these operators in the coordinate system
specified in the COORDINATES section.  

When it is necessary to enter partial differential terms, differential operators of the form D<name> or
D<name1><name2> may be used.  Here <name> represents a coordinate name, such as X, Y or Z (or
other names chosen by the user in the COORDINATES section).  

In the default 2D Cartesian geometry, the operators DX, DY, DXX, DXY, DYX and DYY are defined.  

Similarly, in the default cylindrical geometries (XCYLINDER and YCYLINDER), the operators DR, DZ, DRR,

DRZ, DZR and DZZ are defined.  

In 3D Cartesian geometry, the operators DZ, DZZ, DXZ, and DYZ are also defined.

Example:
EQUATIONS
u:  div(k*grad(u)) + u*dx(u) = 0

Complex and Vector Variables
Equations can be written using COMPLEX or VECTOR variables.  In each case, FlexPDE will expand the
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stated equation into the appropriate number of scalar equations for computing the components of the 
COMPLEX or VECTOR variable.

Example:
VARIABLES

U = COMPLEX(Ur,Ui)
EQUATIONS
U: DIV(k*GRAD(U)) + COMPLEX(Ui,Ur) = 0

Third Order and Higher Order Derivatives
Equation definitions may contain spatial derivatives of only first or second order.  Problems such as the
biharmonic equation which require the use of higher order derivatives must be rewritten using an
intermediate variable and equation so that each equation contains only first or second order derivatives.

3.3.10.1 Association between Equations, Variables and Boundary  Conditions

In problems with a single variable, there is no ambiguity about the assignment of boundary conditions to
the equations.

In problems with more than one variable, FlexPDE requires that equations be explicitly associated with
variables by tagging each equation with a variable name.  This process also allows optimal ordering of
the equations in the coupling matrix.

Example:
U:   div(k*grad(u))+u*dx(u)= 0 { associates this equation with the variable U }

Boundary conditions are defined in the BOUNDARIES  section, and are associated with equations by
use of the variable name, which selects an equation through the association tag.  VALUE(U)=0, for
example, will cause the nodal equations for the equation tagged U: to be replaced by the equation u=0

along the selected boundary .

Natural boundary conditions must be written with a sign corresponding to the sign of the generating terms
when they are moved to the left side of the equal sign.  We suggest that all second-order terms should be

written on the left of the equal sign, to avoid confusion regarding the sign of the applied natural boundary

condition.

3.3.10.2 Sequencing of Equations

FlexPDE has the ability to sequence sets of equations.

The sets are defined using the THEN and FINALLY sections following the EQUATIONS section.

EQUATIONS
    <set A>
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THEN
    <set B>
{ THEN
    <set C> ... }
{ FINALLY
    <set D> }

Any number of THEN equation sets may be designated and these sets along with the main EQUATIONS

section will be run sequentially and repetitively (including regrids) until the solution meets the normal error
criteria. Once the EQUATIONS and THEN sets are finished, the last set defined in the FINALLY section
will be solved.

Each set of equations is solved for the variables defined by the equations of that set, with the other
variables held constant at their current values.  Solutions of the EQUATIONS set will be held constant
during the solution of the first THEN set, etc.

Each VARIABLE may be defined only once in the complete list of equations.

In time-dependent problems, the full set of equations is solved once during each timestep.  The FINALLY

clause is ignored in time-dependent problems.

Note: This facility finds its greatest utility in steady-state problems and time-dependent
problems with one-way coupling.  In time-dependent problems with two-way coupling, use of
sequenced equations may falsify propagation speeds, or lead to instability.

Example: 

EQUATIONS
  u:  div(grad(u)) + s = 0
THEN
  v:  div(grad(v)) + u = 0

Examples:

Samples | Usage | Sequenced_Equations | Theneq.pde
Samples | Usage | Sequenced_Equations | Theneq+time.pde

Iteration of Equations

FlexPDE has the ability to iterate sets of equations until convergence.

The equation set to iterate is identified using START_ITERATION and END_ITERATION :

EQUATIONS
    START_ITERATION
        <set A>
        THEN
        <set B>

635

634



Problem Descriptor Reference : The Sections of a Descriptor 220

    END_ITERATION

Example: 

EQUATIONS
  START_ITERATION
    u:  div(grad(u)) = v
    r:  div(grad(r)) = s
    THEN
    v:  div(grad(v)) = u
    s:  div(grad(s)) = r
  END_ITERATION

Examples:

Samples | Usage | Sequenced_Equations | Equation_Iteration.pde

3.3.10.3 Initial Equations

New in version 7 is the ability to state an initial set of steady-state equations that will be solved as the
starting point for a time-dependent set of equations.

Example: 

INITIAL EQUATIONS
  u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))
  v:  visc*div(grad(v)) - dy(p) = dens*(u*dx(v) + v*dy(v))
  p:  div(grad(p)) = penalty*(dx(u)+dy(v))

EQUATIONS
  u:  visc*div(grad(u)) - dx(p) = dens*dt(u) + dens*(u*dx(u) + v*dy(u))
  v:  visc*div(grad(v)) - dy(p) = dens*dt(v) + dens*(u*dx(v) + v*dy(v))
  p:  div(grad(p)) = penalty*(dx(u)+dy(v))
  c:  dt(c) + u*dx(c) + v*dy(c) = div(Kc*grad(c))

Examples:

Samples | Usage | Sequenced_Equations | Initialeq.pde
Samples | Applications | Fluids | Coupled_Contaminant_Initeq.pde

3.3.10.4 Modal Analy sis and Associated Equations

When modal analysis is desired, it must be declared in the SELECT section with the selector

MODES = integer
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where integer is the number of modes to be analyzed.

The equation should then be written in the form

F(V) +LAMBDA*G(V) = H(X,Y)

Where F(V) and G(V) are the appropriate terms containing the dependent variable, and H(X,Y) is a
driving source term.   

The name LAMBDA is automatically declared by FlexPDE to mean the eigenvalue, and should not be
declared in the DEFINITIONS section. 

3.3.10.5 Moving Meshes

FlexPDE can support moving computation meshes in time-dependent problems.  Use of this capability
requires:
 

The assignment of a surrogate variable  for each coordinate to be moved
Definition of an EQUATION of motion for each such surrogate coordinate
Suitable Boundary Conditions on the surrogate coordinate.

In some problems, the mesh positions may be driven directly.  In others, there will be a variable defining
the mesh velocity.  This may be the same as the fluid velocity, in which case the model is purely
Lagrangian, or it may be some other better-behaved motion, in which case the model is mixed Lagrange/
Eulerian (ALE).

FlexPDE 6 contains no provisions for re-connecting distorted meshes.  Except in well-behaved
problems, pure Lagrangian computations are therefore discouraged, as severe mesh corruption may
result.

Alternative Declaration Forms

EQUATIONS are always assumed to refer to the stationary Eulerian (Laboratory)  reference frame. 
FlexPDE automatically computes the required correction terms for mesh motion. .

Alternatively, the user can declare LAGRANGIAN EQUATIONS, and FlexPDE will not modify the user's
stated equations.  In this case, the equations must be written correctly for the values at the moving nodes.

The declaration EULERIAN EQUATIONS can also be used for clarity, although this is equivalent to the
default EQUATIONS declaration.

Internal Mesh Redistribution
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When the mesh is not tied directly to a fluid velocity, a convenient technique for maintaining mesh
integrity is to diffuse either the mesh coordinates or the mesh velocities in the problem interior.

For direct coordinate diffusion, we apply the diffusion equation to the surrogate coordinates:

DIV(GRAD(x_surrogate)) = 0

and apply the motion conditions to the coordinate boundary conditions with either VALUE or
VELOCITY conditions:

VELOCITY(x_surrogate) = x_velocity

or
VALUE(x_surrogate) = moving_positions

If the mesh is driven by a mesh velocity variable, we apply the diffusion equation to the velocity variables:

DIV(GRAD(x_velocity_variable)) = 0
DT(x_coordinate) = x_velocity_variable

At the boundaries, we apply the driving motions to the velocity variables and lock the surrogate
coordinate variable to its associated velocity

VALUE(x_velocity_variable) = x_velocity
VELOCITY(x_surrogate) = x_velocity

Note: See the User Guide section on Moving Meshes  and the example problems in the
"Samples | Moving_Mesh" folder.

Effect of Mesh Motion on EQUATION Specifications

EQUATIONS are always written in the Eulerian (Laboratory) reference frame, regardless of whether the
mesh moves or not.  FlexPDE automatically computes the required correction terms for mesh motion. 

3.3.11 Constraints

The CONSTRAINTS section, which is optional, is used to apply integral constraints to the system.  These
constraints can be used to eliminate ambiguities that would otherwise occur in steady state systems, such
as mechanical and chemical reaction systems, or when only derivative boundary conditions are specified.

The CONSTRAINTS section, when used, normally contains one or more statements of the form

INTEGRAL ( argument ) = expression

CONSTRAINTS should not be used with steady state systems which are unambiguously defined by their
boundary conditions, or in time-dependent systems.
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A CONSTRAINT creates a new auxiliary functional which is minimized during the solution process.  If
there is a conflict between the requirements of the CONSTRAINT and those of the PDE system or
boundary conditions, then the final solution will be a compromise between these requirements, and may
not strictly satisfy either one.

CONSTRAINTS can be applied to any of the INTEGRAL operators .

CONSTRAINTS cannot be used to enforce local requirements, such as positivity, to nodal variables.

Examples:
Samples | Usage | Constraints | Constraint.pde
Samples | Usage | Constraints | Boundary_Constraint.pde
Samples | Usage | Constraints | 3D_Constraint.pde
Samples | Usage | Constraints | 3D_Surf_Constraint.pde
Samples | Applications | Chemistry | Reaction.pde

3.3.12 Extrusion

The layer structure of a three-dimensional problem is specified bottom-up to FlexPDE in the 
EXTRUSION Section:

EXTRUSION
SURFACE "Surface_name_1" Z = expression_1

LAYER "Layer_name_1"
SURFACE "Surface_name_2" Z = expression_2

LAYER "Layer_name_2"
. . .
SURFACE "Surface_name_n" Z = expression_n

The specification must start with a SURFACE and end with a SURFACE.  

LAYERS correspond to the space between the SURFACES. 

The Layer_names and Surface_names in these specifications are optional. The LAYER specifications
may be omitted if a name is not needed to refer to them.

Surfaces need not be planar, and they may merge, but they must not cross.  expression_1 is
assumed to be everywhere less than or equal to expression_2, and so on.  Use a MIN or MAX

function when there is a possibility of crossover.
Surface expressions can refer to regionally defined parameters, so that the surface takes on
different definitions in different regions.  The disjoint expressions must, however, be continuous
across region interfaces. (see example "Samples | Usage | 3d_Domains | Regional_surfaces.pde"

)
If surface expressions contain conditional values (IF...THEN or MIN,  MAX, etc), then the base
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plane domain should include FEATURES to delineate the breaks, so they can be resolved by the
gridder.  
Surfaces must be everywhere continuous, including across material interfaces.  Use of conditionals
or regional definitions must guarantee surface continuity.  
Surface expressions can refer to tabular input data (see example "Samples | Usage | 3D_Domains |
Tabular_surfaces.pde" ).

See the User Guide chapter Using FlexPDE in Three-Dimensional Problems   for more information on
3D extrusions.

Shorthand form

Stripped of labels, the EXTRUSION specification may be written:

EXTRUSION Z = expression_1, expression_2 {, ...} 

In this form layers and surfaces must subsequently be referred to by numbers, with surface numbers
running from 1 to n and layer numbers from 1 to (n-1).  SURFACE #1 is Z=expression_1, and LAYER

#1 is between SURFACE #1 and SURFACE #2.

Built-In Surface Generators

FlexPDE defines three surface generation functions   

PLANE ( point1 , point2 , point3 ) Defines a plane surface containing the three stated points.  

CYLINDER ( point1 , point2 ,
radius )

Defines the top surface of a cylinder with axis along the line
from point1 to point2 and with the given radius (see note
below).  point1 and point2 must be at the same z
coordinate.  Z-Tilted cylinders are not supported.  

SPHERE ( point , radius ) Defines the top surface of a sphere of the given radius with
center at the specified center point (see note below).

Each point specification is a parenthesized coordinate double ( xn , yn ) or triple ( xn , yn , zn ).  If
zn is omitted, it is assumed zero.

These functions can be used to simplify the layout of extrusion surfaces.  

CYLINDER and SPHERE construct the top surface of the specified figure (see note below). To generate
both the upper and lower halves of  the CYLINDER and SPHERE, simply construct the figure at Z=0 and
add and subtract the surface function from the desired Z coordinate of the center or axis.
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Example:
DEFINITIONS
  Zsphere = SPHERE((0,0,0), 10) 
EXTRUSION   
  Zcenter-Zsphere, Zcenter+Zsphere

Note:  These functions generate surfaces defined throughout X,Y space.  CYLINDER and
SPHERE include Z=constant skirts to extend the surface definitions. The diameters of the
CYLINDER and SPHERE, as well as the extent of the CYLINDER along its axis and of the PLANE

must be provided by REGION  BOUNDARIES or FEATURES.

3.3.13 Boundaries

The BOUNDARIES section is used to describe the problem domain over which the specified equation
system is to be solved, and to specify boundary conditions along the outer surfaces of this domain.

Because of the history of FlexPDE, the discussion of boundaries has a strong two-dimensional
orientation.  Three-dimensional figures are made up by extruding a two-dimensional domain into the third
dimension.  One-dimensional domains are constructed by specializations of 2D techniques. 

Every problem descriptor must have a BOUNDARIES section.

Problem BOUNDARIES are made up by walking the periphery of each material region on boundary paths

through a 2D Cartesian space.

In this way, the physical domain is broken down into REGION,  FEATURE and EXCLUDE subsections.  

Every problem descriptor must have at least one REGION subsection.   FEATURE and EXLUDE

subsections are optional.

For concrete examples of the constructs described here, refer to the sample problems distributed with
the FlexPDE software.
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3.3.13.1 Points

The fundamental unit used in building problem domains is the geometric POINT.  POINTS in a FlexPDE
script are expressed as a parenthesized list of coordinate values, as in the two dimensional point (2.4,

3.72).  

Since two- and three- dimensional domain definitions both begin with a two-dimensional layout, the use
for three-dimensional points is generally limited to ELEVATION PLOTS.

In one-dimensional systems, a POINT degenerates to a single parenthesized coordinate, such as (2.4).

3.3.13.2 Boundary  Paths

A two dimensional boundary path has the general form 

START(a,b) segment TO (c,d) ...

where (a,b) and (c,d) are the physical coordinates of the ends of the segment, and segment is either
LINE, SPLINE or ARC.

The path continues with a connected series of segments, each of which moves the segment to a new
point.  The end point of one segment becomes the start point of the next segment.

A path ends whenever the next input item cannot be construed as a segment, or when it is closed by
returning to the start point.  The closing segment may simply end at the start point, or it can explicitly
reference CLOSE, which will cause the current path to be continued to meet the starting point: 

... segment TO CLOSE. 

or
... segment  CLOSE. 

Line Segments
Line segments take the form 

LINE TO (x,y)

When successive LINE segments are used, the reserved word LINE does not have to be repeated, as
in the following:  

LINE TO (x1,y1) TO (x2,y2) TO (x3,y3) TO ... 

Spline Segments
Spline segments are syntactically similar to Line segments 

SPLINE TO (x,y) TO (x2,y2) TO (x3,y3) TO ... 

A cubic spline will be fit to the listed points. The first point of the spline will be either the 
START point or the ending point of the previous segment.  The last point of the spline will be
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the last point stated in the chain of TO(,) points.
The fitted spline will have zero curvature at the end points, so it is a good idea to begin and
end with closely spaced points to establish the proper endpoint directions. 

Arc Segments
Arc segments create either circular or elliptical arcs, and take one of the following the forms:

ARC TO (x1,y1) to (x2,y2)
ARC ( RADIUS = R ) to (x,y)
ARC ( CENTER = x1,y1 ) to (x2,y2)
ARC ( CENTER = x1,y1 ) ANGLE=angle

Here angle is an angle measured in degrees,  and follows the convention that positive angles rotate
counter-clockwise and negative angles rotate clockwise. The coordinate point at the end of the arc is
determined by the radius swept out by the angle.   To specify the angle in radians, follow the radian
value by the qualifier RADIANS. 

Elliptical Segments
When the form ARC ( CENTER = x1,y1) to (x2,y2) is used and the center (x1,y1) is not equidistant
from the start and end points, an elliptical arc segment is generated with major and minor axes along
the X and Y coordinate directions.

The orientation of the major and minor axes can be rotated with the ROTATE qualifier.
ARC ( CENTER = x1,y1  ROTATE = 30 ) TO (x2,y2) 

The rotation angle is defined in degrees unless followed by the qualifier RADIANS.

The end point is not rotated by this command, and must be stated correctly to intercept the rotated
ellipse.

Examples:
Samples | Usage | Misc | Rotated_Ellipse.pde

Implicit Curve Segments
Implicit curve segments can take two forms :

CURVE (equation) BY (direction) TO (x,y)
ADAPT CURVE (expression) BY (direction) TO (x,y)

In the first form, equation defines a relation between the X and Y coordinates that lie on the curve,

such as x2+y2=R2. The boundary will follow the given equation exactly, and the start and end points
must lie on the path or an error will be issued.

In the second form, expression is the left side of an equation, like x2+y2. The expression will be
equated to a value computed using the starting point. Then this calculated equation will be used as in
the first form. The end point must lie on the computed equation or an error will be issued.
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In both forms, direction will dictate which way to start tracing the path, and must be +X, -X, +Y, or -
Y. The +X means move in the positive X direction, -X means move in the negative X direction, and
so on.

Note : Avoid using CURVE with the start and end points at the same position, even if the expression
is unambiguous.

Examples:
Samples | Usage | Implicit_Curves | Implicit_Curve_Boundary.pde
Samples | Usage | Implicit_Curves | Implicit_Curve_Surface.pde
Samples | Usage | Implicit_Curves | Sine_Boundary.pde
Samples | Usage | Implicit_Curves | Sine_Boundary_3D.pde

Named Paths

Names can be assigned to paths.  When names are assigned to paths they take the form of a quoted
string and must be placed immediately after the reserved word START:

START  "namedpath"  ( <x> , <y> )

Assigned path names are useful when boundary or line-related integrals are desired or for establishing
paths over which ELEVATION plots are desired.

Names can be assigned to portions of a path by entering a new START clause, or by overlaying a
portion of the boundary path by an independently declared FEATURE .

Paths Defined by ARRAYS and MATRICES

Paths may be defined by ARRAYS or MATRICES. 

In the case of ARRAYS, two arrays of equal dimension are used to specify the coordinates in a LIST
boundary:

LINE LIST(Ax,Ay)
SPLINE LIST(Ax,Ay)

Here Ax and Ay are ARRAYS listing the X- and Y- coordinates of the path.

A 2-by-N MATRIX may also be used to specify a LINE or SPLINE LIST, with the syntax:

LINE LIST(Mxy)  
SPLINE LIST(Mxy)  

Examples:
Samples | Usage | Arrays+Matrices | Array_Boundary.pde
Samples | Usage | Arrays+Matrices | Matrix_Boundary.pde
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3.3.13.3 Regions

A REGION is a portion of a two-dimensional problem domain (or of the projection of a 3D problem
domain), bounded by boundary paths , that encloses an area and contains a single material (but see
Regions in One Dimension  for exceptions).  

Each material property in the REGION has a single definition, although this definition may be arbitrarily
elaborate. 

A REGION may consist of many disjoint areas.

Example:

REGION 1 { an outer box }
START(0,0) 
LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

REGION 2 { two embedded boxes }
START(1,1) 
LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE
START(5,5) 
LINE TO (6,5) TO (6,6) TO (5,6) TO CLOSE

Overlaying regions:

RULE:   
REGIONS DEFINED LATER OVERLAY AND OBSCURE REGIONS DEFINED EARLIER.  
AREAS COMMON TO TWO REGIONS BECOME PART OF THE LATER DEFINED REGION.

So, in the example above, the two smaller boxes overlay the large box.  The material parameters
assigned to the large box pertain only to the part of the large box not overlaid by the small boxes.  

It is customary to make the first region define the entire outer boundary of the problem domain, and
then to overlay the parts of the domain which differ in parameters from this default region.  If you
overlay all parts of the outer domain with subregions, then the outer region definition becomes
invisible.  It may be useful to do this in some cases, since it allows a localization of boundary condition
specifications.  Nevertheless, one of the subregions is superfluous, because it could be the default.

3.3.13.3.1  Rea ssign in g Region a l  Pa ra m et ers

Names previously defined in the DEFINITIONS section can be assigned a new value within a REGION by
adding one or more assignments of the form

name = new_expression 

immediately following the reserved word REGION.  

When definitions are reassigned new values in this manner, the new value applies only to the region in
which the reassignment occurs.
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Example:

DEFINITIONS
K = 1 { the default value }

REGION 1 { assumes default, since no override is given }
START(0,0) LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

REGION 2
K = 2 { both sub-boxes are assigned K=2 }
START(1,1) LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE
START(5,5) LINE TO (6,5) TO (6,6) TO (5,6) TO CLOSE

REGION 3 { again assumes the default }
START(3,3) LINE TO (4,3) TO (4,4) TO (3,4) TO CLOSE

See also MATERIALS  section.

3.3.13.3.2  Region s in  On e Dim en sion

In one-dimensional domains, the concept that a REGION bounds a finite area by closing on itself is no
longer true.  In one dimension, it is sufficient to define a path from the start of a material region to its
finish.  (Referencing CLOSE in a 1D bounding path will cause serious troubles, because the path will
retrace itself.)

For example, the statements

REGION 1
START(0) LINE TO (5)

are sufficient to define a region of material extending from location 0 to location 5 in the 1D coordinate
system.

In order to maintain grammatical consistency with two- and three- dimensional constructs, omitting the
parentheses is not permitted.

Other general characteristics of REGIONS remain in force in one-dimensional domains:
Later REGIONS overlay earlier REGIONS, material properties are defined following the REGION

keyword, and so forth.

3.3.13.3.3  Region s in  T h ree Dim en sion s

The concept of a REGION in 3D domains retains the same character as for 2D domains.  

The REGION is a partition of the 2D projection of the figure, and is extruded into the third dimension
according to the EXTRUSION specification.

A material compartment in 3D is uniquely defined by the REGION of the projection which bounds it, and
the LAYER of the extrusion in which it resides.
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Extrusion of each 2D REGION therefore creates a stack of layers above it, each with possibly unique
material properties.

A question then arises as to when a component that exists in a given layer of the domain must be divided
into multiple regions.  The rule can be stated as follows:

Rule:  When two points in the projection plane see different stacks of materials above them in the
extrusion direction, then these two points must reside in different REGIONS of the domain layout.

In the presence of LIMITED REGIONS , the above rule can be interpreted to consider only the two
layers adjoining a given extrusion surface.  If the materials above and below the surface differ between
two points, then there must be a REGION boundary separating the two points in the subject extrusion

surface.  REGION boundaries are induced in surfaces by the presence of a REGION boundary in either
adjoining LAYER (subject to the overlay rule ).

See the User Guide chapter Using FlexPDE in Three-Dimensional Problems  for further discussion of
the construction of 3D domains.

3.3.13.3.4  Region a l  Pa ra m et er V a lu es in  3D

In three-dimensional problems, a redefinition of a parameter inside a REGION causes the parameter to be
redefined in all layers of the layer stack above the region.  To cause the parameter to be redefined only in
a selected layer, use the LAYER qualifier, as in

LAYER number  name = new_expression
LAYER "layer_name"  name = new_expression

The LAYER qualifier acts on all subsequent parameter redefinitions, until a new LAYER qualifier or a
functionally distinct clause breaks the group of redefinitions.

Example:
The following descriptor fragment shows the redefinition of a parameter K in various contexts:

DEFINITIONS
  K=1 { defines the default value }

BOUNDARIES
  LAYER 1 K=2 { (valid only in 3D) defines the value in layer 1 of all regions }
  REGION 1
    K=3 { redefines the value in region 1 only, in all layers of a 3D domain }
    LAYER 2 K=4 { (valid only in 3D) defines the value in layer 2 of region 1
only }
    START(0,0) LINE TO ....
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3.3.13.3.5  Lim it ed Region s in  3D

In three dimensional problems, many figures to not fit readily into the extrusion model.  In particular, there are
frequently features that in reality exist only at very restricted positions in the extrusion dimension, and which
create poor meshes when extruded throughout the domain.

FlexPDE implements the concept of LIMITED REGIONS to accommodate this situation.

A LIMITED REGION is defined as one that is considered to exist only in specified layers or surfaces of the
domain, and is absent in all other layers and surfaces.  

The LIMITED REGION will be constructed only in layers and surfaces specifically stated in the body of the
REGION definition.

An example of this type of structure might be a transistor, where the junction structure of the device is
present only in a very thin layer of the domain, while the substrate occupies the majority of the volume.  

In earlier versions of FlexPDE, the shape of the junction structure was propagated and meshed throughout
the extrusion dimension.  Since version 4, the structure can be restricted, or LIMITED, to a single layer or a
few layers.

For example, the following descriptor fragment defines a 3-unit cube with a 0.2-unit cubical structure in the
center.  The small structure is present in the layer 2 mesh only.

EXTRUSION  Z=0, 1.4, 1.6, 3
BOUNDARIES 

REGION 1
START(0,0) LINE TO (3,0) TO (3,3) TO (3,0) TO CLOSE

LIMITED REGION 2
LAYER 2 K=9
START(1.4,1.4) 
LINE TO (1.6,1.4) TO (1.6,1.6) TO (1.4,1.4) TO CLOSE

See the User Guide section "Limited Regions " for a graphical example of this facility.

Examples:

Samples | Usage | 3D_Domains | 3D_Limited_Region.pde

3.3.13.3.6  Em pt y  La y ers in  3D

In three dimensional problems, it is sometimes necessary to define holes or excluded regions in the extruded
domain.  This may be done using the VOID qualifier.  VOID has the syntax of a parameter redefinition.

For example, the following descriptor fragment defines a 3-unit cube with a 1-unit cubical hole in the center:

EXTRUSION  Z=0,1,2,3
BOUNDARIES 

REGION 1
START(0,0) LINE TO (3,0) TO (3,3) TO (3,0) TO CLOSE

REGION 2
LAYER 2 VOID
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START(1,1) LINE TO (2,1) TO (2,2) TO (1,2) TO CLOSE

Examples:

Samples | Usage | 3D_Domains | 3D_Void.pde

3.3.13.4 Excludes

EXCLUDE subsections are used to describe closed domains which overlay parts of one or more REGION

subsections.  The domain described by an exclude subsection is excluded from the system.  EXCLUDE

subsections must follow the REGION subsections which they overlay

EXCLUDE subsections are formed in the same manner as REGION subsections and can use all the same
LINE and ARC segments.

3.3.13.5 Features

FEATURE subsections are used to describe non-closed entities which do not enclose a subdomain with
definable material parameters.

FEATURE subsections are formed in the same manner as REGION  subsections and can use all the
same LINE and ARC segments.  

FEATURE subsections do not end with the reserve word CLOSE.

A FEATURE will be explicitly represented by nodes and cell sides.

FEATURE subsections are used when a problem has internal line sources; when it is desirable to calculate
integrals along an irregular path; or when explicit control of the grid is required.

In 3D problems, FEATURES should be used to delineate any sharp breaks in the slope of extrusion
surfaces.  Unless mesh lines lie along the surface breaks, the surface modeling will be crude.

Example:

REGION 1 { an outer box }
START(0,0) LINE TO (10,0) TO (10,10) TO (0,10) TO CLOSE

FEATURE { with a diagonal gridding line }
START(0,0) LINE TO (10,10) 

3.3.13.6 Node Points

FlexPDE supports the ability to place mesh nodes at specific points in the problem geometry.  This is
done with the statements
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NODE POINT (x_value , y_value)
NODE POINT (x_value , y_value , z_value)

A mesh node will be placed at the specified location, and linked into the computation mesh.

NODE POINTS can be used to place POINT VALUE  or POINT LOAD  boundary conditions (see
Caveat ).

In moving mesh problems, NODE POINTS will move with the mesh; they will not be locked to the
specified location unless appropriate POINT VALUE boundary conditions are used to freeze the point.

In 3D geometries, specification of only two coordinates will cause a vertical meshing line to be placed
throughout the Z-coordinate range of the domain.  A three-coordinate point will specify a single node. 
Placing NODE POINTS in coincidence with EXTRUSION surfaces will have undefined effects, and may
lead to mesh generation failure.

An alternative way of forcing nodes is to run a FEATURE or REGION boundary to and through the
desired point.

3.3.13.7 Ordering Regions

While not strictly enforced, it is recommended that all REGION subsections be listed before any
EXCLUDE or FEATURE subsections and that all EXCLUDE subsections be listed before any FEATURE

subsections.

It is further recommended that the first REGION subsection be formed by walking the outside boundary
of the problem thereby enclosing the entire domain of the problem. 

Rule:

REGIONS defined later are assumed to overlay any previously listed REGIONs, and any
properties assigned to a REGION will override properties previously assigned to the domains
they overlay.

Regions in 3D Domains

In 3D domains, the above rule is applied in each extrusion surface.

3.3.13.8 Num bering Regions

REGION, EXCLUDE and FEATURE subsections can be assigned numbers and/or names.  

When numbers are assigned they should be in ascending sequential order beginning with one.  It is
recommended that numbers always be assigned.   

When names are assigned they must take the form of a quoted string and must be placed immediately
after either the reserved word REGION, EXCLUDE, or FEATURE or any number assigned to the REGION,
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EXCLUDE, or FEATURE.  Assigned names must be unique to the REGION,  EXCLUDE or FEATURE that
they name.

Assigned region names are useful when region-restricted plots or volume integrals are desired.

Example:

REGION 2 'Thing'
{...}

PLOTS
contour(u) on 'Thing'

3.3.13.9 Fillets and Bevels

Any point in a path may be followed by one of the specifications 

FILLET(radius) 
BEVEL(length)  

The point will be replaced by a circular arc of the specified radius, or by a bevel of the specified length.  
FILLETS and BEVELS should not be applied to points which are the intersection of several segments, or
confusion may ensue.

Example:
LINE TO (1,1)  FILLET(0.01)

Example problem: 
Samples | Usage | Misc | Fillet.pde
Samples | Usage | 3D_Domains | 3D_Fillet.pde

3.3.13.10 Specify ing Boundary  Conditions

The following forms of boundary condition specification may be applied to boundary segments:

VALUE ( variable ) = expression
NATURAL ( variable ) = expression
LOAD ( variable ) = expression
CONTACT ( variable ) = expression
VELOCITY ( variable ) = expression
NOBC ( variable )

The variable designated in the boundary condition specification identifies (by explicit association) the
equation  to which this boundary condition is to be applied.

Dirichlet  (Value) Boundary Conditions
A VALUE segment boundary condition forces the solution of the equation for the associated variable
to the value of expression on a continuous series of one or more boundary segments.  The
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expression may be an explicit specification of value, involving only constants and coordinates, or it
may be an implicit relation involving values and derivatives of system variables.

Generalized Flux (Natural) Boundary Conditions
NATURAL and LOAD segment boundary conditions are synonymous.  They represent a generalized
flux boundary condition derived from the divergence theorem.  The expression may be an explicit
specification, involving only constants and coordinates, or it may be an implicit relation involving values
and derivatives of system variables.  The Natural boundary condition reduces to the Neumann
boundary condition in the special case of  the Poisson equation.  See the User Guide chapter Natural
Boundary Conditions  for information on the implementation of Natural boundary conditions.

Contact Resistance (Discontinuous Variable) Boundary Conditions
Interior boundaries can be defined to have a contact resistance using the CONTACT(variable)

boundary condition.  See "Jump Boundaries " in the next section.

Velocity (Time Derivative) Boundary Conditions
This boundary condition imposes a specified time derivative on a boundary value (time-dependent
problems only).  This condition is especially useful in specifying moving boundaries, by applying it to
the surrogate coordinate variable.  If you have declared a velocity variable which is applied to a
coordinate, then you should lock the surrogate coordinate to the mesh velocity variable at the
boundary using a VELOCITY() boundary condition.

Terminating the current BC
Boundary conditions, once stated, remain in effect until explicitly changed or until the end of the path.  
NOBC(VARIABLE) can be used to turn off a previously specified boundary condition on the current
path.  It is equivalent in effect to NATURAL(VARIABLE)=0  (the default boundary condition), except
that it will not lead to "Multiple Boundary Condition Specification" diagnostics.

Default Boundary Conditions
The default boundary condition for FlexPDE is NATURAL(VARIABLE)=0.

Note: The NEUMANN, DNORMAL and DTANGENTIAL boundary conditions supported in
earlier versions have been deleted due to unreliable behavior.  They may be restored in later
versions.  In most cases, derivative boundary conditions are more appropriately applied
through the NATURAL boundary condition facility. 

3.3.13.10.1  Sy n t a x of Bou n da ry  Con dit ion  St a t em en t s

Segment boundary conditions are added to the problem descriptor by placing them in the BOUNDARIES

section.

Segment boundary conditions must immediately precede one of the reserved words LINE or ARC and
cannot precede the reserved word TO.
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A top-down system is used for applying segment boundary conditions to the equations.  Following the 
START point specification in each path definition, a segment boundary condition is set up for each
variable/equation.  It is recommended that a boundary condition be specified for each variable/equation.
 If no other segment boundary condition is specified no error will occur and a NATURAL(VARIABLE) = 0

segment boundary condition is assumed.  

Under the top-down system, as boundary segments occur, the previously specified segment boundary
condition for a variable will continue to hold until a new boundary condition is specified for that variable.

If the recommendation is followed that REGION 1 be formed by walking the outside boundary of the
problem, thereby enclosing the entire domain of the problem, then for most problems segment boundary
conditions need only be specified for the segments in REGION 1.

3.3.13.10.2  Poin t  Bou n da ry  Con dit ion s

POINT VALUE boundary conditions can be added by placing 

POINT VALUE ( variable ) = expression 

following a coordinate specification.  The stated value will be imposed at the coordinate point
immediately preceding the specification.

POINT LOAD boundary conditions can be added by placing 

POINT LOAD ( variable ) = expression 

following a coordinate specification.  The stated load will be imposed as a lumped source on the
coordinate point immediately preceding the specification.

A Caveat:
The results achieved by use of these specifications are frequently disappointing.  

A diffusion equation, for example, div(grad(u))+s=0, can support solutions of the form u=A-Br-

Cr^2, where r is the distance from the point value and A, B and C are arbitrary constants.  By the
superposition principle, FlexPDE is free to add such shapes to the computed solution in the vicinity of
the point value, without violating the PDE.  A POINT VALUE condition usually leads to a sharp spike
in the solution, pulling the value up to that specified, but otherwise leaving the solution unmodified.

The POINT LOAD is not subject to this same argument, but since it is a load without scale, it will
frequently produce a dense mesh refinement around the point.

A better solution is to use a distributed load or an extended value boundary segment, ring or box.  

3.3.13.10.3  Bou n da ry  con dit ion s in  1D

The idea that a boundary condition applies along the length of a boundary segment, while meaningful in
two and three dimensions, is meaningless in one dimension, since it is the value along the segment that is
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the object of the computation.

In one dimensional problems, therefore, it is necessary to use the Point boundary condition described in
the previous section for all boundary condition specifications.

Example:

BOUNDARIES
REGION 1

START(0) POINT VALUE(u)=1
LINE TO (5) POINT LOAD(u)=4

The node at coordinate 0 will have value 1, while that at coordinate 5 will have a load of 4.

3.3.13.10.4  Bou n da ry  Con dit ion s in  3D

In three-dimensional problems, an assignment of a segment boundary condition to a region boundary
causes that boundary condition to be applied to the "side walls" of all layers of the layer stack above the
region.  To selectively apply a boundary condition to the "side walls" of only one layer, use the LAYER

qualifier, as in 

LAYER number  VALUE(variable) = expression
LAYER "layer_name" VALUE(variable) = expression

The LAYER qualifier applies to all subsequent boundary condition specifications until a new LAYER

qualifier is encountered, or the segment geometry (LINE or ARC) statements begin.

The boundary conditions on the extrusion surfaces themselves (the slicing surfaces) can be specified by
the SURFACE qualifier preceding the boundary condition specification.

Consider a simple cube. The EXTRUSION and BOUNDARIES sections might look like this:

EXTRUSION  z = 0,1
BOUNDARIES

SURFACE 1 VALUE(U)=0 { 1 }
REGION 1

SURFACE 2 VALUE(U)=1 { 2 }
START(0,0) 
NATURAL(U)=0 { 3 }

LINE TO (1,0)
LAYER 1 NATURAL(U)=1 { 4 }

LINE TO (1,1)
NATURAL(U)=0 { 5 }

LINE TO (0,1) TO CLOSE
 

Line { 1 } specifies a fixed value of 0 for the variable U over the entire surface 1 (ie. the Z=0 plane).  
Line { 2 } specifies a value of 1 for the variable U on the top surface in REGION 1 only.
Line { 3 } specifies an insulating boundary on the Y=0 side wall of the cube.
Line { 4 } specifies a flux (whose meaning will depend on the PDE) on the X=1 side wall in LAYER 1

only.
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Line { 5 } returns to an insulating boundary on the Y=1 and X=0 side walls.

[Of course, in this example the restriction to region 1 or layer 1 is meaningless, because there is only one
of each.]

3.3.13.10.5  Ju m p Bou n da ries

In the default case, FlexPDE assumes that all variables are continuous across internal material interfaces.
 This is a consequence of the positioning of mesh nodes along the interface which are shared by the cells
on both sides of the interface.

FlexPDE supports the option of making variables discontinuous at material interfaces (see the
"Discontinuous Variables " in the User Guide for tutorial information). This capability can be used to
model such things as contact resistance, or to completely decouple the variables in adjacent regions.

The key words in employing this facility are CONTACT and JUMP.   The conceptual model is that of
contact resistance, where the difference in voltage V across the interface (the JUMP) is given by 

V2 - V1 = R*current

In the general case, the role of "current" is played by the generalized flux, or Natural boundary condition
.  (See the User Guide for further discussion of Natural Boundary Conditions .)  The CONTACT

boundary condition is a special form of NATURAL, which defines a flux but also specifies that FlexPDE
should model a double-valued boundary. 

So the method of specifying a discontinuity is

CONTACT(V) = (1/R)*JUMP(V)

CONTACT(V), like NATURAL(V), means the outward normal component of the generalized flux as seen
from any cell.  So from any cell, the meaning of JUMP(V) is the difference between the interior and
exterior values of V at a point on the boundary.  Two cells sharing a boundary will then see JUMP values
and outward normal fluxes of opposite sign.  "Flux" is automatically conserved, since the same numeric
value is used for the flux in both cells.

Specifying a CONTACT boundary condition at an internal boundary causes duplicate mesh nodes to be
generated along the boundary, and to be coupled according to the JUMP boundary condition statement.

Specifying a very small (1/R) value effectively decouples the variable across the interface.

Example Problems:

Samples | Usage | Discontinuous_Variables | Thermal_Contact_Resistance.pde

Samples | Usage | Discontinuous_Variables | Contact_Resistance_Heating.pde  

Samples | Usage | Discontinuous_Variables | Transient_Contact_Resistance_Heating.pde
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3.3.13.10.6  Periodic Bou n da ries

FlexPDE supports periodic and antiperiodic boundary conditions in one, two or three dimensions.  

Periodicity in the X-Y Plane
Periodicity in a two-dimensional problem, or in the extrusion walls of a three-dimensional problem, is
invoked by the PERIODIC or ANTIPERIODIC statement.  

The PERIODIC statement appears in the position of a boundary condition, but the syntax is slightly
different, and the requirements and implications are more extensive.  

The syntax is:

PERIODIC ( X_mapping, Y_mapping )
ANTIPERIODIC ( X_mapping, Y_mapping )

The mapping expressions specify the arithmetic required to convert a point (X,Y) in the immediate
boundary to a point (X',Y') on a remote boundary.  The mapping expressions must result in each
point on the immediate boundary being mapped to a point on the remote boundary.  Segment
endpoints must map to segment endpoints.  The transformation must be invertible; do not specify 
constants as mapped coordinates, as this will create a singular transformation.

The periodic boundary statement terminates any boundary conditions in effect, and instead imposes
equality of all variables on the two boundaries.  It is still possible to state a boundary condition on the
remote boundary, but in most cases this would be inappropriate.

The periodic statement affects only the next following LINE or ARC path.  These paths may contain
more than one segment, but the next appearing LINE or ARC statement terminates the periodic
condition unless the periodic statement is repeated.

Periodicity in 1D
Periodicity in a one-dimensional problem is invoked by the POINT PERIODIC or POINT
ANTIPERIODIC statement. All other aspects are similar to the description above for X-Y
periodicity.  

Periodicity in the Z-Dimension
Periodicity In the extruded dimension is invoked by the modifier PERIODIC or ANTIPERIODIC
before the EXTRUSION statement, for example,

PERIODIC EXTRUSION  Z=0,1,2

In this case, the top and bottom extrusion surfaces are assumed to be conformable, and the values are
forced equal (or sign-reversed) along these surfaces.

Note :
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Prior to version 7, each node in the finite element mesh could have at most one periodic image.
 This meant that two-way or three-way periodicity at a single mesh node could not be
supported.  However, in version 7 multiple periodic images at one mesh node is supported.

Example Problems:

Samples | Usage | Periodicity | periodic.pde
Samples | Usage | Periodicity | periodic+time.pde
Samples | Usage | Periodicity | two-way_periodic.pde
Samples | Usage | Periodicity | azimuthal_periodic.pde
Samples | Usage | Periodicity | antiperiodic.pde
Samples | Usage | Periodicity | 3d_xperiodic.pde
Samples | Usage | Periodicity | 3d_zperiodic.pde
Samples | Usage | Periodicity | 3d_antiperiodic.pde

3.3.13.10.7  Com plex a n d V ect or Bou n da ry  Con dit ion s

Boundary conditions for COMPLEX or VECTOR VARIABLES may be declared for the complex or vector
variable directly, or for the individual components.

If C is a COMPLEX VARIABLE with components Cr and Ci, the following boundary condition declarations
are equivalent:

VALUE(C) = Complex(a,b)
VALUE(Cr) = a    VALUE(Ci) = b

If  V is a VECTOR VARIABLE with components Vx and Vy, the following boundary condition declarations
are equivalent:

NATURAL(V) = Vector(a,b)
NATURAL(Vx) = a    NATURAL(Vy) = b

The component form allows the application of different boundary condition forms (VALUE or NATURAL)
to the components, while the root variable form does not.

3.3.14 Front

The FRONT section is used to define additional criteria for use by the adaptive regridder.  In the normal
case, FlexPDE repeatedly refines the computational mesh until the estimated error in the approximation
of the PDE's is less than the declared or default value of ERRLIM.  In some cases, where meaningful
activity is confined to some kind of a propagating front, it may be desirable to enforce greater refinement
near the front. In the FRONT section, the user may declare the parameters of such a refinement.

The FRONT section has the form:

FRONT  ( criterion, delta )
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The stated criterion will be evaluated at each node of the mesh.  Cells will be split if the values at the
nodes span a range greater than (-delta/2, delta/2) around zero.  

That is, the grid will be forced to resolve the criterion to within delta as it passes through zero.

Example:
Samples | Usage | Mesh_Control | Front.pde

3.3.15 Maximize

The MAXIMIZE section is used to optimize parameters.  FlexPDE implements the Nelder-Mead
"amoeba" algorithm to minimize or maximize an objective function. This is not the method of greatest
speed, but it is very flexible, and allows FlexPDE to perform optimization searches in a wide range of
problem environments.

MAXIMIZE has the forms :

MAXIMIZE  objective VS parameter ( start_value, value_range )  [ VS ...]
MAXIMIZE  objective VS parameter ( start_value, value_range, lower_limit,
upper_limit )  [ VS ... ]

The method creates a simplex of parameter values, each parameter assigned a random sampling of
values centered about the start value with the stated range. The parameter values are modified until the
value of the objective is maximized within the OPTERRLIM  or the range of values of each parameter is
bracketed to OPTERRLIM*parameter.

In the first form, the values of the parameter are allow to shift without limits on values. The second form
is used to enforce an upper and lower limit to the acceptable values for the parameter. So as the
optimization is taking place, the parameter will never go beyond these limits.  When multiple parameters
are declared, each parameter may be either form.

See also : MINIMIZE

Examples:
Samples | Usage | Optimization | Criticality.pde
Samples | Usage | Optimization | Criticality_Size.pde
Samples | Usage | Optimization | Power_Control.pde
Samples | Usage | Optimization | Size_Control.pde

3.3.16 Minimize

The MINIMIZE section works the same as the MAXIMIZE  section but with optimization looking for a
minimum rather than a maximum.
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3.3.17 Resolve

The RESOLVE section is used to define additional criteria for use by the adaptive regridder.  In the
normal case, FlexPDE repeatedly refines the computational mesh until the estimated error in the
approximation of the PDE's is less than the declared or default value of ERRLIM.  In some cases, this can
be achieved with a much less dense mesh than is necessary to make pleasing graphical presentation of
derived quantities, such as derivatives of the system variables, which are much less smooth than the
variables themselves.  In the RESOLVE section, the user may declare one or more additional functions
whose detailed resolution is important.  The section has the form:

RESOLVE  ( spec1 ) , ( spec2 ) , ( spec3 ) {...}

Here, each spec  may be either an expression, such as "( shear_stress)",  or an expression followed by
a weighting function, as in "(shear_stress, x^2)".

In the simplest form, only the expressions of interest need be presented.  In this case, for each stated
function, FlexPDE will 

form a Finite Element interpolation of the stated function over the computational mesh
find the deviation of  the interpolation from the exact function
split any cell where this deviation exceeds ERRLIM times the global RMS value of the function.

Because the finite element interpolation thus formed assumes continuous functions, application of 
RESOLVE to a discontinuous argument will result in dense gridding at the discontinuity.  An exception to
this is at CONTACT  boundaries, where the finite element representation is double valued.

In the weighted form, an importance-weighting function is defined, possibly to restrict the effective
domain of resolution.  The splitting operation described above is modified to multiply the deviation at
each point by the weight function at that point. Areas where the weight is small are therefore subjected to
a less stringent accuracy requirement.

Example:
Samples | Usage | Mesh_Control | Resolve.pde

3.3.18 Time

The TIME section is used in time dependent problem descriptors to specify a time range over which the
problem is to be solved.  It supports the following alternative forms:

FROM time1 TO time2 
FROM time1 BY increment TO time2 
FROM time1 TO time2 BY increment

Where:
time1 is the beginning time
time2 is the ending time.
increment is an optional specification of  the initial time step
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for the solution. (the default initial time step is 1e-
4*(time2-time1)).

All time dependent problem descriptors must include statements which define the time range.
While the problem descriptor language supports alternate methods of specifying a time range, it is
recommended that all time dependent problems include the TIME section  to specify the total time
domain of the problem.

Halting Execution
The time range specification may optionally be followed by a HALT statement:

HALT minimum
HALT = minimum

This statement will cause the computation to halt if the automatically controlled timestep drops below 
minimum.  This facility is useful when inconsistencies in data or discontinuities in parameters cause the
timestep controller to become confused.

HALT  condition

Here the condition can be any relational operation, such as globalmax(myvariable) < 204.  If the
condition is met on any timestep, the computation will be halted.

Limiting the maximum timestep
The time range specification may optionally be followed by a LIMIT statement:

LIMIT maximum
LIMIT = maximum

This statement will prevent the timestep controller from increasing the computation timestep beyond the
stated maximum. 
maximum may be any constant arithmetic expression.

Critical Times
The time range specification may optionally be followed by a CRITICAL statement:

CRITICAL time1 {, time2, time3 ...}

This will ensure that each of the times in the list will fall at the end of some timestep interval.
Times may be separated by commas or spaces.
An #include statement can be used to read the times from a disk file.

3.3.19 Monitors and Plots

The MONITORS section, which is optional, is used to list the graphic displays desired at intermediate
steps while a problem is being solved. 

The PLOTS section, which is optional, is used to list the graphic displays desired on completion of a
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problem or stage, or at selected problem times.  

PLOTS differ from MONITORS in that they are written to the permanent .PG7 record for viewing after
the run is completed. 

(For debugging purposes the global selector HARDMONITOR can be used to force MONITORS to be
written to the .pg7 file.)

Plot statements and Monitor statements have the same form and function.

The basic form of a PLOT or MONITOR statement is:

display_specification ( plot_data )  display_modifiers

display_specification must be one of the known plot types, as described in the next section.
In some cases, multiple plot_data arguments may be provided.
There may be any number of display_modifiers, with meanings determined by the
display_specification.  
The various display_modifiers supported by FlexPDE are listed in the "Graphic Display Modifiers
" section.

An Exhortation:

The MONITORS facility has been provided to allow users to see immediate feedback on the progress
of their computation, and to display any and all data that will help diagnose failure or
misunderstanding.  Please use MONITORS extensively, especially in the early phases of model
development!  Since they do not write to the .pg7 storage file, they can be used liberally without
causing disk file bloat.  After the model is performing successfully, you can remove them or comment
them out.  Many user pleas for help recieved by PDE Solutions could be avoided if the user had
included enough MONITORs to identify the cause of trouble.

Examples:
Samples | Usage | Plotting | Plot_test.pde

Note: All example problems contain PLOTS and MONITORS.  

3.3.19.1 Graphics Display  Specifications

The MONITORS or PLOTS sections can contain one or more display specifications of the following types:

CONTOUR ( arg )

Requests a two dimensional contour map of the argument, with levels at uniform intervals of the
argument.
May be combined with FIELDMAP (as CONTOUR FIELDMAP) to generate overlayed potential
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contours and field lines.

CONTOUR ( arg1, arg2 )

Requests a two dimensional contour map of both arg1 and arg2, each with levels at independent
uniform intervals. 
A level table is displayed for both arg1 and arg2.

ELEVATION ( arg1,   [arg2,...] ) path

Requests a two dimensional display (some times called a line-out) which displays the value of its
argument(s) vertically and the value of its path horizontally.  
Each ELEVATION listed must have at least one argument and may have multiple arguments
separated by commas.  
path can be either a line segment specified using the forms FROM  (X1,Y1) TO (X2,Y2) or  ON

 name, where name is a literal string selecting a path named in the BOUNDARIES  section. 

FIELDMAP ( arg ) ON namedpath

Requests a two dimensional map of the force field lines of a potential, arg.
The namedpath will be used as the starting boundary of the field lines.
The number of field lines can be adjusted using the modifier FIELDLINES .
A level table is not displayed.
May be combined with CONTOUR (as CONTOUR FIELDMAP) to generate overlayed potential
contours and field lines.
See example "Samples | Applications | Electricity | Fieldmap.pde" .

GRID ( arg1, arg2 )

Requests a two dimensional plot of the computation grid, with nodal coordinates defined by the
two arguments.  
Grids are especially useful for displaying material deformations.  
In 3D problems, a two-argument GRID plot will show a cut-plane, and must be followed by an ON

 specification. 
3D cut plane grid plots do not necessarily accurately represent the computational grid.

GRID ( arg1, arg2, arg3 )

Requests a three dimensional plot of the computation grid, with nodal coordinates defined by the
three arguments.  
Only the outer surface of the grid will be drawn.  
This plot can be interactively rotated, as with SURFACE  plots.

MODE_SUMMARY

In eigenvalue problems, this produces a SUMMARY page for each mode (comparable to the version
5 SUMMARY).
This has been replaced with MODE SUMMARY (no underscore).
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SUMMARY

This plot type defines a text page on which only REPORT  items may appear.  
A SUMMARY page can be EXPORT ed to produce text reports of scalar values.

SUMMARY ( 'string' )

If a string argument is given with a SUMMARY command, it will appear as a page header on the
summary page.

SURFACE ( arg ) 

A quasi three dimensional surface which displays its argument vertically.  
If no VIEWPOINT  clause is used, the viewing azimuth defaults to 216 degrees, the distance to
three times the size, and the viewing elevation to 30 degrees.     

VECTOR ( vector )

Requests a two dimensional display of directed arrows in which the direction and magnitude of the
arrows is set by the vector argument.  
The origin of each arrow is placed at its reference point.

VECTOR ( arg1, arg2 )

Requests a two dimensional display of directed arrows in which the horizontal and vertical
components of the arrows are given by arg1 and arg2. 
The origin of each arrow is placed at its reference point.

-----------------------------------------------------------------------------
For all commands, the argument(s) can be any valid expression.

3.3.19.2 Graphic Display  Modifiers

The appearance of any display can be modified by adding one or more of the following clauses:

AREA_INTEGRATE 

Causes CONTOUR and SURFACE plots in cylindrical geometry to be integrated with dr*dz
element, rather than default 2*pi*r*dr*dz volume element.
See also: LINE_INTEGRATE

AS 'string'

Changes the label on the display from the evaluated expression to string.

BLACK

Draws current plot in black color only.
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BMP
BMP ( pixels )
BMP ( pixels, penwidth )

Selects automatic creation of a graphic export file in BMP format.  
pixels is the horizontal pixel count, which defaults to 1024 if omitted. 
penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the drawing width (0 means thin).  
The export file name is the problem name with plot number and sequence number appended.  
The file name cannot be altered.  

CONTOURS = number

Selects the number of contour lines for CONTOUR plots.  This is a local control equivalent to the
global CONTOURS control, but applying only to a single plot.

DROPOUT

Marks EXPORT and TABLE output points which fall outside the problem domain as "external".  This
modifier affects only EXPORTS and TABLES with FORMAT strings (see below).

EMF
EMF ( pixels )
EMF ( pixels, penwidth )

Windows version only.  Produces a Microsoft Windows Enhanced Metafile output.  
pixels is the horizontal pixel count of the reference window, which defaults to 1024 if omitted.  
penwidth is an integer (0,1,2 or 3) which specifies the width of drawn lines, in thousandths of the
drawing width (0 means thin).  
The export file name is the problem name with plot number and sequence number appended.  
The file name cannot be altered. 
Warning: FlexPDE uses Windows rotated fonts to plot Y-labels and axis labels on surface plots. 
Microsoft Word can read and resize these pictures, but its picture editor cannot handle them, and
immediately "rectifies" them to horizontal.

EPS

Produces an Encapsulated PostScript output.  
The graphic is a 10x7.5 inch landscape-mode format with 7200x5400 resolution.

EXPORT

Causes a disk file to be written containing the data represented by the associated MONITOR or
PLOT. 
A regular rectangular grid will be constructed, and the data will be printed in a format suitable for
reading by the FlexPDE TABLE function.  
The dimension of the grid will be determined by the plot grid density appropriate to the type of
plot. 
The format of EXPORTED data may be controlled by the FORMAT modifier (see below).
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(This is a renaming of the older PRINT modifier)  

EXPORT ( n )

Modifies the EXPORT command by specifying the dimension of the printed data grid.  
For two- or three-dimensional plots, the grid will be (n x n) or (n x n x n).

EXPORT ( nx, ny )
EXPORT ( nx, ny, nz )

Modifies the EXPORT command by specifying the dimension of the printed data grid.

FIELDLINES = n

Overrides the default number of FIELDMAP  field lines and uses n instead.

FILE 'string'

Overrides the default naming convention for files created by the EXPORT or PRINT modifiers, and
writes the file named 'string' instead.

FIXED RANGE ( arg1, arg2 )

Changes the dynamically set range used for the variable axis to a minimum value of arg1 and a
maximum of arg2.  Data outside this range is not plotted.
See also: RANGE

FORMAT 'string'

This modifier replaces the default format of the EXPORT or PRINT modifiers, or of the TABLE

output command.  When this modifier appears, the output will consist of one line for each point in
the export grid.  
The contents of this line will be completely controlled by the format string as follows: 
1. all characters except "#" will be copied literally to the output line. 
2. "#" will be interpreted as an escape character, and various options will be selected by the
character following the "#":  

a. #x, #y, #z and #t will print the value of the spatial coordinates or time of the data point;  
b. #1 through #9 will print the value of the corresponding element of the plot function list; 
c. #b will write a taB character;  
d. #r will cause the remainder of the format string to be repeated for each plot function in the

plot list;  
e. #i inside a repeated string will print the value of the current element of the plot function list.

 
See the example problems "export_format" and "export_history".

FRAME ( X, Y, Wide, High )  

Forces the plot frame to the specified coordinates, regardless of the size of the problem domain.
The plot frame will be forced to a 1:1 aspect ratio using the largest of the width and height values.
This allows the creation of consistently-sized plots in moving-mesh problems.  
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See "Samples | Moving_Mesh | Piston.pde".
See also: ZOOM

GRAY

Draws current plot with a 32-level gray scale instead of the default color palette.

INTEGRATE

Causes a report of the integral under the plotted function.   
For CONTOUR and SURFACE plots, this is a volume integral (with Cartesian element dx*dy*1 or
cylindrical element 2*pi*r*dr*dz).  
For ELEVATIONS, it is a surface integral (with Cartesian element dl*1 and cylindrical element
2*pi*r*dl).  (See also AREA_INTEGRATE, LINE_INTEGRATE).
This integral differs from a REPORT(INTEGRAL(...)) in that this command will integrate on the plot
grid, while the REPORT will integrate on the computation grid.
This modifier can be globally imposed by use of PLOTINTEGRATE in the SELECT section.

LEVELS = l1, l2, l3.....

Explicitly defines the contour levels for CONTOUR plots.

LINE_INTEGRATE

Causes ELEVATIONS in cylindrical geometry to be integrated with dl element, rather than default
2*pi*r*dl element. 
See also: AREA_INTEGRATE

LOG 
LINLOG
LOGLIN
LOGLOG 

Changes the default linear scales used to those specified by the scaling command.  
LOG is the same as LINLOG, and specifies logarithmic scaling in the data coordinate. 

<lx><ly><lz>

Changes the default linear scales used to those specified by the scaling command.  
Each of <lx>, <ly> and <lz> can be either LIN or LOG, and controls the scaling in the
associated dimension.

LOG ( number ) 
...combinations as above

Limits the number of decades of data displayed to number.  
This effect can also be achieved globally by the Selector LOGLIMIT. 

MERGE
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Sends EXPORT output for all stages or plot times to a single output file. 
This is the default for TECPLOT output. 
This option can be set globally by SELECT PRINTMERGE.

MESH

In SURFACE plots, causes the surface to be displayed as a hidden-line drawing of the meshed
surface.  
This display is more suitable on some hardcopy devices.

NOHEADER

Deletes the problem-identification header from  EXPORT output.

NOLINES

Suppresses mesh lines in grid plot.

NOMERGE

Sends EXPORT output for each stage or plot time to a separate output file.  
This is the default for EXPORT output.

NOMINMAX

Deletes "o" and "x" marks at min and max values on contour plot.

NORM

In VECTOR plots, causes all vectors to be drawn with the same length.  Only the color identifies
different magnitudes.

NOTAGS

Suppresses labelling tags on contour or elevation plot.  
This can be applied globally with SELECT NOTAGS.

NOTIPS

Plots VECTORS as line segments without heads.  
The line segment will be centered on the reference point.

ON <control>

Selects region, surface or layer restrictions of plot domain.  See "Controlling the Plot Domain ".

PAINTED

Fills areas between contour lines with color. (This is slower than conventional contour lines.)

PAINTMATERIALS
PAINTREGIONS
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Draw color-filled grid plot.  
These local flags are equivalent to and override the corresponding global flags set in the SELECT
section. They affect only the current plot.

PENWIDTH = n

Sets the on-screen pen width for the current plot. 
n is an integer (0,1,2,3,...) which specifies the width of the drawn lines, in thousandths of the pixel
width (0 means thin).  
See also :  Global Graphics Controls .

PNG
PNG ( pixels )
PNG ( pixels, penwidth )

Selects automatic creation of a graphic export file in PNG format.  
pixels is the horizontal pixel count, which defaults to 1024 if omitted. 
penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the pixel width (0 means thin).  
The export file name is the problem name with plot number and sequence number appended.  
The file name cannot be altered.

POINTS = n
POINTS = ( nx , ny )
POINTS = ( nx, ny, nz )

Overrides the default plot grid size and uses n instead.  
Two and three dimensional exports will use n in all dimensions.
For two-dimensional export commands, the two-dimensional grid can be explicitly controlled.
For three-dimensional exports, the three-dimensional grid can be explicitly controlled.

PPM
PPM ( pixels )
PPM ( pixels, penwidth )

Selects automatic creation of a graphic export file in PPM format.  
pixels is the horizontal pixel count, which defaults to 1024 if omitted.  
penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the pixel width (0 means thin).  
The export file name is the problem name with plot number and sequence number appended.  
The file name cannot be altered.

PRINT
PRINT ( n )
PRINT ( nx, ny )
PRINT ( nx, ny, nz )

Equivalent to EXPORT, EXPORT(n), EXPORT(nx,ny) and EXPORT(nx,ny,nz), respectively.

NOTE : This modifier is deprecated and EXPORT  should be used instead. It has been kept only
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for backward compatibility.

PRINTONLY

Supresses graphical output.  Use with PRINT or EXPORT to create text output only.

RANGE ( arg1, arg2 )

Changes the dynamically set range used for the variable axis to a minimum value of arg1 and a
maximum of arg2.  
If the calculated value of the variable falls outside of the range argument, the range argument is
ignored and the dynamically calculated value is used.  
See also: FIXED RANGE

VIEWPOINT( X, Y, angle )

With SURFACE plots, the VIEWPOINT modifier sets the viewing azimuth and perspective distance
and the viewing elevation angle.

VOL_INTEGRATE

Causes CONTOURS and SURFACE plots in cylindrical geometry to be integrated with
2*pi*r*dr*dz element.  
This is the default, and is equivalent to INTEGRATE.  
See also: INTEGRATE , AREA_INTEGRATE

XPM
XPM ( pixels )
XPM ( pixels, penwidth )

Selects automatic creation of a graphic export file in XPM format.  
pixels is the horizontal pixel count, which defaults to 1024 if omitted. 
penwidth is an integer (0,1,2 or 3) which specifies the width of the drawn lines, in thousandths of
the pixel width (0 means thin).  
The export file name is the problem name with plot number and sequence number appended.  
The file name cannot be altered.

ZOOM ( X, Y, Wide, High )  

Expands (zooms) a selected area of the display or export, with (X,Y) defining the lower left hand
corner of the area and (Wide,High) defining the extent of the expanded area.  
In 3D cut planes, the X and Y coordinates refer to the horizontal and vertical dimensions in the cut
plane.
See also: FRAME

ZOOM ( X, Y, Z, Xsize, Ysize, Zsize)  
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Expands (zooms) a selected volume of an export, with (X,Y,Z) defining the lowest corner of the
volume and (Xsize,Ysize,Zsize) defining the extent of the included volume.

3.3.19.3 Controlling the Plot Dom ain

"ON" selectors

The primary mechanism for controlling the domain over which plot data are constructed is the "ON"

statement, which has many forms:
ON "name"
ON REGION "name"
ON REGIONS "name1" , "name2" { , ... }
ON REGION number
ON REGIONS number1 , number2 { , ... }
ON GRID(Xposition,Yposition)

In three-dimensional problems, the following are also meaningful:
ON LAYER "name"
ON LAYERS "name1" , "name2" { , ... }
ON LAYER number
ON LAYERS number1 , number2 { , ... }
ON SURFACE "name"
ON SURFACE number
ON equation

The first listed form selects a boundary path, region, layer or surface depending on the definition of the
"name".  (It is actually redundant to specify  SURFACE "name", etc, since the fact that a surface is
being specified should be clear from the "name" itself.  Nevertheless, the forms are acceptable.)

The multiple REGIONS and LAYERS forms allow grouping REGIONS and LAYERS to select the portion
of the domain over which to display the plot.

In many cases, particularly in 3D, more than one "ON" clause can be used for a single plot, since each
"ON" clause adds a restriction to those already in effect.  There is a direct correspondence between
the "ON" clauses of a plot statement and the arguments of the various INTEGRAL  operators,
although some of the allowable integral selections do not have valid corresponding plot options.

In two dimensional geometries, area plots which are not otherwise restricted are assumed to be taken
over the entire problem domain. 

Contours, Surface Plots, Grid Plots and Vector Plots

Contours, "surfaces" (3D topographic displays), grid plots and vector plots must be taken on some
kind of two dimensional data surface, so in 3D problems these plot commands are incomplete without
at least one "ON" clause.  This can be an extrusion-surface name,  or a cut-plane equation (it cannot
be a projection-plane boundary path).  For example, in a 3D problem,

CONTOUR(...) ON SURFACE 2  

requests a contour plot of data evaluated on the second extrusion surface.
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CONTOUR(...) ON SURFACE "top"  
requests a contour plot of data evaluated on the extrusion surface named "top".

CONTOUR(...) ON X=Y  

requests a contour plot of data evaluated on the cut plane where x=y.

In addition to a basic definition of the data surface, "ON" clauses may be used to restrict the display to
an arbitrary REGION or LAYER.  In 2D, a REGION restriction will display only that part of the domain
which is in the stated region:

CONTOUR(...) ON REGION 2  
requests a contour plot of data evaluated on REGION 2.

Similarly, in 3D,

CONTOUR(...) ON SURFACE 2 ON REGION 2  
requests a contour plot of data evaluated on extrusion surface 2, restricted to that part of the
surface lying above REGION 2 of the baseplane projection.

CONTOUR(...) ON SURFACE 2 ON REGION 2 ON LAYER 3  

requests a contour plot of data evaluated on extrusion surface 2, restricted to that part of the
surface lying above REGION 2 of the baseplane projection, and with the evaluation taken in
LAYER 3, which is assumed to be bounded by the selected surface.

.

Cut Planes in 3D

Contours, surface plots and vector plots can also be specified on cut planes by giving the general
formula of the cutting plane:

CONTOUR(...) ON X = expression   
requests a contour plot of data evaluated on the Y-Z plane where X is the specified value.

Cut planes need not be simple coordinate planes:

CONTOUR(...) ON X=Y  

requests a contour plot of data evaluated on the plane containing the z-axis and the 45 degrees
line in the XY plane. 

The coordinates displayed in oblique cut planes have their origin at the point of closest approach to
the origin of the domain coordinates.  The axes are chosen to be aligned with the nearest domain
coordinate axes.

Elevation Plots

Elevation plots can be specified by endpoints of a line:

ELEVATION(...) FROM (x1,y1) TO (x2,y2)
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ELEVATION(...) FROM (x1,y1,z1) TO (x2,y2,z2)

The plot will be displayed on the straight line connecting the specified endpoints.  These endpoints
might span only a small part of the problem domain, or they might exceed the domain dimensions
somewhat, in which case the plot line will be truncated to the interior portion.

In 2D geometry only, an elevation plot may be specified by the name of a boundary path, as in 

ELEVATION(...) ON "outer_boundary"

These boundary-path elevations can be additionally restricted as to the region in which the evaluation
is to be made:

ELEVATION(...) ON "inner_boundary" ON REGION "core"

This form requests that the evaluation of the plot function be made in the region named "core", with the
assumption that "core" is one of the regions adjoining the "inner_boundary" path.

Plots on Deformed Grids

In fixed-mesh problems with implied deformation, such as "Samples | Applications | Stress |
Bentbar.pde",  CONTOUR, SURFACE and VECTOR plots can be displayed on the deformed domain
shape.  The syntax combines the forms of CONTOUR and GRID plots:

CONTOUR(...) ON GRID(Xposition,Yposition)

See "Samples | Usage | Plotting | Plot_on_grid.pde"  for an example.
(This feature is new in version 6.03)

Sign of Vector Components

In many cases, boundary-path elevations present normal or tangential components of vectors.  For
these applications, the sense of the direction is the same as the sense of the NATURAL boundary
condition:  

The positive normal is outward from the evaluation region.
The positive tangent is counter-clockwise with respect to the evaluation region.

Plots of the normal components of vectors on extrusion surfaces in 3D follows the same rule:
The positive normal is outward from the evaluation region.

3.3.19.4 Reports

Any display specification can be followed by one or more of the following clauses to add report
quantities to the plot page:

REPORT  expression
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REPORT (expression)

Adds to the bottom of a display the text 'expression = value_of_expression'.  Any valid
expression is accepted, including integrals.  Multiple REPORT clauses may be used.  REPORT is
especially useful for reporting boundary and area integrals and functions thereof.  

REPORT (expression1, expression2, ...)

A report of multiple items. Equivalent to REPORT (expression1) REPORT (expression2).

REPORT expression  AS 'string'

A labeled REPORT of the form  'string = value_of_expression'.  

REPORT  'string' 
REPORT ('string')

Inserts 'string' into the REPORT sequence.

3.3.19.5 T he ERROR Variable

The reserved word ERROR can be used to display the current state of spatial error estimates over the
mesh, as for example:

CONTOUR(ERROR)

3.3.19.6 Window T iling

When multiple MONITORS or PLOTS are listed, FlexPDE displays each one in a separate window and
automatically adjusts the window sizes to tile all the windows on the screen.  Individual windows cannot
be independently resized or iconized.  Any plot window can be maximized by double-clicking, or by
right-clicking to bring up a menu.

In steady-state and eigenvalue problems, MONITORS are displayed during solution, and are
replaced by PLOTS on completion.  

In time-dependent problems, MONITORS,  PLOTS and HISTORIES are displayed at all times.  

3.3.19.7 Monitors in Steady  State Problem s

In steady state problems the listed MONITORS are displayed after each regrid.  In addition, after each
Newton-Raphson iteration of a nonlinear problem or after each residual iteration of a linear problem, if
sufficient time has elapsed since the last monitor display, an interim set of monitors will be displayed.

3.3.19.8 Monitors and Plots in T im e Dependent Problem s

In time dependent problems the display specifications must be preceded by a display-time declaration
statement.  The display-time declaration statement may be either of the form

FOR CYCLE = number
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in which case the displays will be refreshed every  number time steps, or

FOR T = time1 [ timeset ... ]

Where each  timeset may be one of the following :

time2 
BY delta TO time2 

In this case the displays will be refreshed at times specified by the timeset values.

Any number of plot commands can follow a display-time declaration, and the specification will apply to
all of them.  It is not necessary to give a display-time specification for each plot.

Multiple display time declaration statements can be used.  When multiple display time statements are
used each applies to all subsequent display commands until a new time declaration is encountered or the 
MONITORS or PLOTS section ends.

Last Time Step

The the last time step may be referenced using the qualifier endtime :

FOR T = 0 BY 10 TO endtime

In the above example a plot would be generated every ten time units and at the last time step, whatever
was defined in the TIME section or whatever was the last time step due to a HALT condition.

Examples:
"Samples | Applications | Heatflow | Float_Zone.pde"
"Samples | Applications | Chemistry | Melting.pde"

3.3.19.9 Hardcopy

A right-click on any plot window, whether tiled or maximized, will bring up a menu from which the plot
may be printed or exported (or rotated, if this is meaningful for the plot).  

Text listings of plotted values can be written to disk by the plot modifier EXPORT (aka PRINT)  in the
descriptor.

3.3.19.10 Graphics Export

Bitmaps
A right-click in any displayed plot window brings up a menu, one item of which is "Export".  Clicking
this item brings up a dialog for exporting bitmap forms of the displayed plot.  Current options are 
BMP, PNG, PPM and XPM.  See the "Getting Started" section for more information.
All these formats can also be selected automatically as graphic display modifiers .

Retained Graphics
All displays in the PLOTS section are written in compressed form to a disk file with the extension

414

362

247



FlexPDE 7 : Problem Descriptor Reference259

".PG7".  
These files may be redisplayed at a later time by use of the "View" menu item in the "File" menu.  On
some systems, this may be accomplished simply by double-clicking the ".PG7" file in the system file
manager.  
See the "Getting Started" section for more information.

Screen Grabs
Any display may also be pasted into other windows programs by using a screen capture facility such
as that provided with PaintShopPro by JASC (www.jasc.com).

3.3.19.11 Data Export

Export Files
The plot types CDF, TABLE, TECPLOT and VTK can be used to export data to other applications
for external processing. TRANSFER  and RESTART  can be used to transfer data to another
FlexPDE run for postprocessing. 
See Graphics Display Specifications  and Exporting Data to Other Applications  for more
information.

Examples:

Samples | Usage | Import-Export | Export.pde
Samples | Usage | Import-Export | Transfer_Export.pde
Samples | Usage | Import-Export | Transfer_Import.pde 
Samples | Usage | Import-Export | Mesh_Export.pde
Samples | Usage | Import-Export | Mesh_Import.pde
Samples | Usage | Stop+Restart | Restart_Export.pde
Samples | Usage | Stop+Restart | Restart_Import.pde

3.3.19.11.1  Da t a  Export  Specifica t ion s

Requests for data export are included in the MONITORS or PLOTS sections as for graphic output.  This
allows the control of when the export is performed in a standard way.  A data export request may be
any of the following types:

CDF ( arg1 [,arg2,...] )

Requests the export of the listed values in netCDF version 3 format.  
The output will be two or three dimensional, following the current coordinate system or subsequent 
ON SURFACE  modifiers. 
The included domain can be zoomed. 
If the FILE  modifier does not follow, then the output will be written to a file
"<problem>_<sequence>.cdf". 
Staged, eigenvalue and time-dependent problems will stack subsequent outputs in the same file,
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consistent with netCDF conventions.  
CDF uses a regular rectangular grid, so interface definition may be ragged. 
Use ZOOM  to show details.

RESTART ()

This is an extension of the TRANSFER  export. 
The output will be written to a file "<problem>_restart.xfr"  that is appropriate for restarting a
computation or postprocessing.

TABLE ( arg1 [,arg2,...] )

Requests the export of the listed values in tabular ASCII format.  
The output will be two or three dimensional, following the current coordinate system or subsequent 
ON  modifiers. 
The included domain can be zoomed. 
If the FILE  modifier does not follow, then the output will be written to a file
"<problem>_<sequence>.tbl". 
Staged, eigenvalue and time-dependent problems will create separate files for each stage or mode,
with additional sequencing numbers in the name.  
TABLE output  uses a regular rectangular grid, so interface definition may be lost. 
Use ZOOM  to show details. 

TECPLOT ( arg1 [,arg2,...] )

Requests the export of the listed values to a file readable by the TecPlot visualization system.  
The output will be two or three dimensional, following the current coordinate system. 
The entire mesh is exported. 
If the FILE  modifier does not follow, then the output will be written to a file
"<problem>_<sequence>.dat". 
Staged, eigenvalue and time-dependent problems will stack subsequent outputs in the same file,
consistent with TecPlot conventions.  
TecPlot uses the actual triangular or tetrahedral computation mesh (subdivided to linear basis), so
material interfaces are preserved.  

TRANSFER ( arg1 [,arg2,...] )

Requests the export of the listed values and finite element mesh data in a file readable by FlexPDE
using the TRANSFER or TRANSFERMESH  input command. This method of data transfer
between FlexPDE problems retains the full accuracy of the computation, without the error
introduced by the rectangular mesh of the TABLE function.   
The exported domain cannot be zoomed. 
If the FILE  modifier does not follow, then the output will be written to a file
"<problem>_<sequence>.xfr". This export format uses the actual computation mesh, so material
interfaces are preserved.  
The full computation mesh is exported. 
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When used in Staged, Time dependent or Eigenvalue problems, each output file will be identified
by appending a sequence number to the file name.
TRANSFER files record the state of HISTORY plots.  Problems restarted from a TRANSFER file will
restore the data sequence of HISTORY plots.
See TRANSFER File format  for a description of the data format.

TRANSFER6 ( arg1 [,arg2,...] )

This command is the same as the TRANSFER command, except:
Data are exported in a format compatible with FlexPDE Version 6.   
If the FILE  modifier does not follow, then the output will be written to a file
"<problem>_<sequence>.dat". 
TRANSFER6 files do NOT record the state of HISTORY plots.  Problems restarted from a
TRANSFER file will have fragmented HISTORY plots.
See TRANSFER6 File format  for a description of the data format.

VTK ( arg1 [,arg2,...] )

Requests the export of the listed values to a file in VTK (Visualization Tool Kit) format for display
by visualization systems such as VisIt.  
The output will be two or three dimensional, following the current coordinate system.  
The entire mesh is exported. 
If the FILE modifier does not follow, then the output will be written to a file
"<problem>_<sequence>.vtk". 
Staged, eigenvalue and time-dependent problems will produce a family of files distinguished by the
sequence number.  
VTK format uses the actual triangular or tetrahedral computation mesh, so material interfaces are
preserved. 
The VTK format supports quadratic finite element basis directly, but not cubic.  To export from
cubic-basis computations, use VTKLIN. 

VTKLIN ( arg1 [,arg2,...] )

Produces a VTK format file in which the native cells of the FlexPDE computation have been
converted to a set of linear-basis finite element cells. 
This command may be  used to export to VTK visualization tools from cubic-basis FlexPDE
computations, or in cases where the visualization tool does not support quadratic basis.

3.3.19.11.2  T RA NSFER File form a t

The format of a TRANSFER file is dictated by the TRANSFER output format, and contains the following
data. 
(Note that the file format for Version 7 is different than that for previous versions.  The new keyword
TRANSFER6 can be used to write files in the old format.  The TRANSFER import facility will
automatically recognize the file type and import correctly for either.)

The Header Section

261

249

266



Problem Descriptor Reference : The Sections of a Descriptor 262

1) A identifying section enclosed in comment brackets, { ... } and containing the following:
a) the exporting FlexPDE version and date
b) the generating problem name and run time
c) the problem title
d) the list of quantities reported in the file.

2) A file identifier "FlexPDE v700 transfer file". The version number listed here will determine which file
format is to be read on import.

3) The number of geometric dimensions and their names.

4) The finite element basis identifier from 4 to 10, meaning:
4 = linear triangle (3 coefficients per cell)
5 = quadratic triangle (6 coefficients per cell)
6 = cubic triangle (9 coefficients per cell)
7 = cubic triangle (10 coefficients per cell)
8 = linear tetrahedron (4 coefficients per cell)
9 = quadratic tetrahedron (10 coefficients per cell)
10 = cubic tetrahedron (20 coefficients per cell)

5) The number of degrees of freedom (coefficients per cell as above).

6) The geometric basis (which may be different than the solution basis)

7) The number of material regions in the domain.

8) The NGRID selector used in generating the mesh.

9) A FLAG specification, showing the number of flags and their values.  This row may change in later
versions, but will not alter the readability of the file.  Currently defined flags are:

a) Curvegrid, which allows curved cell sides where required by boundary definitions
b) Curveall, which forces curved cell sides for all cells in the mesh

10) The total number of degrees of freedom in the mesh (number of interpolation coefficients per
variable).

11) Current problem time and timestep (time-dependent problems only).

12) The number of output quantities and their names, one per line.  Global quantities also define the
value.

13) The number mesh control definitions that follow, one line each.

14) The number of domain joints (boundary break points) and their descriptions, one per line, defining:
Joint number
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Periodic image joint (or 0)
Associated mesh node number
Extrusion surface (or 0)
Active flag 
Mesh density control indices (parenthesized)

15) The number of domain edges and their descriptions, one per line, defining:
Edge number
Associated base plane edge number
Beginning joint number
Ending joint number
Periodic image edge (or 0)
Extrusion surface (or 0)
Extrusion layer (or 0)
Active, Feature and Contact flags
Edge name(s) that include this edge
Mesh density control indices (parenthesized)

16) The number of 3D domain faces (3D only) and their descriptions, including
Face number
Associated base plane face number
Left adjoining Region number
Right adjoining Region number
Periodic image face (or 0)
Shape selector (face extrusion, edge extrusion, CAD face or 0)
Layer or surface number
Active and Contact flags
Face name
Mesh density control indices (parenthesized)

17) The number of domain regions and their descriptions, including
Region number
Associated base plane region number
Layer (or 0)
Material number
Active flag
Region name
Mesh density control indices (parenthesized)

The Mesh Section

Unlike previous versions, version 7 ascribes nodes only to the mesh vertices.  There are no midside or
midface nodes.  The nodal coefficients define a linear (order=1) approximation to the described quantity.
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 This is then supplemented by quadratic and cubic coefficients which are ascribed to Sides (2D), Legs
(3D), or Cells (cubic models).  Interpolation coefficients for the entire mesh are numbered sequentially,
and each may be associated with a Node, a Side, a Leg, or a Cell.  Exported mesh data are then as
follows.

1)  The number of Nodes. Nodes are numbered sequentially as they are created by the mesh generator.

2) The nodal descriptions, containing one line for each mesh node with the following format:
the node number
one, two or three spatial coordinates
the node type (0=interior; 1=joint; 2=edge; 3=face; 4=exterior)
the boundary identifier (region number, joint number, edge number or face number)
the coefficient index associated with this node (in future versions, there may be more
than one).

3) The number of Sides, a referencing flag and an imaging flag. Sides are numbered sequentially as they
are created by the mesh generator. In 2D a Side is the leg of a triangle.  In 3D a Side is a tetrahedral
face.

4) The side descriptions, one line per side, listing the following:
the side number
a packed flag word  (1=warped; 2=periodic; 4=contact; 16=joint; 32=edge; 48=face;
64=exterior)
the boundary identifier
the geometric bulge (2D only)
the reference node (if referencing)
the image side (if imaging)
the coefficient indices associated with this side (varying numbers, depending on
dimension and order).

5) The number of Legs (3D only) and a referencing flag. Legs are numbered sequentially as they are
created by the mesh generator.

6) The leg descriptions, one line per side, listing the following:
the leg number
a packed flag word  (1=warped; 32=edge; 48=face; 64=exterior)
the face identifier
the geometric bulge (3D only)
the reference node (if referencing)
the coefficient indices associated with this side (varying numbers, depending on
dimension and order).

7) The number of cells. Cells are numbered sequentially as they are created by the mesh
generator.
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8) The cell connectivity data, one line per cell, listing the following:
the cell number
a packed flag word  (1=bounding; 2=warped)
the node numbers of the vertices (2 in 1D, 3 in 2D, 4 in 3D)
the side numbers of the sides (none in 1D, 3 in 2D, 4 in 3D)
the leg numbers (3D only)
the neighboring cell numbers (corresponding to listed sides)
the region number and material number of the containing region
the coefficient indices associated with this cell (varying numbers, depending on
dimension and order).

The Data Section

Each distinct material type in the exported problem is represented by a separate section in the 
TRANSFER file.  Material types are defined by matching parameter definitions.  Each coefficient has one
value for each of the field quantities exported (global quantities do not appear). Coefficients shared
between adjoining materials will appear once in each material group. The values reported may be
different, if the coefficient lies on a contact boundary.

Each data section consists of:

1)  The number of coefficients in the material and the material number.  

2) The coefficient data, containing one line for each coefficient with the following format:
the coefficient number. 
one value for each of the exported quantities.

The History Section

If the exporting problem has assembled data for the creation of HISTORY plots, that data will be
recorded in the TRANSFER file, so that an importing problem can present the full history.  This segment
of the file contains the following data:

1) The number of Histories and the number of times recorded.

2) The list of times at which data have been recorded.

3) The History blocks, one for each History, containing the following data:

o The History number, together with number of functions, the number of "at" points, the start time, the
time window, the window start, the window end, the instance count and the axis length (if plot was
"vs" a quantity other than time)

o If the History was "Versus" some axis other than time, the list of axis values 
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o The evaluation expressions for the requested "at" points, one line per function.

o The history data, one block for each output function. Each block contains:

i. The evaluation expression for the requested output function.

ii. The history values for the output function. 

3.3.19.11.3  T RA NSFER6 File form a t

The format of a TRANSFER6 file is identical to the version 6 output format, and contains the following
data. 

The Header Section

1) A header containing an identifying section listing the FlexPDE version, generating problem name and
run time, and plotted variable name or function equation.  This header is enclosed in comment brackets,
{ ... }.

2) A file identifier "FlexPDE transfer file", and the problem title.

3) The number of geometric dimensions and their names.

4) The finite element basis identifier from 4 to 10, meaning:
4 = linear triangle (3 points per cell)
5 = quadratic triangle (6 points per cell)
6 = cubic triangle (9 points per cell)
7 = cubic triangle (10 points per cell)
8 = linear tetrahedron (4 points per cell)
9 = quadratic tetrahedron (10 points per cell)
10 = cubic tetrahedron (20 points per cell)

5) The number of degrees of freedom (points per cell as above).

6) Current problem time and timestep (time-dependent problems only).

7) The number of output variables and their names

8) The number of domain joints (boundary break points) and their descriptions, including
Joint number
Periodic image joint (or 0)
Associated global node number
Extrusion surface (or 0)
Active flag 

9) The number of domain edges and their descriptions, including
Edge number
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Associated base plane edge number
Beginning joint number
Ending joint number
Periodic image edge (or 0)
Extrusion surface (or 0)
Extrusion layer (or 0)
Active, Feature and Contact flags
Edge name

10) The number of 3D domain faces and their descriptions, including
Face number
Associated base plane face number
Left adjoining Region number
Right adjoining Region number
Periodic image face (or 0)
Shape selector
Layer or surface number
Active and Contact flags
Face name

11) The number of domain regions and their descriptions, including
Region number
Associated base plane region number
Layer (or 0)
Material number
Active flag
Region name

The Data Section

Each distinct material type in the exported problem is represented by a separate section in the 
TRANSFER file.  Material types are defined by matching parameter definitions.  Each data section
consists of:

1)  The number of nodes

2) The nodal data, containing one line for each node with the following format:
two or three coordinates and as many data values as specified in (7).
a colon (:)
the global node index
the node type (0=interior; 1=joint; 2=edge; 3=face; 4=exterior)
the type qualifier (region number, joint number, edge number or face number)
the periodic node index
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3) The number of cells.

4) The cell connectivity data, one line per cell, listing the following:
the geometric basis (as in Header 4) 
the node numbers (local to the current material block) which comprise the cell.  The
count of these node numbers is controlled by (Header 5).  
a colon (:) 
the global cell number
the logical region number
the material number

The node numbers are presented in the following order:

3.3.19.12 Exam ples

See the sample problem Samples | Usage | Plotting | Plot_test.pde  for examples of PLOTS and
MONITORS.  

See the sample problem Samples | Usage | Plotting | Print_test.pde  for examples of exporting plot
data.

See the sample problem Samples | Usage | Import-Export | Export.pde  for examples of exports
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without display.

See the sample problem Samples | Usage | Import-Export | Export_Format.pde  for examples of
formatted exports without display.

See the sample problem Samples | Usage | Import-Export | Export_History.pde  for examples of
exports of history data.

3.3.20 Histories

The HISTORIES section, which is optional, specifies values for which a time history is desired.  While
multiple HISTORY statements can be listed they must all be of the form:

HISTORY ( arg1 [ ,arg2,...]  ) 
HISTORY ( arg1 [ ,arg2,...]  )  AT  (X1,Y1) [ (X2,Y2)...]

The coordinates specify locations in the problem at which the history is to be recorded.  If no coordinate
is given, the arg must evaluate to a scalar.

The modifiers and reports available to PLOTS and MONITORS may also be applied to HISTORY

statements.

The display of HISTORIES i s controlled by the AUTOHIST select switch, which defaults to ON.  With
the default setting all HISTORIES are automatically refreshed and displayed with the update of any
MONITORS or PLOTS.

If desired, HISTORY statements can be included directly in the MONITORS section or PLOTS section.

Histories in Staged Problems

HISTORY statements may be used in STAGED problems as well as in time-dependent problems.  
In this case, the default abscissa will be stage number.  You can select a different value for the
abscissa quantity by appending the clause

VERSUS expression

In this case, the values of the given expression in the various stages will be used as the plot axis.

Windowing History Plots

HISTORY plots by default display the total time range of the problem run.  Specific time ranges can
be specified in several ways. A global window specifier can be set in the SELECT section:

SELECT HISTORY_WINDOW = time

This command causes all histories to display only the most recent time interval of the data.

Individual HISTORY plots can be windowed by the two plot qualifier forms:
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WINDOW = time  selects a moving window containing the most recent time interval
WINDOW ( time1 ,
time2 )

 selects a fixed time range, plotting the time between time1 and
time2

See the sample problem "Samples | Usage | Two_Histories.pde"  for an example.

3.3.21 End

All problem descriptors must have an END section.

With the exception of a numeric enabling key used in special demonstration files prepared by PDE
Solutions Inc., anything appearing after the reserved word end is ignored by FlexPDE and treated as a
comment.

Problem notes can be conveniently placed after the reserved word END.

3.4 Batch Processing

A special form of descriptor is used to specify a group of problems to be run in batch mode.

A single "section" introduced by the word BATCH identifies a descriptor as a batch control file. 
Following this header, a sequence of names appears, each name enclosed in quote marks.  Commas
may optionally be used to separate the names.  Any number of names may appear on each line of the
descriptor.  Each name is the name of a problem descriptor to be run.  Names may include directory
paths, which are assumed to originate in the directory containing the batch descriptor.  The ".pde"
extension is not required, and will be assumed if omitted.  The list should be closed with an END

statement.  

Example:

BATCH
{ FlexPDE will accept either \ or / as a separator }
"misc\table", "steady_state\heat_flow\slider"
"steady_state/stress/3d_bimetal"

END

The entire problem list is examined immediately, and any syntax errors in the names are reported. All files
named in the list are located, and missing files are reported before any processing begins.

Each problem named in the list is run to completion in sequence.  As the problems run, status information
is written to a log file in the directory containing the batch descriptor.  This file has the same name as the
batch descriptor, with the extension "_log.txt", and all problems in the list are summarized in this single
file.  Graphical output from each problem is written as usual to a unique ".pg7" file in the directory with
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the specific descriptor. After the run is completed, this graphic output may be reviewed by restarting
FlexPDE and using the VIEW  menu item.

Simple names may be listed without the quotes, but in this case embedded spaces, path separators,
reserved words and numeric initials will all cause error diagnostics.

An optional SELECT  section may be placed immediately following the BATCH identifier. Most
selectors set in the section will be used as the default value for all scripts run by the batch. These values
will not override values set explicitly by the individual scripts.

Example:

BATCH
SELECT ngrid=10

...
END

An optional DELAY value may be set immediately following the BATCH identifier. This delay value
specifies the number of seconds to wait prior to starting the next problem in the sequence.

Example:

BATCH
   DELAY = 3
   ...
END

The batch can be terminated before completion by using the "Stop Batch" item in the Controls Menu .
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4 Technical Notes

4.1 Natural Boundary Conditions

The NATURAL boundary condition  is a generalization of the concept of a flux boundary condition. 
In diffusion equations, it is in fact the outward flux of the diffusing quantity.  In stress equations, it is the
surface load. In other equations, it can be less intuitive.

FlexPDE uses integration by parts to reduce the order of second derivative terms in the system
equations.
Application of this technique over a two-dimensional computation cell produces an interior area integral
term and a boundary line integral term.  Forming the same integral in two adjacent computation cells
produces the same boundary integral at their interface, except that the direction of integration is opposite
in the two cells.  If the integrals are added together to form the total integral, the shared boundary
integrals cancel.

Applied to the term dx(f), where f is an expression containing further derivative terms, integration
by parts yields

 Integral(dx(f)*dV) = Integral(f*c*dS), 
where c  denotes the x-component of the outward surface-normal unit vector and dS is the
differential surface element.
(Y- and Z- derivative terms are handled similarly, with c  replaced by the appropriate unit-vector
component.)

Applied to the term dxx(f), where f denotes a scalar quantity, integration by parts yields
 Integral(dxx(f)*dV) = Integral(dx(f)*c*dS), 

where c  denotes the x-component of the outward surface-normal unit vector and dS is the
differential surface element.
(Y- and Z- derivative terms are handled similarly, with c  replaced by the appropriate unit-vector
component.)

Applied to the term DIV(F), where F denotes a vector quantity containing further derivative terms,
integration by parts is equivalent to the divergence theorem, 

Integral(DIV(F)dV) = Integral(F . n dS), 

where n denotes the outward surface-normal unit vector and dS is the differential surface element.

Applied to the term CURL(F), where F denotes a vector quantity containing further derivative terms,
integration by parts is equivalent to the curl theorem, 

Integral(CURL(F) dV) = Integral(n x F dS),

where again n denotes the outward surface-normal unit vector and dS is the differential surface
element.

FlexPDE performs these integrations in 3 dimensions, including the volume and surface elements
appropriate to the geometry.  In 2D Cartesian geometry, the volume cell is extended one unit in the
Z direction; in 2D cylindrical geometry, the volume cell is r*dr*dtheta.
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This technique forms the basis of  the treatment of exterior boundary conditions and interior material
interface behavior in FlexPDE.

All boundary integral terms are assumed to vanish at internal cell interfaces.
All boundary integral terms are assumed to vanish at internal and external boundaries, unless a
NATURAL boundary condition statement provides an independent evaluation of the boundary
integrand.

There are several ramifications of this treatment:
In divergence equations, such as DIV(k F) = 0,  
the quantity (k F . n ) will be continuous across interior material interfaces.
The NATURAL boundary condition specifies the value of  (k F . n) on the boundary.

If (k F) is heat flux (k F = -k Grad(T)), then energy will be conserved across material
discontinuities, and the NATURAL boundary condition defines outward heat flux.
If (k F) is electric displacement (D = -eps Grad(V)) or magnetic induction (B =

Curl(A)), then the material interface conditions dictated by Maxwell's equations will be
satisfied, and in the electric case the NATURAL boundary condition will define the surface
charge density.

In curl equations, such as CURL(k F) = 0,  
the quantity (k n x F) will be continuous across interior material interfaces.
The NATURAL boundary condition specifies the value of (k n x F) on the boundary.
If  (k F) is magnetic field (H = (1/mu) Curl(A)) or electric field (E = -Grad(V)), then
the material interface conditions dictated by Maxwell's equations will be satisfied, and in
the magnetic case the NATURAL boundary condition will define the surface current
density.

Note that it is not necessary to write the equations explicitly with the DIV or CURL operators for these
conditions to be met.  Any valid differential equivalent in the coordinate system of the problem will be
treated the same way.

Note also that the NATURAL boundary condition and the PDE are intimately related.  
If a differential operator has an argument that itself contains a differential operator, then that
argument becomes the object of integration by parts, and generates a corresponding component of
the NATURAL boundary condition.
If  the PDE is multiplied by some factor, then the associated NATURAL boundary condition must be
multiplied by the same factor.  
The NATURAL boundary condition must have a sign consistent with the sign of the associated PDE
terms when moved to the left side of the equation.
The NATURAL boundary condition statement specifies to FlexPDE the integrand of the surface
integral generated by the integration by parts, which is otherwise assumed to be zero.



FlexPDE 7 : Technical Notes275

4.2 Solving Nonlinear Problems

FlexPDE automatically recognizes when a problem is nonlinear and modifies its strategy accordingly.  

In nonlinear systems, we are not guaranteed that the system will have a unique solution, and even if it
does, we are not guaranteed that FlexPDE will be able to find it.  The solution method used by FlexPDE
is a modified Newton-Raphson iteration procedure.  This is a "descent" method, which tries to fall down
the gradient of an energy functional until minimum energy is achieved (i.e. the gradient of the functional
goes to zero). If  the functional is nearly quadratic, as it is in simple diffusion problems, then the method
converges quadratically (the relative error is squared on each iteration).  The default strategy
implemented in FlexPDE is usually sufficient to determine a solution without user intervention. 

Time-Dependent Problems

In nonlinear time-dependent problems, the default behavior is to compute the Jacobian matrix (the
"slope" of the functional) and take a single Newton step at each timestep, on the assumption that any
nonlinearities will be sensed by the timestep controller, and that timestep adjustments will guarantee an
accurate evolution of the system from the given initial conditions.  

Several selectors are provided to enable more robust (but more expensive) treatment in difficult cases. 
The "NEWTON=number" selector can be used to increase the maximum number of Newton iterations
performed on each timestep.  In this case, FlexPDE will examine the change in the system variables and
recompute the Jacobian matrix whenever it seems warranted.  The Selector REMATRIX=ON will force
the Jacobian matrix to be re-evaluated at each Newton step.

The PREFER_SPEED  selector is equivalent to the default behavior, setting NEWTON=1 and
REMATRIX=Off.
The PREFER_STABILITY selector  resets the values of  NEWTON=3 and REMATRIX=On.  

Steady-State Problems

In the case of nonlinear steady-state problems, the situation is somewhat more complicated.   The default
controls are usually sufficient to achieve a solution.  The Newton iteration is allowed to run a large
number of iterations, and the Jacobian matrix is recomputed whenever the change in the solution values
seem to warrant it.  The Selector REMATRIX=On may be used to force re-computation of the Jacobian
matirx on each Newton step.  

In cases of strong nonlinearities, it may be necessary for the user to help guide FlexPDE to a valid
solution.  There are several techniques that can be used to help the solution process.

Start with a Good Initial Value
Providing an initial value which is near the correct solution will aid enormously in finding a solution.  Be
particularly careful that the initial value matches the boundary conditions.  If it does not, serious
excursions may be excited in the trial solution, leading to solution difficulties.



Technical Notes : Solving Nonlinear Problems 276

Use STAGES  to Gradually Activate the Nonlinear Terms
You can use the staging facility of FlexPDE to gradually increase the strength of the nonlinear terms. 
Start with a linear (or nearly linear) system, and allow FlexPDE to find a solution which is consistent with
the boundary conditions.  Then use this solution as a starting point for a more strongly nonlinear system. 
By judicious use of staging, you can creep up on a solution to very nasty problems.

Use CHANGELIM to Control Modifications
The selector CHANGELIM limits the amount by which any nodal value in a problem may be modified on
each Newton-Raphson step.  As in a one-dimensional Newton iteration, if the trial solution is near a local
maximum of the functional, then shooting down the gradient will try to step an enormous distance to the
next trial solution.  FlexPDE limits the size of each nodal change to be less than CHANGELIM times the
average value of the variable.  The default value for CHANGELIM is 0.5, but if the initial value (or any
intermediate trial solution) is sufficiently far from the true solution, this value may allow wild excursions
from which FlexPDE is unable to recover.  Try cutting CHANGELIM to 0.1, or in severe cases even 0.01,
to force FlexPDE to creep toward a valid solution.  In combination with a reasonable initial value, even 
CHANGELIM=0.01 can converge in a surprisingly short time.  Since CHANGELIM limits each nodal
change to a fraction of the RMS average value, not the local value, its effect disappears when a solution
is reached, and quadratic final convergence is still achieved.

Watch Out for Negative Values
FlexPDE uses piecewise polynomials to approximate the solution.  In cases of rapid variation of the
solution over a single cell, you will almost certainly see severe under-shoot in early stages.  Don't assume
that the value of your variable will remain positive.  If your equations lose validity in the presence of
negative values, perhaps you should recast the equations in terms of the logarithm of the variable.  In this
case, even though the logarithm may go negative, the implied value of your actual variable will remain
positive.

Recast the Problem in a Time-Dependent Form
Any steady-state problem can be viewed as the infinite-time limit of a time-dependent problem.  Rewrite
your PDE's to have a time derivative term which will push the value in the direction of decreasing
deviation from solution of the steady-state PDE.  (A good model to follow is the time-dependent
diffusion equation DIV(K*GRAD(U)) = DT(U).  A negative value of the divergence indicates a local
maximum in the solution, and results in driving the value downward.)  In this case, "time" is a fictitious
variable analogous to the "iteration count" in the steady-state N-R iteration, but the time-dependent
formulation allows the timestep controller to guide the evolution of the solution.

4.3 Eigenvalues and Modal Analysis

FlexPDE can solve eigenvalue problems involving an arbitrary number of equations.  This type of
problem is identified by the appearance of the selector MODES=<number> in the select section, and by
use of the reserved word LAMBDA in the equations section.  The MODES selector tells FlexPDE how
many modes to calculate, and LAMBDA in the equations stands for the eigenvalue.  At present, the
eigenvalues must be real, and no nonlinear uses of LAMBDA are accepted.

FlexPDE uses the method of subspace iteration (see Bathe and Wilson, "Numerical Methods in Finite
Element Analysis", Prentice-Hall, 1976)  to solve for a selected number of eigenvalues of lowest
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magnitude.   In this method, the full problem is projected onto a subspace of much smaller dimension,
and the eigenvalues and eigenvectors of this reduced system are found.  This process is repeated until
convergence of the eigenvalues is achieved.  The eigenvectors of the full system are then recovered from
expansion of the eigenvectors of the reduced system.  As in a power-series expansion, there is some loss
of accuracy in the higher modes due to truncation error.  For this reason, FlexPDE solves a subspace of
dimension min(n+8,2*n), where n is the number of requested modes.

See the eigenvalue examples  for demonstrations of this use of FlexPDE.

Eigenvalue Shifting

It is possible to examine eigenmodes which do not correspond to eigenvalues of the smallest magnitude
by the technique of eigenvalue shifting.  Consider the two systems

L(u) + lambda*u = 0

And
L(u) + lambda*u + shift*u = 0.

These systems will have the same eigenvectors as those associated with eigenvalues of "lambda+shift" in
the original system.  Given the latter problem, FlexPDE will find a set of eigenvalues corresponding to the
eigenvalues closest above "shift" in the spectrum of the former problem. The sum "lambda+shift" will
correspond to the eigenvalue in the former system.

Eigenvalue shifting is demonstrated in the examples "Samples | Usage | Eigenvalues | Waveguide20.pde"
 and "Samples | Usage | Eigenvalues | Shiftguide.pde" .

4.4 Avoid Discontinuities!

Discontinuities can cause serious numerical difficulty.  This is most glaringly true in time-dependent
problems, but can be a factor in steady-state problems as well.

Steady-State

The finite element model used in FlexPDE assumes that all variables are continuous throughout the
problem domain.  This follows from the fact that the mesh nodes that sample the values of the variables
are shared between the cells that they adjoin.  Internally, the solution variables are interpolated by low-
order polynomials over each cell of the finite element mesh.  A discontinuous change in boundary
conditions along the boundary path, particularly between differing VALUE conditions, will require intense
mesh refinement to resolve the transition.  

Whenever possible, use RAMP , URAMP , SWAGE , part of a sine or supergaussian, or some
other smooth function to make a transition in value conditions over a physically meaningful distance.

If the quantity you have chosen as a system variable is in fact expected to be discontinuous at an
interface, consider choosing a different variable which is continuous, and from which the real variable can
be computed.
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Time-Dependent

It is a common tendency in posing problems for numerical solution to specify initial conditions or
boundary conditions as discontinuous functions, such as "at time=2 seconds, the boundary temperature is
raised instantaneously to 200 degrees."  A little thought will reveal that such statements are totally
artificial.  They violate the constraints of physics, and they pose impossible conditions for numerical
solution.  Not quite so obvious is the case where a boundary condition is applied at the start of the
problem which is inconsistent with the initial values.  This is in fact a statement that "at time=0 the
boundary temperature is raised instantaneously to a new value", and so is the same as the statement
above.

To raise a temperature "instantaneously" requires an infinite heat flux.  To move a material position
"instantaneously" requires an infinite force.  In the real world, nothing happens "instantaneously". 
Viscosity diffuses velocity gradients, elastic deformation softens displacement velocities, thermal diffusion
smoothes temperature changes.  At some scale, all changes in nature are smooth.

In the mathematical view, the Fourier transform of a step function is (1/frequency).  This means that a
discontinuity excites an infinite spectrum of spatial and temporal frequencies, with weights that diminish
quite slowly at higher frequencies.  An "accurate" numerical model of such a system would require an
infinite number of nodes and infinitesimal time steps, to satisfy sampling requirements of two samples per
cycle.  Any frequency components for which the sampling requirement is not met will be modeled wrong,
and will cause oscillations or inaccuracies in the solution.

How then have numerical solutions been achieved to these problems over the decades?  The answer is
that artificial numerical diffusion processes have secretly filtered the frequency spectrum of the solution to
include only low-frequency components.  Or the answers have been wrong.  Right enough to satisfy the
user, and wrong enough to satisfy the calculation.  

It is useful in this context to note that the effect of a diffusion term D*div(grad(U)) is to apply an
attenuation of 1/(1+D*K*K) to the K-th frequency component of U.  Conversely, any side effect of a
numerical approximation which damps high frequency components is similar to a diffusion operator in the
PDE.

We have attempted in FlexPDE to eliminate as many sources of artificial solution behavior as possible. 
Automatic timestep control and adaptive gridding are mechanisms which try to follow accurately the
solution of the posed PDE.  Discontinuities cannot be accurately modeled, and are therefore, strictly
speaking, ill-posed problems.  They cause tiny timesteps and intense mesh refinement in the early phases,
causing long running times.

What can be done?  
Start your problem with initial conditions which are self-consistent; this means the values should
correspond to a steady state solution with some set of boundary conditions. If you cannot by
inspection determine these values, use the INITIAL EQUATIONS  facility or a steady-state
FlexPDE run with TRANSFER to precompute the initial values.  See initialeq.pde  and
smoothing_discontinuities.pde  in the Samples|Usage|Sequenced_Equations folder.
Use RAMP, URAMP, SWAGE or other smooth function of time to turn the source value on over a
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meaningful interval of time.
Whenever possible, instead of an instantaneously applied value condition, use a flux boundary
condition which reflects the maximum physical initial flux that could arise from such a step condition
(see the sample problem SAMPLES|Applications|Misc|Diffusion.pde  for an example). 
Volume source functions and Natural boundary conditions are not as sensitive as direct conditions
on the variables, because they appear in the numerical solution as integrals over some interval, and
are thus somewhat "smoothed".

It may seem like an imposition that we should require such adulteration of your pure PDE, but the
alternative is that we apply these adulterations behind your back, in unknown quantities and with
unknown affect on your solution.  At least this way, you're in control.

4.5 Extrusions in 3D

The specification of three-dimensional geometries as extrusions in FlexPDE is based on the
decomposition of the object into two parts:

The projection of the object onto the base X-Y plane.
The division of the extrusion of this projection into layers in the Z dimension.

 
Let us take as a model a sandwich formed by a layer of dielectric material with two rectangular
conductive patches, top and bottom, with differing dimensions.  We wish to model the dielectric, the
conductive patches and the surrounding air.

First, we form the projection of this figure onto the X-Y plane, showing all relevant interfaces:
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The geometry is specified to FlexPDE primarily in terms of this projection.  A preliminary description of
the 2D base figure is then: 

BOUNDARIES
REGION 1 {this is the outer boundary of the system}

START(0,0)
LINE TO (5,0) TO (5,5) TO (0,5) TO CLOSE

REGION 2      {this region overrides region 1 and describes the larger plate}
START(1,0)

LINE TO (4,0) TO (4,5) TO (1,5) TO CLOSE
REGION 3      {this region overrides region 1 & 2 and describes the smaller plate}

START(2,0)
LINE TO (3,0) TO (3,5) TO (5,3) TO CLOSE

Note that any part of the projection which will have a different stack of material properties above it must
be represented by a region.  All parts of the projection which will have the same stack of material
properties may be included in a single region, even though they may be disjoint in the projection.

Next we view the X-Z cross-section of the sandwich:
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The layer structure is specified bottom-up to FlexPDE in the EXTRUSION statement:

EXTRUSION
  SURFACE "Bottom" Z=0
    LAYER "Bottom Air"
  SURFACE "Bottom Air - Metal" Z=0.9
    LAYER "Bottom Metal"
  SURFACE "Bottom Metal - Dielectric" Z=1
    LAYER "dielectric"
  SURFACE "Top Metal - Dielectric" Z=2
    LAYER "Top Metal"
  SURFACE "Top Metal - Air" Z=2.1
    LAYER "Top Air"
  SURFACE "top" Z=3

The LAYER statements are optional, as are the names of the surfaces.  If surfaces and layers are not
named, then they must subsequently be referred to by numbers, with surface numbers running in this case
from 1 to 6 and layer numbers from 1 to 5.  SURFACE 1 is Z=0, and LAYER 1 is between SURFACE 1

and SURFACE 2.

Note: a shorthand form to this specification is:
EXTRUSION Z=(0, 0.9, 1, 2, 2.1, 3)

In this form layers and surfaces must subsequently be referred to by number.

Assume that we have the following DEFINITIONS and EQUATIONS section:

DEFINITIONS
K = Kair {default the dielectric coefficient   to the value for air}
Kdiel = 999 {replace 999 with problem value}
Kmetal =  999    {replace 999 with problem value}

EQUATIONS
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DIV(K*GRAD(V))

We now modify the BOUNDARIES section to include layering information in the various regions:

BOUNDARIES
REGION 1 {this is the outer boundary of the system}

LAYER "Dielectric" K = Kdiel {all other layers default to Kair} 
START(0,0)

LINE TO (5,0) TO (5,5) TO (0,5) TO CLOSE
REGION 2      {this region overrides region 1 and describes the larger plate}

LAYER "Bottom Metal" K = Kmetal
LAYER "Dielectric" K = Kdiel
START(1,0)

LINE TO (4,0) TO (4,5) TO (1,5) TO CLOSE
REGION 3      {this region overrides region 1 & 2 and describes the smaller plate}

LAYER "Bottom Metal" K = Kmetal
LAYER "Dielectric" K = Kdiel
LAYER "Top Metal" Kmetal
START(2,0)

LINE TO (3,0) TO (3,5) TO (5,3) TO CLOSE

If layers are not named, then layer numbers must be used in place of the names above.  The LAYER

specifiers act as group headers, and all definitions following a LAYER specification refer to that layer, until
the group is broken by SURFACE,  LAYER or START.  Definitions which apply to all layers of the region
must appear before any LAYER specification.

The specification of boundary conditions proceeds in a similar way.  As in the description of 2D
problems in FlexPDE, the default boundary condition is always NATURAL(variable)=0.  In the X-Y
projection of our problem, which forms the basis of our 3D description, we have described the bounding
lines of the regions.  A boundary condition attached to any of these bounding lines will apply to all layers
of the vertical surface formed by extruding the line.  Boundary conditions along this surface may be
specialized to a layer in the same way as the material properties are specialized to a layer.  Assume that
we wish to apply a potential of  V0 to one end of the lower plate and V1 to the opposite end of the
upper plate.  We will modify the descriptor in the following way:

BOUNDARIES
REGION 1 { this is the outer boundary of the system }

LAYER "Dielectric" K = Kdiel { all other layers default to Kair }
START(0,0) 

LINE TO (5,0) TO (5,5) TO (0,5)  TO CLOSE
REGION 2 { this region overrides region 1, and describes the larger plate }

LAYER "Bottom Metal" K = Kmetal  
LAYER "Dielectric" K = Kdiel  
START(1,0)
LAYER "Bottom Metal" VALUE(V)=V0

LINE TO (4,0) 
LAYER "Bottom Metal" NATURAL(V)=0

LINE TO (4,5) TO (1,5) TO CLOSE
REGION 3 { this region overrides regions 1&2, and describes the smaller
plate}

LAYER "Bottom Metal" K = Kmetal  



FlexPDE 7 : Technical Notes283

LAYER "Dielectric" K = Kdiel  
LAYER "Top Metal" K = Kmetal  
START(2,0)

LINE TO (3,0) TO (3,5) 
LAYER "Top Metal" VALUE(V)=V1

LINE TO (2,5) 
LAYER "Top Metal" NATURAL(V)=0

LINE TO CLOSE

The final requirement for boundary condition specification is the attachment of boundary conditions to the
X-Y end faces of the extruded figure.  This is done by the SURFACE modifier.  Suppose we wish to
force the bottom surface to V=0 and the top to V=1.  We would modify the descriptor as follows: 

BOUNDARIES
SURFACE "Bottom" VALUE(V)=0
SURFACE "Top" VALUE(V)=1
REGION 1 { this is the outer boundary of the system }

LAYER "Dielectric" K = Kdiel { all other layers default to Kair }
START(0,0) 

LINE TO (5,0) TO (5,5) TO (0,5)  TO CLOSE
REGION 2 { this region overrides region 1, and describes the larger plate }

LAYER "Bottom Metal" K = Kmetal  
LAYER "Dielectric" K = Kdiel  
START(1,0)
LAYER "Bottom Metal" VALUE(V)=V0

LINE TO (4,0) 
LAYER "Bottom Metal" NATURAL(V)=0

LINE TO (4,5) TO (1,5) TO CLOSE
REGION 3 { this region overrides regions 1&2, and describes the smaller plate}

LAYER "Bottom Metal" K = Kmetal  
LAYER "Dielectric" K = Kdiel  
LAYER "Top Metal" K = Kmetal  
START(2,0)

LINE TO (3,0) TO (3,5) 
LAYER "Top Metal" VALUE(V)=V1

LINE TO (2,5) 
LAYER "Top Metal" NATURAL(V)=0

LINE TO CLOSE

Observe that since the SURFACE statements lie outside any REGION specification, they apply to all
regions of the surface.  To specialize the SURFACE statement to a specific region, it should be included
within the REGION definition.

In this example, we have used named surfaces and layers.  The same effect can be achieved by omitting
the layer names and specifying layers and surfaces by number:

BOUNDARIES
SURFACE 1 VALUE(V)=0
SURFACE 6 VALUE(V)=1
REGION 1 { this is the outer boundary of the system }

LAYER 3 K = Kdiel { all other layers default to Kair }
START(0,0) 
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LINE TO (5,0) TO (5,5) TO (0,5)  TO CLOSE
REGION 2 { this region overrides region 1, and describes the larger plate }

LAYER 2 K = Kmetal  
LAYER 3 K = Kdiel  
START(1,0)
LAYER 2 VALUE(V)=V0

LINE TO (4,0) 
LAYER 2 NATURAL(V)=0

LINE TO (4,5) TO (1,5) TO CLOSE
REGION 3 { this region overrides regions 1&2, and describes the smaller plate}

LAYER 2 K = Kmetal  
LAYER 3 K = Kdiel  
LAYER 4 K = Kmetal  
START(2,0)

LINE TO (3,0) TO (3,5) 
LAYER 4 VALUE(V)=V1

LINE TO (2,5) 
LAYER 4 NATURAL(V)=0

LINE TO CLOSE

Remember that in our terminology a REGION refers to an area in the projected base plane, while a
LAYER refers to a section of the Z-extrusion.  A particular 3D chunk of the figure is uniquely identified by
the intersection of a REGION and a LAYER.

A completed form of the descriptor outlined here may be found in the sample problem "Samples | Usage
| 3D_Domains | 3D_Extrusion_spec.pde".  A slightly more complex and interesting variation may be
found in "Samples | Applications | Electricity | 3D_Capacitor.pde".

4.6 Importing DXF Files

FlexPDE  supports the import of DXF files, allowing you to use AutoCAD to prepare your FlexPDE
problem descriptor files.  

To prepare the problem in AutoCAD, use the following rules:

On layer 0, enter as text the entire body of the problem description, excluding the BOUNDARIES

section. 
Use one layer for each region of the problem.  Draw on each layer the boundaries pertaining to that
region.  Enter as text on each layer the necessary regional definitions for that region.  For
boundaries that are shared between regions, be sure that the points are recognizably the same
(within 1e-6*domain size).  Snap-to-grid is advised.
Enter as text the necessary boundary conditions.  Place the text so that the insertion point is near the
boundary to which the boundary condition applies. 
Export the drawing as a DXF file in R14 format.

To run the problem in FlexPDE, do the following:

Select the "Import->DXF 2D" item from the "File" menu.
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Select the DXF file to import and click "open".
Enter a minimum merge distance. This is the distance at which two points will be considered the
same, and merged.
FlexPDE will read the DXF file and translate it into a corresponding .PDE file.  This file will be
displayed in the FlexPDE editor and also written to disk as a .PDE file for later use.
Examine the translated file for errors, then proceed as for a standard .PDE file.

You may chose to modify the translated .PDE file, or to continue to update the .DXF file, whichever is
most convenient for your needs.

Examples:
See the sample problem "Samples | Usage | Import-Export | AcadSample.dxf" and its associated
drawing file AcadSample.dwg.

4.7 Importing OBJ Files

FlexPDE 7 supports the import of 3D bounding surface meshes in the OBJ file format, allowing you to
use a CAD program like Rhino to prepare your 3D model. The EXTRUSION  section will be absent
and the BOUNDARIES  section will contain the one statement to import the OBJ file :

BOUNDARIES

  IMPORT OBJ 'filename'

To prepare the OBJ mesh, use the following rules :

Build a closed mesh of your object and name it. FlexPDE must have a closed mesh - no open meshes.

Extract any mesh faces to which you would like to apply a boundary condition. Group and name them.
Groups intended to have different boundary conditions must have different names.

Export the mesh in OBJ format without vertex normals, without mesh texture coordinates, and without
materials. Also be sure to export object names as OBJ names, and group names as OBJ groups.

To have FlexPDE automatically generate a basic starting script file to import the OBJ mesh, do the
following :

Select the "Import->OBJ 3D" item from the "File" menu. Browse to the desired OBJ file and click
"Open". (Alternatively, you may use the "Open" menu item and switch the file filter to "OBJ"). This will
create a basic script file with the appropriate sections for the import process. This step is optional and
may be skipped once you have familiarity with the script grammar for importing OBJ files.

Add the sections VARIABLES , EQUATIONS , and PLOTS .

Modify the MATERIALS  and BOUNDARY CONDITIONS  sections as needed.
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Note : FlexPDE will use flat-sided tetrahedra when creating computation meshes from
imported OBJ surface meshes. It will not curve the sides as in self constructed surface meshes.

Material Properties and Boundary Conditions

Since there are no REGIONS  or boundary paths  stated in the script when you import an OBJ mesh
file, we have provided two new sections for defining material property sets and boundary condition sets.
They are the MATERIALS  and BOUNDARY CONDITIONS  sections.

In a normal script these definitions can be used in the normal flow with USE MATERIAL "name" and USE

BC "name". In order to use them in your OBJ import you have to label and group some items in the OBJ
file (usually before exporting from the CAD program, although it can be reopened and patched up by
hand if needed).

In order to apply material parameters to a given object, simply select the complete bounding mesh of that
object and name it. That name will be used to apply a parameter set definition. If you name the object
"box" then a MATERIAL named "box" must be present in the FlexPDE script.

In order to apply a BC to a set of mesh cells (like the side of a box) you will need to extract those cells
from the closed mesh, group them, and name the group. The group name will be used to apply a BC set
definition. If you name the group "right side" then a BOUNDARY CONDITION named "right side" must be
present in the FlexPDE script.

OBJ Construction Tips

Try and get a uniform mesh created in the CAD program. It is easy to get a mesh with large long skinny
cells very close to other small cells. FlexPDE7 does a pre-process pass where it will split cells in order
to make them more uniform, but it is better to try and get uniformity from the CAD mesh generator first.

FlexPDE will accept triangular and square cells from the OBJ mesh, but it is better to make them
triangular in the CAD program before exporting the OBJ file. FlexPDE will divide a square cell into four
cells, whereas in the CAD program you can divide them into two. The reason for FlexPDE dividing into
four is related to matching up common cell faces and their normals on faces shared between objects.

The normals of the cells will need to be directed outward. This is the default for most CAD programs
when creating a mesh from closed objects. If you make an object from pieces, you will need to make
sure the normals point outward.

Creating Void Volumes

Create two objects one inside the other. Invert the normals of the inside object. Name them as the same
object.

229 226

215 215
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Examples:

Samples | Usage | CAD_Import | cube_OBJimport.pde  - the most basic usage of the OBJ import.

Samples | Usage | CAD_Import | cube2_OBJimport.pde  - two objects with a shared face.

Samples | Usage | CAD_Import | helix_OBJimport.pde  - a stress model of a coil.

Samples | Usage | CAD_Import | boxinbox_OBJimport.pde  - void volume.

Samples | Usage | CAD_Import | horn_OBJimport.pde  - random crazy shape.

See all the other examples in the "Samples | Usage | CAD_Import" directory.

Please see the supplementary YouTube videos on OBJ mesh construction and import : 
www.youtube.com/playlist?list=PLfkFm0BfPLmw_hxfw7KSBCt-xqaxyaYB0

4.8 Applications in Electromagnetics

I. Maxwell's Equations

The purpose of this note is to develop formulations for the application of FlexPDE to various problems in
electromagnetics.  It is not our intention to give a tutorial on electromagnetics;  we assume that the reader
has some familiarity with the subject, and has access to standard references.  

The starting point for our discussion is, as usual, Maxwell's equations:

(1)

(2) 0

(3)

(4)

D
H J

t

B

B
E

t

D

v
v v

v
g

v
v

v
g

 

 To these we add the constitutive relations

(5)

(6)

(7)

D E

B H

J E

v v

v v

v v

(In isotropic materials, ,  and  are scalars, possibly nonlinear.  In more complex materials, they

may be tensors. In studies involving hysteresis or permanent magnets, modifications must be made to
equation (6))
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From these can be derived a convenient statement of charge conservation:

(8) 0J
t

v
g

These equations form a very general framework for the study of electromagnetic fields, and admit of
numerous combinations and permutations, depending on the characteristics of the problem at hand. 
Much confusion arises, in fact, from the tendency of textbooks to specialize the equations too soon, in
order to simplify the exposition.  This approach appears to present as a generally applicable formulation
one which in reality embodies many assumptions about the problem being analyzed. We will discover
that some alterations or substitutions that seem esthetically pleasing will not turn out to be wise
computationally.

II.  Choice of  variables

A constraint due directly to the Finite Element model used in FlexPDE strikes us at the very outset. 
FlexPDE uses a continuous piecewise polynomial representation of all model variables.  That is, at each
computational node in the system it is assumed that each variable takes on a unique value, and that these
nodal values can be connected in space by polynomial interpolations.

Application of the Divergence Theorem and Stokes' Theorem  to Maxwell's equations yield the following
boundary rules at material interfaces.

The tangential component of E
v

 is continuous; the normal component of D E
v v

 is

continuous (in the absence of surface charges).

The tangential component of H
v

 is continuous (in the absence of surface current); the normal

component of B H
v v

 is continuous.

These rules are in general inconsistent with the model assumptions of FlexPDE.  This means that the field
components themselves cannot be chosen as the model variables unless one of the following conditions
applies:

There are no material property discontinuities in the domain,
The discontinuous components of the field are absent in the specific configuration being modeled.

For example, if we know that in a specific configuration that all the electric fields must be tangential to the

material interfaces, we can use E
v

 as a model variable.  If we know instead that all the electric fields are

normal to the material interfaces, we can use D
v

 as a model variable.

The analysis of fields in terms of the field components comprises the bulk of textbook treatments, and we
will not pursue the topic further here.   We will instead turn our attention to a more generally applicable
modeling approach.  Nevertheless, despite the seemingly restrictive nature of these prohibitions, there is
a large class of problems which can be analyzed successfully by FlexPDE in terms of field components.
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III. Potentials

For any twice-differentiable vector v
v

, the vector identity 0v
v

g  holds.  This identity together

with equation (2) implies that we can define a vector potential function A
v

, the magnetic vector potential,

such that

(9) A B
v v

A theorem due to Helmholtz states that a vector field can be uniquely defined only by specifying both its
curl and its divergence.  We must remain aware, therefore, that at this point our vector potential is

incompletely determined.  The arbitrariness of A
v

g  is frequently exploited to simplify the equations.  In

many cases, it is not necessary to explicitly specify  A
v

g , allowing the boundary conditions and the

artifacts of the computational model to define it by default.

Substituting relation (9) into equation (3) gives  0AE
t

vv
.  Another  vector identity states

that 0  for any twice differentiable scalar .  This allows us to define a scalar potential

function V  such that 

(10) AE V
t

vv

In the absence of time variation, V  is seen to be the electrostatic potential.

Application of Faraday's Law to a pillbox on a material interface shows that V must be continuous

across material interfaces.  Application of Stokes' Theorem to  A
v

 shows that the tangential component

of  A
v

 must be continuous across material interfaces.  All the conventional definitions of A
v

g  also have

the property that the normal component of  A
v

 is continuous across material interfaces.  Therefore,

formulations in terms of  V  and  A
v

 completely satisfy the modeling assumptions of FlexPDE.

Since the two definitions (9) and (10) satisfy equations (2) and (3), we are left with  Maxwell's equations

(1) and (4), which  in terms of  A
v

 and  V  are:
2

2
(11) 0

(12) 0

A A A
V V

t tt

A
V

t

v v v

v

g g

At this point, it is customary in the literature to apply vector identities to convert the 
A
v

 into

a form containing  A
v

g , so that a complete definition of A
v

 can be achieved.  In fact, these

transformations require that  be continuous across material interfaces.  We therefore defer this



Technical Notes : Applications in Electromagnetics 290

operation for discussion under the appropriate specializations to follow.  We should also point out that in

(11) we have substituted (7) J E
v v

, a substitution we may later wish to rescind.

IV. Boundary Conditions

FlexPDE uses the Divergence Theorem and its related Curl Theorem to reduce the order of second
derivative terms, and assumes that the resulting surface integrals vanish at internal boundaries.  Applied to

(12), this process results in the continuity of the normal component of D
v

, as required by boundary rule

1).  Applied to (11), this process results in the continuity of the tangential component of H
v

, as required

by boundary rule 2).

At exterior boundaries, the Natural boundary condition specifies the value of the integrand of the surface

integrals.  For equation (11) this means the tangential component of H
v

, while for equation (12) it means

the normal component of D
v

.  

1. Symmetry planes

Following the above definition of the natural boundary condition, the specification  "NATURAL(V)=0"

for equation (12) means that the normal component of D
v

 is zero. This means that field lines must be

parallel to the system boundary and that potential contours must be normal to the boundary.  These are
the conditions of a symmetry plane.

Similarly, if we specify "NATURAL(A)=0" for equation (11), we require that the tangential component

of H
v

 be zero.  This says that field lines and potential contours must be normal to the boundary, which is

again the condition of a symmetry plane.

2. Perfect conductors

Since a perfect conductor cannot sustain a field, the boundary condition "VALUE(V)=constant" for
equation (12) defines a perfectly conducting boundary.  Note that since equation (12) contains only
derivatives of V, an arbitrary constant value may be added to the solution without affecting the equation.
 In order for a numerical solution to succeed, there must be some point in the domain at which a value
condition is prescribed, in order to make the potential solution unique.

Similarly, the specification "VALUE(A)=constant" for equation (11) forces the normal component of H
v

to be zero.  As with V, a value should be ascribed to A
v

 somewhere in the domain, in order to make the

potential solution unique.

3. Distant Boundaries

Ampere's Law states that the integral of H dl
vv

g  around a closed path is equal to the integral of J dS
vv

g

over the enclosed surface, or just I, the enclosed current.  Now, H dl
vv

g  is the tangential component of
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H
v

, which is exactly the quantity specified in equation (11) by the Natural boundary condition.  In many

cases, this fact can be used to construct meaningful terminating boundary conditions for otherwise open
domains.

 The differential form of Ampere's Law can also be used to derive a general rule for the value of A
v

:

 
3( ')

( ) '
'

J R
A R d R

R R

v v
v v v

v v

(In time-varying systems, J
v

 must refer to a current retarded in time by the propagation time from 'R
v

 to

R
v

.)

This form has the property that 0A
v

g .  We may add to this definition the gradient of an arbitrary

scalar function G without affecting the resulting fields.

At points distant from any currents we may write 

( )
I

A R
R

v
v v

v .

Note that here I
v

 is a vector which embodies the direction of the current, and that A
v

 has the direction

of I
v

.

V. Harmonic Analysis

Equations (11) and (12) describe a full time dependent model of the fields, which can be extremely
expensive to compute.  In many cases of interest, the time dependence we desire to study is the stable
oscillation caused by a sinusoidal excitation.  In these cases it is convenient to make the assumption that
each of the field components can be expressed in the complex form

ei tP
v

P

Where P
v

 is any of the field quantities, P  is an associated complex amplitude (a function of space

only),
 is the angular velocity, and i  is the square root of minus 1.  The observable field quantity is then the

real part of P, Re(P).

With these assumptions, the time derivative terms in our equations reduce to simple forms:

2
2

2

P
i P

t

P
P

t

v
v

v
v

Applying these assumptions to equations (11) and (12) results in the harmonic equations



Technical Notes : Applications in Electromagnetics 292

(13) 0

(14) 0

A
i A i V

V i A

v
v

v
g g

These equations require solution in space only, and are thus much more economical than the full time
dependent system (11), (12).  We will return to these equations frequently in the sections which follow.

VI. Posing Equations for FlexPDE

We have been writing our equations in terms of vector fields, but in fact FlexPDE is not able to deal
directly with vector fields; we must manually reduce the system to component equations.  In a three
dimensional space, equation (11) comprises three component equations while equation (12) is scalar. 
So we have a total of four equations in four unknowns, Ax, Ay, Az and V.  

Equations (13)-(14) are more complicated, since each component has a real and an imaginary part, for a
total of eight components.  Each of these eight scalar variables must be represented by a separate
component equation.

We will not expand the equations into their final form just yet, because in most of the specializations
addressed subsequently the resulting forms are not nearly so frightening as the full equations.

VII. Specializations

In most problems of interest, the full generality of equations (11) and (12) or their harmonic equivalents
(13) and (14) are not necessary.  Analysis of the needs of the problem at hand can usually lead to
considerable simplification.  We will consider a few cases here.

1. Electrostatics

For fields which are constant in time, equation (12) decouples from equation (11), and the electric scalar
potential may be found from the single equation

(15) 0Vg

Since FlexPDE applies the divergence theorem over each computational cell, inclusion of  inside the
divergence is sufficient to guarantee the correct behavior of the field quantities across material interfaces.

 The natural boundary condition on V becomes a specification of the normal derivative of V .

2. Magnetostatics

For fields which are constant in time, equation (11) becomes

0
A

V

v
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Here the term s Grad(V) is in fact a representation of the current density J
v

, which we will probably

wish to specify directly as the driving current for the fields:

(16) 0
A

J

v
v

In the geometric interpretation of A
v

, for which 0A
v

g , A
v

 has components parallel to the

components of J
v

, so if J
v

 is restricted to a single component, we may restrict A
v

 to only that

component.

As discussed in section IV, the Natural boundary condition for A
v

 specifies the tangential component of

H
v

.  Natural( A
v

)=0 specifies a symmetry plane, and Value( A
v

)=0 specifies a perfect conductor.

3. Non-magnetic Materials (constant )

In the common case where  is constant, we can perform some simplification on equation (11).  We

can apply the vector identity

A A A
v v v

g g

To give
2

2

1 1
(17)

A A
A A V V

t tt

v v
v v

g g .

Since we now have an explicit A
v

g , we are in a position to define it in any way we choose to generate

a form appropriate to our needs.  The definition of A
v

g  is commonly known as the "Gauge Condition".

 The choice of gauge will be determined by what it is that we know about the problem at hand.  Several
common gauge conditions and the resulting forms of (11)-(12) are given below.

Note that this operation is not without consequences.  The definition of the natural boundary condition

has changed.  It is no longer the boundary value of 
A
v

, but is now the boundary value of 
A
v

. 

Natural( A
v

)=0 remains the condition for a symmetry plane, and Value( A
v

)=0 still defines a perfect

conductor boundary, but care must be taken if other values are assigned.  In the case 0A
v

g , the

two will be equivalent, in other choices of gauge they may not be.

Also note that because of typographical constraints we have written A
v

g  for the component-wise

Laplacian of the vector A
v

.  This notation is not strictly correct in curvilinear coordinates, and a more

careful derivation must be made in those cases.

Without making further assumptions about  or , we can apply the Coulomb gauge condition,

0A
v

g . 
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With this assertion, equation (17) becomes 
2

2
(18)

(19) 0

A A
A V V

t tt

A
V

t

v v
v

g

v

g g

Note that even though we have assumed 0A
v

g , we are not free to delete the 
A

t

v

g  from

equation (18) unless  is also constant.  Piecewise constancy of  is not sufficient, because  is
undefined at the interface and we have no way to apply a divergence theorem to convert it to a surface
integral.

4. Non-magnetic Materials with constant 

In the special case where both  and  are constant, the scalar potential equation (19) with Coulomb

gauge can be simplified to

(19') 0Vg

Alternatively, we can use the "Diffusion" gauge condition:

V
A

t

v
g

We can reverse the order of differentiation  and cause A
v

g  to cancel the V
t

 term in equation

(11) and replace the 
A

t

v

 term in equation (12)

2

2

2

2

(20)

(21) 0

A A
A V

t t

V
V

t

v v
v

g

g

In some cases, s Grad(V) may be interpreted as the negative of the static current density, in which case
the equations decouple and (20) may be eliminated.

5. Non-magnetic Materials with constant  and 

In the special case where ,  and  are all constant, we can use the Lorentz gauge condition:
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V
A V

t

v
g

This allows all the V terms to cancel from equation (17) resulting in decoupled equations for A
v

 and V

2

2

2

2

(22) 0

(23) 0

A A
A

t t

V V
V

t t

v v
v

g

g

The equations have now been decoupled, and may be solved separately.  These forms are useful in the
solution of wave propagation problems.

VIII. Specializations of the Harmonic Equations

1. Non-magnetic Materials 

Equations (13) and (14) can also be specialized to the case of constant .  The basic form of equation

(13) is

1 1
(24) A i A A i V

v v v
g g

Without making further assumptions about  or  we may apply the Coulomb gauge condition

 0A
v

g ,

from which equations (13) and (14) become

(25)

(26) 0

A i A i V

V i A

v v
g

v
g g

Note that even though we have assumed 0A
v

g , we are not free to delete the A
v

g  from

equation (26) unless  is constant.  

2. Non-magnetic Materials with constant 

In the special case where both  and  are constant, equation (26) with Coulomb gauge can be

simplified to

(26') 0Vg

Alternatively, we can use the diffusion gauge condition 

A i V
v

g

from which we derive the equations
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2

(27)

(28) 0

A i A V

V V

v v
g

g

In some cases, V may be interpreted as the negative of the conduction current density, in which case
the equations decouple and (28) may be eliminated.

3. Non-magnetic Materials with constant e and s

In the special case where ,  and  are all constant, we can use the Lorentz gauge condition,

which in the harmonic approximation becomes 

( )A i V
v

g

All the V terms vanish in equation (24), and the pair (13), (14) become

(29) 0

(30) 0

A i A

V i V

v v
g

g

The equations have now been decoupled, and may be solved separately.  These forms are useful in the
solution of wave propagation problems.

4.8.1 Introduction

FlexPDE is a software tool for finding numerical solutions to systems of linear or non-linear partial
differential equations using the methods of finite element analysis.  The systems may represent static
boundary value, time dependent initial/boundary value, or eigenvalue problems.  Rather than addressing
the solution of specific equations related to a given area of application, FlexPDE provides a framework
for treating partial differential equation systems in general.  It gives users a straightforward method of
defining the equations, domains and boundary conditions appropriate to their application.  From this
description it creates a finite element solution process tailored to the problem.  Within quite broad limits,
then, FlexPDE is able to construct a numerical solution to a wide range of applications, without itself
having any built-in knowledge of any of them.

The goal of this book is not to provide a discussion of the specific grammatical rules of writing scripts for
FlexPDE, nor to describe the operation of the graphical user interface.  Those topics are covered in
other volumes of the FlexPDE documentation, the Getting Started guide, the User Guide tutorial, and the
Problem Descriptor Reference.

In this book we will address several fields of physics in which FlexPDE finds fruitful application,
describing the various problems, the mathematical statement of the partial differential equation system,
and the ultimate posing of the problem to FlexPDE.  The volume is accompanied by the text of all the
examples, which the user can submit to FlexPDE to see the solution in progress or use as a foundation
for problems of his own.

This manual is emphatically not a compendium of the problems FlexPDE “knows how to solve”.  It is
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rather a group of examples showing ways in which the power of FlexPDE can be applied to partial
differential equations systems in many fields.  The true range of applicability of FlexPDE can be
demonstrated only by the full range of ingenuity of users with insight into the mathematics of their own
special fields.

Nor does this manual attempt to present textbook coverage of the theory of the topics addressed.  The
range of applications addressable by FlexPDE would make such an attempt impossible, even if we were
capable of such an endeavor.  Instead, we have presented enough of the theory of each topic to allow
those practitioners who are familiar with the subject to see how the material has been analyzed and
presented to FlexPDE.  Users who are unfamiliar with the various fields of application should consult
standard textbooks to find the full theoretical development of the subjects.

4.8.1.1 Finite Elem ent Methods

It is not our intent to provide an elaborate discussion of finite element methods.  One goal of FlexPDE
has been to allow users in the various fields of science and engineering to begin reaping the benefits of
applying finite element analysis to their individual work without becoming programmers and numerical
analysts.  There are hundreds of books in print detailing the method and its variants in many fields, and
the interested student can find a wealth of material to keep him busy.  If we have been successful in our
endeavors, he won’t have to.

Nevertheless, a familiarity with some of the concepts of finite element analysis can be of benefit in
understanding how FlexPDE works, and why it sometimes does not.  Hence this brief overview.

4.8.1.2 Principles

Partial differential equations generally arise as a mathematical expression of some conservation principle
such as a conservation of energy, momentum or mass.  Partial differential equations by their very nature
deal with continuous functions  -- a derivative is the result of the limiting process of observing differences
at an infinitesimal scale.  A temperature distribution in a material, for example, is assumed to vary
smoothly between one extreme and another, so that as we look ever more closely at the differences
between neighboring points, the values become ever closer until at “zero” separation, they are the same.

Computers, on the other hand, apply arithmetic operations to discrete numbers, of which only a limited
number can be stored or processed in finite time.  A computer cannot analyze an infinitude of values. 
How then can we use a computer to solve a real problem?

Many approaches have been devised for using computers to approximate the behavior of real systems.
The finite element method is one of them.  It has achieved considerable success in its few decades of
existence, first in structural mechanics, and later in other fields.  Part of its success lies in the fact that it
approaches the analysis in the framework of integrals over small patches of the total domain, thus
enforcing aggregate correctness even in the presence of microscopic error.  The techniques applied are
little dependent on shapes of objects, and are therefore applicable in real problems of complex
configuration.

The fundamental assumption is that no matter what the shape of a solution might be over the entire
domain of a problem, at some scale each local patch of the solution can be well approximated by a low-
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order polynomial.  This is closely related to the well-known Taylor series expansion, which expresses the
local behavior of a function in a few polynomial terms.

In a two-dimensional heat flow problem, for example, we assume that if we divide the domain up into a
large number of triangular patches, then in each patch the temperature can be well represented by, let us
say, paraboloidal surfaces.  Stitching the patches together, we get a Harlequin surface that obeys the
differential limiting assumption of continuity for the solution value—but perhaps not for its derivatives. 
The patchwork of triangles is referred to as the computation “mesh”, and the sample points at vertices or
elsewhere are referred to as the “nodes” of the mesh.

In three dimensions, the process is analogous, using a tetrahedral subdivision of the domain.

How do we determine the shape of the approximating patches? 

1.     Assign a sample value to each vertex of the triangular or tetrahedral subdivision of the domain. 
Then each vertex value is shared by several triangles (tetrahedra). 

2.     Substitute the approximating functions into the partial differential equation. 

3.     Multiply the result by an importance-weighting function and integrate over the triangles surrounding
each vertex.

4.     Solve for the vertex values which minimize the error in each integral.   

This process, known as a “weighted residual” method, effectively converts the continuous PDE problem
into a discrete minimization problem on the vertex values.  This is usually known as a “weak form” of the
equation, because it does not strictly enforce the PDE at all points of the domain, but is instead correct in
an integral sense relative to the triangular subdivision of the domain.

The locations and number of sample values is different for different interpolation systems.  In FlexPDE,
we use either quadratic interpolation (with sample values at vertices and midsides of the triangular cells),
or cubic interpolation (with values at vertices and two points along each side).  Other configurations are
possible, which gives rise to various “flavors” of finite element methods.

4.8.1.3 Boundary  Conditions

A fundamental component of any partial differential equation system is the set of boundary conditions,
which alone make the solution unique.  The boundary conditions are analogous to the integration

constants that arise in integral calculus.  We say 
2 31

3x dx x C , where  is any constant.  If we

differentiate the right hand side, we recover the integrand, regardless of the value of C.

In a similar way, to solve the equation 
2

2
0

u

x
, we must integrate twice.  The first integration gives

1

u
C

x
, and the second gives 1 2C x C .  These integration constants must be supplied by the

boundary conditions of the problem statement.

It is clear from this example that there are as many integration constants as there are nested
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differentiations in the PDE.  In the general case, these constants can be provided by a value at each end
of an interval, a value and a derivative at one end, etc.  In practice, the most common usage is to provide
either a value or a derivative at each end of the domain interval.  In two or three dimensions, a value or
derivative condition applied over the entire bounding curve or surface provides one condition at each end
of any coordinate integration path.

4.8.1.4 Integration by  Parts and Natural Boundary  Conditions

A fundamental technique applied by FlexPDE in treating the finite element equations is “integration by
parts”, which reduces the order of a derivative integrand, and also leads immediately to a formulation of
derivative boundary conditions for the PDE system.

In its usual form, integration by parts is given as

( )
bb b

a aa
udv uv vdu

.

Application of integration by parts to a vector divergence in a two- or three-dimensional domain, for
example, results in the Divergence Theorem, given in 2D as 

ˆ
A l

FdA F ndl
v v

g gÑ
.

This equation relates the integral inside the area to the flux crossing the outer boundary ( referring to the
outward surface-normal unit vector).

As we shall see, the use of integration by parts has a wide impact on the way FlexPDE interprets and
solves PDE systems.

Applied to the weighted residual method, this process dictates the flux conservation characteristics of the
finite element approximation at boundaries between the triangular approximation cells, and also provides
a method for defining the interaction of the system with the outside world, by specifying the value of the
surface integrand.

The values of the surface integrands are the “Natural” boundary conditions of the PDE system, a term
which also arises in a similar context in variational calculus.

FlexPDE uses the term “Natural” boundary condition to specify the boundary flux terms arising from the
integration by parts of all second-order terms in the PDE system.

For example, in a heat equation, 0k dA Sg , the divergence term will be integrated by

parts, resulting in

(0.1)      ˆ
A l

k dA k ndlg gÑ

The right hand side is the heat flux crossing the outer boundary, and the value of k  must be

provided by the user in a Natural boundary condition statement (unless a value BC is applied instead).
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At an interface between two materials, 1 1 1̂( )k ng  represents the heat energy leaving material 1 at a

point on the interface.  Likewise, 2 2 2ˆ( )k ng   represents the heat energy leaving material 2 at the

same point.  Since the outward normal from material 1 is the negative of the outward normal from

material 2, the sum of the fluxes at the boundary is 2 2 1 1 1̂( ) ( )k k ng , and this becomes the

Natural boundary condition at the interface.  In this application, we want energy to be conserved, so that
the two flux terms must sum to zero.  Thus the internal Natural BC is zero at the interface, and this is the
default value applied by FlexPDE.

 

Useful Integral Rules

(0.2)     ˆ
V S

fdV nf dSÒ      (Gradient Theorem)

(0.3)    ˆ
V S

FdV n F dS
v v

g gÒ    (Divergence Theorem)

(0.4)     ˆ
V S V

FdV n F dS FdV
v v v

g g gÒ

(0.5)       ˆ
V S

FdV n F dS
v v

Ò   (Curl Theorem)

4.8.1.5 Adaptive Mesh Refinem ent

We have said that at “some scale“, the solution can be adequately approximated by a set of low-order
polynomials.  But it is not always obvious where the mesh must be dense and where a coarse mesh will
suffice.  In order to address this issue, FlexPDE uses a method of “adaptive mesh refinement“.  The
problem domain presented by the user is divided into a triangular mesh dictated by the feature sizes of
the domain and the input controls provided by the user.  The problem is then constructed and solved,
and the cell integrals of the weighted residual method are crosschecked to estimate their accuracy.  In
locations where the integrals are deemed to be of questionable accuracy, the triangles are subdivided to
give a new denser mesh, and the problem is solved again.  This process continues until FlexPDE is
satisfied that the approximation is locally accurate to the tolerance assigned by the user.  Acceptable
local accuracy does not necessarily guarantee absolute accuracy, however.  Depending on how errors
accumulate or cancel, the global accuracy could be better or worse than the local accuracy condition
implies.

4.8.1.6 T im e Integration

The finite element method described above is most successful in treating boundary value problems. 
When addressing initial value problems, while the finite element method could be applied (and sometimes
is), other techniques are frequently preferable.  FlexPDE uses a variable-order implicit backward
difference method (BDM) as introduced by C.W. Gear.  In most cases, second order gives the best
tradeoff between stability, smoothness and speed, and this is the default configuration for FlexPDE.  This
method fits a quadratic in time to each nodal value, using two known values and one future (unknown)
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value.  It then solves the coupled equations for the array of nodal values at the new time.  By looking
backward one additional step, it is possible to infer the size of the cubic term in a four-point expansion of
the time behavior of each nodal value.  If these cubic contributions are large, the timestep is reduced, and
if extreme, the current step repeated.

4.8.1.7 Sum m ary

With this very cursory examination of finite element methods, we are ready to start applying FlexPDE to
the solution of PDE systems of interest in real scientific and engineering work.

Disclaimer

We have tried to make these notes as accurate as possible, but because we are not experts in all the
fields addressed, it is possible that errors have crept in.  We invite readers to comment freely on the
material presented here, and to take us to task if we have erred.

4.8.2 Electrostatics

Perhaps the most important of all partial differential equations is the simple form

(1.1)    0k qg

It is encountered in virtually all branches of science and engineering, and describes the diffusion of a
quantity with diffusivity k and volume source q.  With k=1 it is referred to as Poisson’s equation,

2 0q .  With k=1 and q=0, it is referred to as Laplace’s equation, 2 0 .

If  is electric potential, k is permittivity and q is charge density, then (1.1) is the electrostatic field
equation.

If  is temperature, k is thermal conductivity and q is heat source, then (1.1) is the heat equation.

If we identify derivatives of  with fluid velocities,

     u
x

, v
y

                                                       

then (1.1) is the potential flow equation.

In most cases, we can identify k  with the flux of some quantity such as heat, mass or a chemical.

(1.1) then says that the variation of the rate of transfer of the relevant quantity is equal to the local source
(or sink) of the quantity.

If we integrate the divergence term by parts (or equivalently, apply the divergence theorem), we get
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(1.2)     ˆ
V S V

k dV n k dS qdVg gÒ

That is, the total interior source is equal to the net flow across the outer boundary.

In a FlexPDE script, the equation (1.1) is represented simply as

Div(k*grad(phi)) + q = 0

The boundary flow n̂ kg is represented in FlexPDE by the Natural boundary condition,

Natural(phi) = <boundary flux> 

The simplest form of the natural boundary condition is the insulating or  “no flow“ boundary,

Natural(phi) = 0.

4.8.2.1 Electrostatic Fields in 2D

Let us as a first example construct the electrostatic field equation for an irregularly shaped block of high-
dielectric material suspended in a low-dielectric material between two charged plates.

First we must present a title:

title
  'Electrostatic Potential'

Next, we must name the variables in our problem:

variables
  V

We will need the value of the permittivity:

definitions
  eps = 1

The equation is as presented above, using the div and grad operators in place of  and :

equations
  div(eps*grad(V)) = 0

The domain will consist of two regions; the bounding box containing the entire space of the problem, with
charged plates top and bottom:
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boundaries
  region 1
    start (0,0)
    value(V) = 0              

line to (1,0)
    natural(V) = 0            

line to (1,1)
    value(V) = 100            

line to (0,1)
    natural(V) = 0            

line to close

and the imbedded dielectric:

  region 2
    eps = 50
    start (0.4,0.4)
    line to (0.8,0.4)

    to (0.8,0.8)    
to (0.6,0.8)
to (0.6,0.6)
to (0.4,0.6)
to close

Notice that we have used the insulating form of the natural boundary condition on the sides of the
bounding box, with specified potentials top (100) and bottom (0).

We have specified a permittivity of 50 in the imbedded region.  (Since we are free to multiply through the

equation by the free-space permittivity , we can interpret the value as relative permittivity or dielectric
constant.)

What will happen at the boundary between the dielectric and the air?  If we apply equation (1.2) and
integrate around the dielectric body, we get

     ˆ 0
l A
n k dl qdAgÑ

If we perform this integration just inside the boundary of the dielectric, we must use = 50, whereas just
outside the boundary, we must use = 1.  Yet both integrals must yield the same result.  It therefore
follows that the interface condition at the boundary of the dielectric is 

     ˆ ˆ
inside outside

n k n kg g . 

Since the electric field vector is E
v

 and the electric displacement is D E
v v

, we have the

condition that the normal component of the electric displacement is continuous across the interface, as
required by Maxwell’s equations.
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We want to see what is happening while the problem is being solved, so we add a monitor of the
potential:

monitors
contour(V) as 'Potential'

At the end of the problem we would like to save as graphical output the computation mesh, a contour
plot of the potential, and a vector plot of the electric field:

plots
  grid(x,y)
  contour(V) as 'Potential'
  vector(-dx(V),-dy(V)) as 'Electric Field'

The problem specification is complete, so we end the script:

end

Putting all these sections together, we have the complete script for the dielectric problem:

See also "Samples | Applications | Electricity | Dielectric.pde"
See also "Samples | Applications | Electricity | Fieldmap.pde"

Descriptor 1.1: Dielectric.pde
 
title
  'Electrostatic Potential'
variables
  V
definitions
  eps = 1
equations
  div(eps*grad(V)) = 0        
boundaries
  region 1
    start (0,0)
    value(V) = 0               line to (1,0)
    natural(V) = 0             line to (1,1)
    value(V) = 100            line to (0,1)
    natural(V) = 0             line to close
  region 2
    eps = 50
    start (0.4,0.4)
    line to (0.8,0.4) to (0.8,0.8)

  to (0.6,0.8) to (0.6,0.6)
  to (0.4,0.6) to close

monitors
  contour(V) as 'Potential'
plots
  grid(x,y)
  contour(V) as 'Potential'
  vector(-dx(V),-dy(V)) as 'Electric Field'

372

373
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end
 

The output plots from running this script are as follows:
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4.8.2.2 Electrostatics in 3D

We can convert this example quite simply to a three dimensional calculation.  The modifications that must
be made are:

Specify cartesian3 coordinates.
Add an extrusion section listing the dividing surfaces.
Provide boundary conditions for the end faces.
Qualify plot commands with the cut plane in which the plot is to be computed.

In the following descriptor, we have divided the extrusion into three layers.  The dielectric constant in the
first and third layer are left at the default of k=1, while layer 2 is given a dielectric constant of 50 in the
dielectric region only.

A contour plot of the potential in the plane x=0 has been added, to show the resulting vertical cross
section.  The plots in the z=0.15 plane reproduce the plots shown above for the 2D case.

Modifications to the 2D descriptor are shown in red.

See also"Samples | Applications | Electricity | 3D_Dielectric.pde" 370
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Descriptor 1.2: 3D Dielectric.pde 
 
title
  'Electrostatic Potential'
 
coordinates
  cartesian3
 
variables
  V

definitions
  eps = 1

equations
  div(eps*grad(V)) = 0 
  
extrusion
  surface "bottom"  z=0
  surface "dielectric_bottom" z=0.1
     layer "dielectric"
  surface "dielectric_top"  z=0.2
  surface "top"  z=0.3
 
boundaries
 
  surface "bottom" natural(V)=0
  surface "top" natural(V)=0
 
  region 1
    start (0,0)
    value(V) = 0        line to (1,0)
    natural(V) = 0      line to (1,1)
    value(V) = 100     line to (0,1)
    natural(V) = 0      line to close
 
  region 2
    layer "dielectric"  eps = 50
      start (0.4,0.4)
      line to (0.8,0.4) to (0.8,0.8)

to (0.6,0.8) to (0.6,0.6)
to (0.4,0.6) to close

 
monitors
  contour(V) on z=0.15 as 'Potential'
 
plots
  contour(V) on z=0.15 as 'Potential'
  vector(-dx(V),-dy(V)) on z=0.15 as 'Electric Field'
  contour(V) on x=0.5 as 'Potential'
 
end
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The following potential plot on x=0 shows the vertical cross section of the extruded domain.  Notice that
the potential pattern is not symmetric, due to the influence of the extended leg of the dielectric in the y
direction.

 

4.8.2.3 Capacitance per Unit Length in 2D Geom etry

 Submitted by J.B. Trenholme

This problem illustrates the calculation of capacitance per unit length in a 2D X-Y geometry extended
indefinitely in the Z direction. The capacitance is that between a conductor enclosed in a dielectric sheath
and a surrounding conductive enclosure. In addition to these elements, there is also another conductor
(also with a dielectric sheath) that is "free floating" so that it maintains zero net charge and assumes a
potential that is consistent with that uncharged state.

We use the potential as the system variable, from which we can calculate the electric field E V
v

and displacement D E
v v

, where  is the local permittivity and may vary with position.

In steady state, in charge-free regions, Maxwell’s equation then becomes
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     0D E V
v v

g g g .

We impose value boundary conditions on  at the surfaces of the two conductors, so that we do not
have to deal with regions that contain charge.

The metal in the floating conductor is "faked" with a fairly high permittivity, which has the effect of driving
the interior field and field energy to near zero. The imposition of (default) natural boundary conditions
then keeps the field normal to the surface of the conductor, as Maxwell requires. Thus we get a good
answer without having to solve for the charge on the floating conductor, which would be a real pain due
to its localization on the surface of the conductor.

The capacitance can be found in two ways. If we know the charge Q on the conductor at fixed

potential V , we solve

Q CV to get /C Q V . We know because it is imposed as a boundary condition, and we can

find Q from the fact that  ˆ
l
n D dl Q

v
g , where the integral is taken over a surface enclosing a volume

and  Q  is the total charge in the volume.

Alternatively, we can use the energy relation 
21

2W CV  to get 22C W V .   We find the energy

W by integrating the energy density 1
2 E D

v v
g  over the area of the problem.

See also "Samples | Applications | Electricity | Capacitance.pde"

Descriptor 1.3: Capacitance.pde

TITLE 'Capacitance per Unit Length of 2D Geometry'
{ 17 Nov 2000 by John Trenholme }
 
SELECT
  errlim 1e-4
  thermal_colors on
  plotintegrate off
 
VARIABLES
  V
 
DEFINITIONS
  mm = 0.001            ! meters per millimeter
  Lx = 300 * mm         ! enclosing box dimensions
  Ly = 150 * mm        
  b = 0.7                      ! fractional radius of conductor
  ! position and size of cable at fixed potential:
  x0 = 0.25 * Lx                     
  y0 = 0.5 * Ly
  r0 = 15 * mm

371
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  x1 = 0.9 * Lx
  y1 = 0.3 * Ly
  r1 = r0
  epsr                  ! relative permittivity
  epsd = 3              ! epsr of cable dielectric
  epsmetal = 1000       ! fake metallic conductor
  eps0 = 8.854e-12      ! permittivity of free space
  eps = epsr * eps0
  v0 = 1                       ! fixed potential of the cable
 
  ! field energy density:
  energyDensity = dot( eps * grad( v), grad( v) )/2
 
EQUATIONS
  div( eps * grad( v) ) = 0
 
BOUNDARIES
  region 1  'inside'  epsr = 1
    start  'outer'  ( 0, 0)  value( v) = 0
    line to (Lx,0) to (Lx,Ly) to (0,Ly) to close
  region 2  'diel0'  epsr = epsd
    start  'dieb0'  (x0+r0, y0)
    arc ( center = x0, y0) angle = 360
  region 3  'cond0'  epsr = 1
    start  'conb0'  (x0+b*r0, y0)  value(v) = v0
    arc ( center = x0, y0) angle = 360
  region 4  'diel1'  epsr = epsd
    start  'dieb1'  ( x1+r1, y1)
    arc ( center = x1, y1) angle = 360
  region 5  'cond1'  epsr = epsmetal
    start  'conb1'  ( x1+b*r1, y1)
    arc ( center = x1, y1) angle = 360
 
PLOTS
  contour( v) as 'Potential'
  contour( v) as 'Potential Near Driven Conductor'
    zoom(x0-1.1*r0, y0-1.1*r0, 2.2*r0, 2.2*r0)
  contour( v) as 'Potential Near Floating Conductor'
    zoom(x1-1.1*r1, y1-1.1*r1, 2.2*r1, 2.2*r1)
  elevation( v) from ( 0,y0) to ( x0, y0)
   as 'Potential from Wall to Driven Conductor' 
  elevation( v) from ( x0, y0) to ( x1, y1)
   as 'Potential from Driven to Floating Conductor'
  vector( grad( v)) as 'Field'
  contour( energyDensity) as 'Field Energy Density'
  contour( energyDensity)

zoom( x1-1.2*r1, y1-1.2*r1, 2.4*r1, 2.4*r1)
as 'Field Energy Density Near Floating Conductor'

  elevation( energyDensity)
from (x1-2*r1, y1) to ( x1+2*r1, y1)

    as 'Field Energy Density Near Floating Conductor'
  contour( epsr) paint on "inside"

as 'Definition of Inside'
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SUMMARY
  report sintegral(normal(eps*grad(v)),'conb0', 'diel0')

as 'Driven charge'
  report sintegral(normal(eps*grad(v)),'outer','inside')

as 'Outer charge'
  report sintegral(normal(eps*grad(v)),'conb1','diel1')

as 'Floating charge'
  report sintegral(normal(eps*grad(v)),'conb0','diel0')/v0

as 'Capacitance (f/m)'
  report integral( energyDensity, 'inside')

as 'Energy (J/m)'
  report 2 * integral( energyDensity, 'inside') / v0^2

as 'Capacitance (f/m)'
  report 2 * integral(energyDensity)/(v0*

sintegral( normal(eps*grad(v)), 'conb0', 'diel0'))
     as 'cap_by_energy / cap_by_charge'
 
END
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4.8.3 Magnetostatics

From Maxwell’s equations in a steady-state form we have

(2.1)  

            

            

where  is the magnetic field intensity,  is the magnetic induction,  is the magnetic

permeability and  is the current density.

The conditions required by Maxwell’s equations at a material interface are

(2.2)     

It is sometimes fruitful to use the magnetic field quantities directly as variables in a model.  However, eq.
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(2.2) shows that the tangential components of  are continuous across an interface, while the normal

components of  are continuous. 

The finite element method used by FlexPDE has a single value of each variable on an interface, and
therefore requires that the quantities chosen for system variables must be continuous across the interface.

 In special cases, it may be possible to choose components of  or  which satisfy this continuity

requirement.  We could, for example model  in a problem where material interfaces are normal to .
 In the general case, however, meeting the continuity requirements can be impossible.

It is common in Magnetostatics to use instead of the field quantities the magnetic vector potential ,
defined as

(2.3)     .

This definition automatically enforces .  Furthermore,  can be shown to be continuous

everywhere in the domain, and can represent the conditions (2.2) correctly.

 can be derived from Ampere’s Law, and shown to be the integrated effect at each point of all the

current loops active in the domain.  In this derivation,  will have components parallel to the

components of , so that it can be determined a priori which components of  must be represented.

Eq. (2.3) alone is not sufficient to uniquely define .  It must be supplemented by a definition of  to

be unique.  This definition (the “gauge condition”) is usually taken to be  (“Coulomb gauge”), a

definition consistent with the derivation of  from Ampere’s Law.  Other definitions are useful in some

applications.  It is not important what the qauge condition is; in all cases , and therefore the field
quantities, remain the same.

Combining eq. (2.1) with (2.3) gives

(2.4)     

In cases with multiple materials, where  can take on different values, it is important to keep the 
inside the curl operator, because it is the integration of this term by parts that gives the correct jump
conditions at the material interface. 

Applying eq. (0.5) we have

(2.5)     ,

so that the Natural boundary condition defines  on external boundaries, and is assumed
continuous across internal boundaries, consistent with Maxwell’s equations.
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4.8.3.1 A Magnet Coil in 2D Cy lindrical Coordinates

As a first example, we will calculate the magnetic field created by a coil, using 2D cylindrical (r,z)

geometry.  We will apply current only in the azimuthal direction, so the only nonzero component of A
v

will be the azimuthal component A .  With only a single component normal to the computational plane,

the gauge condition is automatically satisfied, since 
1

0
A

A
r

v
g

.

In the descriptor which follows, note that we have chosen to align the cylindrical axis with the horizontal

plot axis. FlexPDE uses a right-hand coordinate system, so in this case positive  is outward from the
plot page.  

See also "Samples | Applications | Magnetism | Magnet_Coil.pde"

Descriptor 2.1: Magnet_Coil.pde
 

Title 'AXI-SYMMETRIC MAGNETIC FIELD'

Coordinates
  xcylinder(Z,R)
 
Variables
  Aphi    { azimuthal component of the vector potential }
   
Definitions
  mu = 1              { the permeability }
  J = 0                 { global source term defaults to zero }
  current = 10       { the source value in the coil } 
  Br = -dz(Aphi)     { definitions for plots }
  Bz = dr(r*Aphi)/r
 
Equations
  Curl(curl(Aphi)/mu) = J
 
Boundaries
  Region 1
    start(-10,0)
    value(Aphi) = 0     { specify A=0 along axis }
    line to (10,0)
    value(Aphi) = 0     { H x n = 0 on distant sphere }
    arc(center=0,0) angle 180 to close
  Region 2
    J = current         { redefine source value }
    start (-0.25,1)
    line to (0.25,1) to (0.25,1.5)
         to (-0.25,1.5) to close
 
Monitors

427
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  contour(Bz) zoom(-2,0,4,4) as 'FLUX DENSITY B'
  contour(Aphi) as 'Potential'
 
Plots
  grid(z,r)
  contour(Bz)  as 'FLUX DENSITY B'
  contour(Bz) zoom(-2,0,4,4)  as 'FLUX DENSITY B'
  elevation(Aphi, dr(Aphi), Aphi/r, Bz)
     from (0,0) to (0,1) as 'Near Axis'
  vector(Bz,Br) as 'FLUX DENSITY B'
  vector(Bz,Br) zoom(-2,0,4,4) as 'FLUX DENSITY B'
  contour(Aphi) as 'MAGNETIC POTENTIAL'
 
  contour(Aphi) zoom(-2,0,4,4)  as 'MAGNETIC POTENTIAL'
  surface(Aphi)  as 'MAGNETIC POTENTIAL' 

viewpoint (-1,1,30)
 
End
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4.8.3.2 Nonlinear Perm eability  in 2D

In the following 2D Cartesian example, a current-carrying copper coil is surrounded by a ferromagnetic
core with an air gap. Current flows in the coil in the Z direction (out of the computation plane), and only
the Z component of the magnetic vector potential is nonzero. The Coulomb gauge condition is again

satisfied automatically.  We assume a symmetry plane along the X-axis, and impose 0zA  along the

remaining sides.  The relative permeability is 1  in the air and the coil, while in the core it is given by

     

max
min2

1 zC A
 ,

with parameters giving a behavior similar to transformer steel.

See also "Samples | Applications | Magnetism | Saturation.pde"

Descriptor 2.2: Saturation.pde
 

  Title "A MAGNETOSTATIC PROBLEM"
 

430
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  Select
    errlim = 1e-4    
 
  Variables
    A
 
  Definitions
    mu = 1               { default to air}
    mu0 = 1             { for saturation plot }
    mu_max = 5000
    mu_min = 200
    mucore = mu_max/(1+0.05*grad(A)^2) + mu_min
    S = 0
    current = 2
    y0 = 8
 
  Equations
     curl(curl(A)/mu) = S
 
  Boundaries
    Region 1            { The IRON core }
      mu = mucore
      mu0 = mu_max
      start(0,0)
      natural(A) = 0   line to (40,0)
      value(A) = 0     line to (40,40) to (0,40) to close

    Region 2            { The AIR gap }
      mu = 1
      start (15,0)

line to (40,0) to (40,y0) to (32,y0)
          arc (center=32,y0+2) to (30,y0+2)
          line to (30,20) to (15,20) to close

    Region 3            { The COIL }
      S = current
      mu = 1
      start (15,12)

line to (30,12) to (30,20) to (15,20) to close
           
  Monitors
    contour(A)
   
  Plots
    grid(x,y)
    vector(dy(A),-dx(A)) as "FLUX DENSITY B"
    vector(dy(A)/mu, -dx(A)/mu) as "MAGNETIC FIELD H"
    contour(A)  as "Az MAGNETIC POTENTIAL"
    surface(A)  as "Az MAGNETIC POTENTIAL"
    contour(mu0/mu) painted as "Saturation: mu0/mu"
 
  End  
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4.8.3.3 Divergence Form

In two dimensional geometry with a single nonzero component of A
v

, the gauge condition 0A
v

g is

automatically satisfied.  Direct application of eq. (2.4) is therefore well posed, and we can proceed
without further modification.

In 3D, however, direct implementation of eq. (2.4) does not impose a gauge condition, and is therefore
ill-posed in many cases.  One way to address this problem is to convert the equation to divergence form
using the vector identity

(2.6)     
2A A A

v v v
g .

As long as  is piecewise constant we can apply (2.6) together with the Coulomb gauge 0A
v

g  to

rewrite (2.4) as

(2.7)     0
A

J

v
v

g
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If  is variable, we can generalize eq. (2.6) to the relation

(2.8)     

T
A A A
v v v

g g

We assert without proof that there exists a gauge condition ( , , )A F x y z
v

g  which forces

(2.9)     0

T
A
v

g . 

The equations governing  can be stated as

1 1 1 1

1 1 1 1

1 1 1 1

y yz z

x z x z

yx x

A AF A A

x x y z y x z x

F A A A A

y y x z x y z y

AF A A

z z x y x z z

yA

z

It is not necessary to solve these equations; we show them merely to indicate that  embodies the
commutation characteristics of the system.  The value of  is implied by the assertion (2.9).  Clearly,

when  is constant, the equations reduce to 0F , for which 0F  is a solution.

Using the definition (2.9) we can again write the divergence form

(2.10)     0A J
v

g .

4.8.3.4 Boundary  Conditions

In converting the equation to a divergence, we have modified the interface conditions.  The natural
boundary condition for each component equation of (2.10) is now the normal component of the
argument of the divergence:

(2.11)    

ˆ( )

ˆ( )

ˆ( )

x x

y y

z z

Natural A n A

Natural A n A

Natural A n A

g

g

g

The default interior interface condition assumes component-wise continuity of the surface terms across
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the interface. 

Of the conditions (2.2) required by Maxwell’s equations at an interface, the first describes the tangential

components of H
v

, which by (2.3) involve the normal components of A
v

.  Eq. (2.11) shows that

these components scale by 1 , satisfying the tangential condition on H
v

.

The second condition is satisfied by the fact that the variables , ,z y zA A A  have only a single

representation on the boundary, requiring that their tangential derivatives, and therefore the normal

component of , will be continuous across the interface.

In all cases it is important to keep the  attached to the  term to preserve the correct interface jump
conditions.

4.8.3.5 Magnetic Materials in 3D

In magnetic materials, we can modify the definition of H
v

 to include magnetization and write

(2.12)      H B M
v v v

We can still apply the divergence form in cases where 0M
v

, but we must treat the magnetization

terms specially.

The equation becomes:

(2.13)     0
A

M J

v
v v

g

FlexPDE does not integrate constant source terms by parts, and if  is piecewise constant the
magnetization term will disappear in equation analysis.  It is necessary to reformulate the magnetic term
so that it can be incorporated into the divergence.  We have from (2.5)

(2.14)     ˆ
V S

MdV n MdS
v v

Ò .

Magnetic terms that  will obey

(2.15)     ˆ ˆn M n N
v v

g

can be formed by defining N
v

 as the antisymmetric dyadic
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0

0

0

z y

z x

y x

M M

N M M

M M

v

Using this relation, we can write eq. (2.13) as

(2.16)     0
A

N J

v
v v

g

This follows because integration by parts will produce surface terms n̂ N
v

g , which are equivalent to the

required surface terms n̂ M
v

.

Expanded in Cartesian coordinates, this results in the three equations

(2.17)     

0

0

0

x
x x

y
y y

z
z z

A
N J

A
N J

A
N J

g

g

g

where the iN  are the rows of N
v

.

In this formulation, the Natural boundary condition will be defined as the value of the normal component
of the argument of the divergence, eg.

(2.18)     ˆ( ) x
x x

A
Natural A n Ng .

As an example, we will compute the magnetic field in a generic magnetron.  In this case, only zM is

applied by the magnets, and as a result zA will be zero.  We will therefore delete zA from the analysis. 

The outer and inner magnets are in reversed orientation, so the applied zM  is reversed in sign.

See also "Samples | Applications | Magnetism | 3D_Magnetron.pde"

Descriptor 2.3: 3D_Magnetron.pde
 

TITLE 'Oval Magnet'

425
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COORDINATES
  CARTESIAN3
 
SELECT
   alias(x) = "X(cm)"
   alias(y) = "Y(cm)"
   alias(z) = "Z(cm)"
   nodelimit = 40000
   errlim=1e-4
 
VARIABLES
  Ax,Ay          { assume Az is zero! }
 
DEFINITIONS
  MuMag=1.0                  { Permeabilities: }
  MuAir=1.0
  MuSST=1000
  MuTarget=1.0
  Mu=MuAir                     { default to Air }
 
  MzMag = 10000             { permanent magnet strength }
  Mz = 0
  Nx = vector(0,Mz,0)
  Ny = vector(-Mz,0,0)
 
  B = curl(Ax,Ay,0)           { magnetic flux density }
  Bxx= -dz(Ay)
  Byy= dz(Ax)                  { "By" is a reserved word. }
  Bzz= dx(Ay)-dy(Ax)
 
EQUATIONS
  Ax: div(grad(Ax)/mu + Nx) = 0
  Ay: div(grad(Ay)/mu + Ny) = 0
 
EXTRUSION
  SURFACE "Boundary Bottom"       Z=-5
  SURFACE "Magnet Plate Bottom"  Z=0
      LAYER "Magnet Plate"
  SURFACE "Magnet Plate Top"      Z=1
      LAYER "Magnet"
  SURFACE "Magnet Top"              Z=2
  SURFACE "Boundary Top"           Z=8
 
BOUNDARIES
  Surface "boundary bottom"

value (Ax)=0  value(Ay)=0
  Surface "boundary top"

value (Ax)=0 value(Ay)=0
 
  REGION 1     { Air bounded by conductive box }
  START (20,-10)
      value(Ax)=0  value(Ay)=0
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      arc(center=20,0) angle=180
      Line TO (-20,10)
      arc(center=-20,0) angle=180
      LINE TO CLOSE
 
  REGION 2   { Magnet Plate Perimeter and outer magnet }      
    LAYER "Magnet Plate"
     Mu=MuSST
    LAYER "Magnet"
     Mu=MuMag
     Mz=MzMag

START (20,-8)
            arc(center=20,0) angle=180
            Line TO (-20,8)      

  arc(center=-20,0) angle=180
  LINE TO CLOSE

 
  REGION 3     { Air }
    LAYER "Magnet Plate"
      Mu=MuSST
    START (20,-6)      

  arc(center=20,0) angle=180
     Line TO (-20,6)      

  arc(center=-20,0) angle=180
      LINE TO CLOSE
 
  REGION 4     { Inner Magnet }
    LAYER "Magnet Plate"

Mu=MuSST
    LAYER "Magnet"

Mu=MuMag
Mz=-MzMag

    START (20,-2)      
arc(center=20,0) angle=180

       Line TO (-20,2)      
arc(center=-20,0) angle=180

       LINE TO CLOSE
 
MONITORS
  grid(x,z) on  y=0
  grid(x,y) on  z=1.01
  grid(x,z) on  y=1

PLOTS
  grid(x,y) on z=1.01
  grid(y,z) on x=0
  grid(x,z) on y=0
  contour(Ax) on x=0
  contour(Ay) on y=0
  vector(Bxx,Byy) on z=2.01 norm
  vector(Byy,Bzz) on x=0 norm
  vector(Bxx,Bzz) on y=4 norm
  contour(magnitude(Bxx,Byy,Bzz)) on z=2.01 LOG
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END 
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4.8.4 Waveguides

A waveguide is any of several kinds of structure intended to direct the propagation of high-frequency
electromagnetic energy along specific paths.  While the analysis of bends and terminations in such a
system is an essentially three-dimensional problem, the propagation in long straight segments of the guide
can be reduced to a two-dimensional analysis.  In this case, we assume that the guide is of uniform
cross-section in the (X,Y) plane, unvarying in the Z-dimension of the propagation direction.  In this
configuration, we can make the assumption that the fields inside the guide may be represented as a
sinusoidal oscillation in time and space, and write

(3.1)     
( , , , ) ( , )exp( )

( , , , ) ( , )exp( )

E x y z t x y i t i z

H x y z t x y i t i z

vv

vv
E

H

It is easy to see that these expressions describe a traveling wave, since the imaginary exponential

generates sines and cosines, and the value of the exponential will be the same wherever z t .  A



FlexPDE 7 : Technical Notes333

purely real  implies an unattenuated propagating mode with wavelength  2 / along the z

direction.

We start from the time-dependent form of Maxwell’s equations

(3.2)     
0

D E
H J J

t t

B H

B H
E

t t

D E

v v
v v v

v v
g g

v v
v

v v
g g

 

Assume then that 0J
v

 and 0 , and apply (3.1) :

(3.3)      
0

0

i

i

v v v
g

v v v
g

H E H

E H E
   

Taking the curl of each curl equation in (3.3) and substituting gives

(3.4)    

2

2

v
v

v
v

H
H

E
E

In view of (3.1), we can write

(3.5)    
1 1 1

1

x y z

T z

i
x y

i

v v v

v

with T  denoting the operator in the transverse plane.
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4.8.4.1 Hom ogeneous Waveguides

In many cases, the waveguide under analysis consists of a metal casing, either empty or filled
homogeneously with an isotropic dielectric.  In these cases, the analysis can be simplified.

Eq. (3.3) can be expanded using (3.5) and rearranged to express the transverse x and y components in

terms of the axial z components zH  and zE . 

(3.6)     

2 2

2 2

2 2

2 2

z z
x

z z
y

z z
x

z z
y

i
y x

i
x y

i
y x

i
x y

H E
E

H E
E

E H
H

E H
H

The i  in the right hand side corresponds to a phase shift of 2  in the expansion (3.1).

Applying, the divergence equations of (3.3) become

(3.7)      

yx
z

yx
z

i
x y

i
x y

HH
H

EE
E

,

so  the z component equations of (3.4) are

(3.8)     .

2 2

2 2

0

0

T T z z

T T z z

g

g

H H

E E

These are eigenvalue equations in zE  and zH , and the values of 
2 2

 for which solutions

exist constitute the propagation constants of the unattenuated propagation modes that can be supported
in the guide under analysis.  For any eigenvalue, there are an infinite number of combinations of 

 which can excite this mode, and the exact determination will depend on the materials and the
driving frequency.
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4.8.4.2 T E and T M Modes

In a homogeneously filled waveguide, there exist two sets of distinct modes. One set of modes has no
magnetic field component in the propagation direction, and are referred to as Transverse Magnetic, or
TM, modes.  The other set has no electric field component in the propagation direction, and are referred
to as Transverse Electric, or TE, modes.  In either case, one member of (3.8) vanishes, leaving only a
single variable and a single equation.  Correspondingly, equations (3.6) are simplified by the absence of
one or the other field component.

In the TE case, we have 0zE , and the first of (3.8)

(3.9)     
2 2 0T T z zg H H

The boundary condition at an electrically conducting wall is ˆ 0n H
v

g . Through (3.6), this implies

ˆ 0T zng H  ,which is the Natural boundary condition of (3.9).

In the TM case, we have 0zH , and the second of (3.8)

(3.10)     
2 2 0T T z zg E E .

The boundary condition at a metallic wall is ˆ 0n E
v

, which requires that tangential components of
v

E  be zero in the wall.  Since zE  is always tangential to the wall, the boundary condition is the Dirichlet

condition 0zE .

In the following example, we compute the first few TE modes of a waveguide of complex cross-section.
The natural boundary condition allows an infinite number of solutions, differing only by a constant offset
in the eigenfunction, so we add an integral constraint to center the eigenfunctions around zero.  Since all
the material parameters are contained in the eigenvalue, it is unnecessary to concern ourselves with their
values.  Likewise, the computation of the transverse field components are scaled by constants, but the
shapes are unaffected.

See also "Samples | Usage | Eigenvalues | Waveguide.pde"

Descriptor 3.1  Waveguide.pde
 

title "TE Waveguide"
 
select
  modes = 4         { This is the number of Eigenvalues desired. }
 
variables

544
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  Hz
 
definitions
  L = 2
  h = 0.5               ! half box height
  g = 0.01              ! half-guage of wall
  s = 0.3*L             ! septum depth
  tang = 0.1            ! half-width of tang
  Hx = -dx(Hz)
  Hy = -dy(Hz)
  Ex = Hy
  Ey = -Hx
 
equations
  div(grad(Hz)) + lambda*Hz = 0
 
constraints   { since Hz has only natural boundary conditions,
                                    we need to constrain the answer }
  integral(Hz) = 0
 
boundaries
  region 1
    start(0,0)
    natural(Hz) = 0    
    line to (L,0) to (L,1) to (0,1)  to (0,h+g)
    natural(Hz) = 0
    line to (s-g,h+g) to (s-g,h+g+tang) to (s+g,h+g+tang)
          to (s+g,h-g-tang) to (s-g,h-g-tang)
          to (s-g,h-g) to (0,h-g)
          to close
 
monitors
   contour(Hz)
 
plots
   contour(Hz) painted
   vector(Hx,Hy)  as "Transverse H" norm
   vector(Ex,Ey)  as "Transverse E" norm
 
end
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4.8.4.3 Non-Hom ogeneous Waveguides

Note: The development given here follows that of Fernandez and Lu, “Microwave and Optical
Waveguide Analysis”, and of Silvester and Ferrari, “Finite Elements for Electrical
Engineers”. 

In many applications, a waveguide is partially or inhomogeneously filled with dielectric material.  In this

case, pure TE and TM modes do not exist.  Both zE  and zH  exist simultaneously, and the propagation

modes are hybrid in nature. 

It is possible to address a simultaneous solution of equations (3.4) in a manner similar to (3.8). 
However, care must be taken to keep the  parameter inside of some of the derivatives, and problems
arise with the simplifications implicit in (3.7).  This approach also has been plagued with spurious solution
modes.  It is claimed that these spurious modes arise because the axial field model does not explicitly

impose 0B
v

g , and that the spurious modes are those for which this condition is violated.

An alternative approach seeks to reduce the equations (3.4) to a pair of equations in the transverse
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components of the magnetic field, 1 1T x x y yH H + H .  In the process, the condition 0B
v

g  is

explicitly imposed, and it is claimed that no spurious modes arise.

In the development that follows, we continue to treat  as a constant (invalidating use where magnetic
materials are present), but we exercise more care in the treatment of .

For notational convenience, we will denote the components of 
v

H  as 
ˆ ˆ ˆ1 1 1x y za b c

v
H  and use

subscripts to denote differentiation.  The first equation of (3.4) can then be expanded with (3.5) to give

(3.11)  

2 2

2 2

2

/ / / /

/ / / /

/ / / /

x y xy y

y x yxx

x y x yx y

b a i c a a

a b i c b b

c c i a i b c

   

The condition 0B
v

g  allows us to replace

(3.12)     x yi c a b

and to eliminate the third equation.  

We can also define 0r  and 0 and multiply through by 0  leaving

(3.13)     

2
2

0 0

2
2

0 0

x y x yx

r r ry

x yx y y

r r rx

a b b a a
a

a bb a b
b

In vector form we can write this as

(3.14)     
2

2
0 0

T T TT T T
T T

r r r

vv v
g vHH H

H

The equation pair (3.13) is an eigenvalue problem in 2 .  We can no longer bundle the 2  and 2

terms inside the eigenvalue, because the  r dividing 2  is now variable across the domain.  Given a

driving frequency , we can compute the axial wave numbers  for which propagating modes exist.
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4.8.4.4 Boundary  Conditions

To see what the natural boundary conditions imply, integrate the second-order terms of (3.13) by parts:

(3.15)

( ) / ( ) / ( ) / ( ) /

( ) / ( ) / ( ) / ( ) /

x y x r x y y r x x y r y x y r

T S

x y x r x y y r x x y r y x y r

T S

a b b a dxdy n a b n b a dl

b a a b dxdy n b a n a b dl

Ñ

Ñ

We have shown only the contour integrals arising from the integration, and suppressed the area integral
correcting for varying .  This term will be correctly added by FlexPDE, and does not contribute to the
boundary condition.

The integrand of the contour integrals is the value represented by the NATURAL boundary
condition statement in FlexPDE.

Thus the NATURAL boundary condition specifications for the two equations define the values of the
quantities

(3.16)  
Natural( ) ( ) / ( ) /

Natural( ) ( ) / ( ) /

x x x y r y x y r

y x x y r y x y r

n a b n b a

n b a n a b

H

H

The boundary conditions which must be satisfied at an electrically conducting wall are 

(3.17)      ˆ ˆ0; 0n n
v v

H E .

The first condition requires that 0x x y y z zn n nH H + H  .  At a vertical wall, 0y zn n  , and

the condition becomes simply 0xH  .  Similarly, at a horizontal wall, it is 0yH  .  Both are easily

expressed as Value boundary conditions.  At an oblique wall, the condition can be expressed as an

implicit value boundary condition for one of the components, e.g. Value( yH )= x y xn n H .

The second condition requires that the tangential components of 
v

E  must vanish in the wall.  In

particular, zE is always tangential and must therefore be zero.  From (3.3) we can derive

( )z x yi b aE  .  But this term appears in each of the forms in (3.16), so at a vertical wall, where

0,yn   we can set Natural( yH )=0, and at a horizontal wall, where 0,xn  we can use Natural(



Technical Notes : Applications in Electromagnetics 342

xH )=0.  These are the reverse assignments from the value conditions above, so the two form a

complementary set and completely specify the boundary conditions for (3.13).  Similar arguments can be
used at a magnetic wall, resulting in a reversed assignment of value and natural boundary conditions.

4.8.4.5 Material Interfaces

At a material interface, Maxwell’s equations require that the tangential components of 
v

E  and 
v

H  and

the normal components of 
v

E   and 
v

H  must be continuous. 

The tangential continuity of components x aH  and y bH  is automatically satisfied, because

FlexPDE stores only a single value of variables at the interface.  

Continuity of z cH , which is always tangential, requires, using (3.12), 
1 2x y x ya b a b .  

Continuity of zE  requires 
1 2

x y x y

r r

b a b a
 .

At internal boundaries, and in the absence of Natural specification, FlexPDE will
consider the quantities represented by the Natural BC to be continuous. 

From (3.16) it is clear that at vertical interfaces, the continuity of zE will be satisfied by the yH  equation,

while for horizontal interfaces, it will be satisfied by the xH  equation.

If all material discontinuities occur at vertical faces and r is piecewise constant, we can multiply the

xH equation by  r , and continuity of  zH will be satisfied.  Similarly, if all material discontinuities occur

at horizontal faces and r is piecewise constant, we can multiply the yH equation by  r , and continuity

of  zH will be satisfied. 

Clearly, at an internal interface where r  is continuous, the internal natural boundary condition reduces

to zero, which is the default condition.

In the example which follows, we consider a simple 2x1 metal box with dielectric material in the left half.
 Note that FlexPDE will compute the eigenvalues with lowest magnitude, regardless of sign, while
negative eigenvalues correspond to modes with propagation constants below cutoff, and are therefore
not physically realizable.
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See also "Samples | Usage | Eigenvalues | Filledguide.pde"

Descriptor 3.2 Filledguide.pde
 

title "Filled Waveguide"

{ This problem is taken from Fernandez and Lu, 
   "Microwave and Optical Waveguide Analysis by the Finite Element Method" page 138. }
 
select
  modes = 5      { This is the number of Eigenvalues desired. }
  ngrid = 30
  overshoot = 1e-9     { request very tight Conjugate Gradient convergence }
 
variables
  Hx, Hy
 
definitions
  cm = 0.01            ! conversion from cm to meters
  b = 1*cm             ! box height
  L = 2*b               ! box width
  epsr    ! values will be given by region
  epsr1=1        epsr2=1.5
  eps0 = 8.85e-12      
  mu0 = 4e-7*pi 
  c =  1/sqrt(mu0*eps0) ! light speed
  k0b = 4      ! normalized driving frequency 
  k0 = k0b/b
  k02 = k0^2            ! k0^2=omega^2*mu0*eps0
 
  ! terms used in equations and BC’s
  curlh = dx(Hy)-dy(Hx) 
  divh = dx(Hx)+dy(Hy)

  ! the solution generates some negative eigenvalues, so we shift the eigenvalues to a
range where only the 
  ! positive values appear
  shift = 200000
  true_lambda=lambda+shift

  ! extract the propagation wave number kz
  kz = if(true_lambda>0)then sqrt(true_lambda) else -sqrt(abs(true_lambda))
 
equations
  ! Hx equation multiplied by epsr to enforce continuity of Hz
  Hx: dx(divh) - dy(curlh) + k02*Hx*epsr - (lambda+shift)*Hx = 0
  Hy: dx(curlh/epsr) + dy(divh)/epsr + k02*Hy - (lambda+shift)*Hy/epsr = 0
 
boundaries
  region 1  epsr=epsr1
    start(0,0)
    natural(Hx) = 0  value(Hy)=0
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    line to (L,0)
    value(Hx) = 0  value(Hy)=0  natural(Hy)=0
    line to (L,b)
    natural(Hx) = 0 value(Hy)=0
    line to (0,b)
    value(Hx) = 0  natural(Hy)=0
    line to close
 
  region 2  epsr=epsr2
    start(b,b)
    line to (0,b) to (0,0) to (b,0)
    line to close
 
  monitors
     contour(Hx) range=(-1,1)
     contour(Hy) range=(-1,1)
 
  plots
     contour(Hx) range=(-1,1) report(k0) report(kz)
     surface(Hx) range=(-1,1)  report(k0) report(kz)
     contour(Hy) range=(-1,1)  report(k0) report(kz)
     surface(Hy) range=(-1,1)  report(k0) report(kz)
     surface(divh) range=(-1,1)  as "Hz" report(k0) report(kz)
     surface(curlh/epsr) range=(-1,1)  as "Ez" report(k0) report(kz)
 
  summary  export
   report lambda
   report shift
   report true_lambda
   report(k0)
   report( if(true_lambda<0) then "*" else " ")  ! mark negative eigenvalues
   report(kz)
   report(kz/k0)
 
  end
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4.9 Smoothing Operators in PDE's

The Laplacian Operator as a Bandpass Filter Function

Assume that we have a function v(x) which we wish to smooth. 

The Fourier expansion of this function is      v(x) =       V
k
 exp(i k x).

Let the smoothed function be     u(x) =        U
k
 exp(i k x),  with k the angular velocity in radians per

unit distance;

then the Laplacian of u is          2 u  =   (- k2 ) U
k
 exp(i k x).

We define u from the relation    u  -   2 u   =   v

then          U
k
 exp(i k x) ( 1 +  k2)     =      V

k
 exp(i k x).

   
Component by component,   U

k
 exp(i k x) ( 1 +  k2)     =      V

k
 exp(i k x)

Or,  U
k
  =  V

k
 /(1 +  k2)

so that the kth frequency component is attenuated by a factor of    1/(1 +  k2).

The Sampling Theorem states (McGillem and Cooper, "Continuous and Discrete Signal and System
Analysis", p 164):
" A band-limited signal can be uniquely represented by a set of samples taken at intervals spaced 1/2W
seconds apart, where W is the signal bandwidth in Hz."

The sampled signal is the product of the input signal and the sampling function, and the spectrum of the
sampled signal is the convolution of the two transforms.  The spectrum of the sampling function is a series
of impulses at the harmonics of the sampling frequency (2W), and the convolution leads to a replication
of the signal spectrum around each of these harmonics. If the signal bandwidth exceeds the harmonic
spacing 2W, then the harmonics will overlap, and aliasing will occur.

From this we infer that if spatial data are available at a spacing of D meters, then the maximum
bandwidth in the defined signal will be W = 1/(2D) cycles per meter, corresponding to k = 2 W radians
per meter.

Combining these two items, we wish to infer a value of    that will damp components of U with frequencies
above W.  However, the Laplacian filter does not have a sharp cutoff at any frequency, so we have some
latitude in assigning .

Let us find  such that the frequency component at frequency W is attenuated by a factor N, ie.    
1/(1 +  4 2W2)   =   1/N,   with   1/(2W) = D.

Then     = (N-1)/(4 2W2)  =  D2(N-1)/ 2.

Arbitrarily choosing a frequency attenuation factor of N=2, we get  =  D2 / 2.
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Smoothing Steady-state Solutions

In the solution of partial differential equation systems, it sometimes happens that auxiliary equations must be
solved simultaneously with the PDE, and that these auxiliary equations have no spatial coupling, being point
relations or other zero-order equations.  In these cases, the finite element method works poorly, because
the discretization is based on integrals over space, and oscillatory solutions can satisfy the integrals.  In such
systems, we are justified in adding to the equation a diffusion operator to impose a smoothing on the
solution.  If we have, for example,

U = F(..)
then we can replace this equation with  

U - (D2/ 2) 2 U  =  F(..),   with D the approximate spatial wavelength of acceptable oscillations.

Damping Time-dependent Systems

A similar analysis can be applied to time-dependent partial differential equations.

Suppose we have a system   v/ t = f, in which the discretized equations support high frequency solutions
which destabilize the numerical solution process.  We wish to damp high frequency components.

Assume that v can be expanded as      v(x,t) =        V
k
 exp(i k (x-ct)),   where c is a propagation

velocity.

Let the smoothed function be     u(x,t) =       U
k
 exp(i k (x-ct)),

then the Laplacian of u is          2 u  =   (- k2 ) U
k
 exp(i k (x-ct)), 

while the time derivative is     u/ t =  (- ikc ) U
k
 exp(i k (x-ct)).

We define u from the relation    u/ t  -   2 u   =   v/ t

then          U
k
 exp(ik(x-ct)) ( -ikc +  k2)     =      V

k
 exp(i k (x-ct))(-ikc).

   
Component by component,   U

k
  = V

k
 (-ikc)/(  k2 - ikc)

Or,  |U
k
| =  |V

k
 |/sqrt(1 + 2 k2/c2)

so that the kth frequency component is attenuated by a factor of   
 

1/sqrt(1 + 2 k2/c2).

Again defining W = 1/(2D) and seeking an attenuation factor of 2, we get

2 = (N2-1)c2/(4 2W2)  =  D2(N2-1)c2/ 2  =  3D2c2/ 2,

or approximately,    =  2Dc/ .

We can now solve the equation     u/ t -  2 u = f,    with the expectation that u will be a frequency-
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filtered representation of v.

Steady-state limits of Time-dependent Equations

In some cases,  a steady-state limit of a known time-dependent system is desired, but while the time-
dependent equation itself is stable, the steady-state equation which results from merely setting the time
derivative to zero is not.  In these cases, we can replace the time derivative by -  2 u, again with the
expectation that u will be a frequency-filtered representation of v.

4.10 3D Mesh Generation

FlexPDE version 4.0 introduced an entirely new mesh generator for 3D problems.  With support for 
LIMITED REGIONS, it offers users much more flexibility in the creation of 3D domains.  It is also a much
more complex computation, and is sometimes in need of some user assistance to successfully create a
mesh for complex 3D problems.

The greatest challenge faced by the 3D mesh generator is the transition across wide ranges of feature
sizes.  Any help the user can give in easing this transition will be amply rewarded in a decreased
incidence of mesh generation failure.  We at PDE Solutions are also engaged in improving the intelligence
of the mesh generator to also assist in reaching this goal.

DOMAIN REVIEW
The first facility that users should be aware of is the "Domain" item on the main menu bar.  Selecting this
item instead of "Run" will give the user a step-by-step review of the mesh generation process.  This
review reflects the order of operations performed by the mesh generator.

The first sequence of displays shows the domain boundaries in the surfaces and layers of the extrusion.
 The first plot shows the domain boundaries present in the bottom surface; the next shows the
boundaries which extend through the first layer; then the boundaries present in the second extrusion
surface; and so on through entire domain, and ending with the top surface.  You should examine each
of these displays to determine that the structure is as you intended.  Errors at this point can create
serious trouble later.

After the individual surfaces and layers are displayed, a composite 3D display is presented of the total
domain, as represented by boundaries. This plot can be rotated to examine all aspects of the domain. 

The next sequence of displays shows the triangular surface meshes created for the extrusion surfaces. 
These meshes are created and displayed in 3D space, and can be rotated to be sure there are no
anomalies in the construction.  Following initial surface mesh creation, the meshes are refined to create
sufficient resolution of surface curvature.  They are then analyzed for proximity, and coarser meshes
are refined due to influence from nearby dense meshes.  

The next sequence of displays shows the creation of the tetrahedral 3D meshes for each of the regions
and layers of the domain.  Before a block is filled, the bounding surface is shown; after filling, the filled
block is displayed (it looks the same).  The sequence presents first the region blocks for layer 1,
followed by a unified mesh of layer 1.  This pattern is repeated through the layers of the domain, until
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finally a unified 3D mesh is displayed.  At this point, the mesh is composed of linear (straight-sided)
tetrahedra.

Once the domain is filled with linear tetrahedra, the additional nodes needed for quadratic or cubic
interpolation.  Cells are also bent at this point to conform to curved boundaries.  This curving can
create troubles in thin curved shells.  The 3D mesh generator is not yet smart enough to compute shell
thickness and curvature and automatically adapt the size.  You may have to do it manually with the 
MESH_SPACING command.  Sqrt(Radius*thickness) is a good rule of thumb.

This completes the mesh generation process, and solution should proceed promptly.

DEALING WITH FAILURE
The most common cause of mesh generation failure is the inability to make the transition from very small
to very large feature sizes without tangling.  If the mesh generation fails, the user has several options, all
involving some kind of manual mesh density control.  

The simplest way of dealing with mesh generation failure is simply to increase the NGRID selector. 
This causes the entire mesh to be more dense, and also more regular.  In some cases, it may create a
mesh which is simply too large for effective computing with the available computer resources.

A second approach is to use the MESH_SPACING control to increase the overall density in a
troublesome region, layer or surface.  Remember that MESH_SPACING can be specified as arbitrary
functions of spatial coordinate, allowing dense meshes in specific locales. 

The ASPECT control can be used to increase the cell sizes in thin components, thereby reducing the
range of sizes that must be dealt with in surrounding media.  Increasing ASPECT can create elongated
cells in surrounding media, so you may need to balance its use by explicitly controlling 
MESH_SPACING in these regions.

You can localize the problem areas by building your domain one layer at a time.  Build the first layer
and examine the regional meshes for compliance with your expectations.  Then add the next layer. 
You might at this point want to hide the first layer, so you can deal with the second layer as an
independent item.

4.11 Interpreting Error Estimates

FlexPDE uses estimates of the modeling error to control mesh refinement and timestep size.  This note
describes the methods used and the interpretation of the reports.

Spatial Error

The Galerkin Finite Element method uses integrals of the PDE's to form the discretized equations at the
mesh nodes.  

Each nodal equation requires that the weighted integral of the associated equation over the mesh cells
surrounding the node be satisfied within a convergence tolerance.  In FlexPDE this tolerance is taken to
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be a relative error of (ERRLIM * OVERSHOOT) in the norm of the solution vector.

In a regular hexagonal 2D mesh, for example, the Galerkin method requires that each hexagonal set of
six triangular mesh cells must produce a weighted integral residual of zero.

This method at no point imposes any conditions on the integral over a single mesh cell, and conceivably
on could have cancelling errors in adjacent cells.

In FlexPDE, we choose to use the individual cell integrals as a measure of the mesh quality.  If the
aggregate (eg 6-cell) integral is correct but the individual cells show large error, then the mesh must be
refined.

The fundamental system which is solved by FlexPDE can be indicated as R=G(U)=0, where R is the
residual and G(U) is the Galerkin integral of the PDE for variable U.  If the residual over an individual cell
is R, we can write J*dU=R, where J is the Jacobian matrix of derivatives of the Galerkin integral with
respect to the nodal values, and dU is the error in U which produces the residual R.

J is of course the coupling matrix which is solved to produce the solution U. We don't want to completely
repeat the solution process just to get an error estimate, so we use various simply-computed
approximations J' of J, to produce the error estimate dU=Inv(J')*R.  

The "RMS Error" reported by FlexPDE in the Status Panel is just the root-mean-square average of dU/

range(U) over the cells of the problem, while the reported "MAX Error" is the largest error dU/

range(U) seen in any cell.

Mesh cells for which dU/range(U) > ERRLIM are split in the mesh refinement pass.

Notice that the error measure is not a guarantee that the computed solution is "accurate" to within the
stated error, that is, that the computed solution differs from the "true" solution by no more than the stated
error.  The error estimate is a local measure of how much variation of the solution would produce the
computed error in the cell integral.  Deviations from the "true" solution might accumulate over the domain
of the problem, or they might cancel in neighboring regions.

Temporal Error

In time dependent problems, an estimate must also be formed of the error in integrating the equations in
time.

FlexPDE integrates equations in time using a second-order implicit Backward Difference Formula (Gear
method).

In order to measure temporal error, FlexPDE stores an additional timestep of values previous to the
three points of the quadratic solution, and fits a cubic in time to the sequence at each node.  The size of
the cubic term implies the error in the quadratic solution, and is used to either increase or decrease the
timestep in order to keep the RMS temporal error within the range specified by ERRLIM.
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The three-point integration method requires an independent method to create data for the initial interval. 
FlexPDE uses a comparison of one-step and two-step trapezoidal rule integration to adapt the initial
timestep to a range that produces acceptable error.

FlexPDE Error Controls

There are several SELECT controls that can be used to alter the behavior of FlexPDE in regard to error
measures.

The basic control is ERRLIM, which specifies the desired relative error in the solution variables, and
controls both spatial and temporal measures.  Smaller ERRLIM causes more mesh subdivision and smaller
timesteps.  Larger ERRLIM allows cruder meshes and, in principle, larger timesteps.  However, a large
ERRLIM can allow oscillations to develop, ultimately causing severe timestep cuts and a slower overall
execution.  It is rarely advisable to use an ERRLIM value larger than the default 0.002.

XERRLIM and TERRLIM are analogous to ERRLIM, but refer specifically to the spatial and temporal
controls, allowing separate control of the two processes. If either of these controls is absent, it defaults to
the value of ERRLIM.

4.12 Coordinate Scaling

FlexPDE treats all spatial coordinates on an equal footing, and tries to create meshes that are balanced in
size in all coordinates.
Sometimes, though, there are problems in which one dimension is expected to have much less variation
that the others, and fully meshing the domain with equilateral cells creates an enormous and expensive
mesh.  In these cases, it would be advantageous to scale the long dimension to bring the coordinate sizes
into balance.  Similarly, in semiconductor problems, for example, the structure is extremely thin, and
would benefit from an expansion of the Z thickness coordinate.  

It is possible that FlexPDE will eventually implement automatic coordinate scaling, but in the meantime,
users can implement it manually.

Consider as an example the heat equation 

div(k*grad(T))+Q = C*dt(T)

with k the conductivity, Q a source and C the heat capacity.

Define a coordinate transformation, 

z = s*w

where w is the physical coordinate, z is the FlexPDE coordinate, and s is a scaling factor.
The expanded physical equation is then
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dx(k*dx(T)) + dy(k*dy(T)) + dw(k*dw(T)) + Q = C*dt(T)

We can transform the heat equation using this transformation and observing that

dw(f) = (¶f/¶w) = (¶f/¶z)*(¶z/¶w) = s*dz(f)

The result is 

(1) dx(k*dx(T)) + dy(k*dy(T)) + s*dz(k*s*dz(T)) + Q = C*dt(T)

Flux Conservation

In forming the finite element model for this equation, FlexPDE assumes continuity of the surface integrals
generated by integration-by-parts of the second-order terms (equivalent in this case to the Divergence
Theorem). This is the Natural Boundary Condition for the equation, as discussed elsewhere in the
FlexPDE documentation.

The z-directed flux terms in the transformed equation therefore assume that s^2*k*dz(T) is continuous
across cell interfaces.  This is equivalent to flux conservation in the physical system as long as s is
constant throughout the domain.

In order to guarantee conservation of flux in the presence of differing scale factors in layers, we must
have the following equality across an interface between materials 1 and 2:

k1*dw(T)1 = k2*dw(T)2

or
k1*s1*dz(T)1 = k2*s2*dz(T)2

This will be satisfied if we divide our transformed equation by s :

(2) dx(k*dx(T))/s + dy(k*dy(T))/s + dz(k*s*dz(T)) + Q/s = C*dt(T)/s

where s is defined as s1 in material 1 and s2 in material 2.

Un-Scaling Fluxes

Fluxes appropriate to the unscaled system can be recovered by the same modifications as those made in
the PDE:

Fluxes in the scaled direction must be multiplied by the scale factor. Integrals of these fluxes need not
be further modified, as they are integrated over surfaces in true coordinates.
Fluxes in the unscaled directions are correctly computed in true coordinates, but when integrated over
surfaces, they must be divided by the scale factor to account for the scaled area.

Flux integrals then appear in the same form as in the scaled PDE:
Total_Real_Flux = Surf_Integral(NORMAL(-k*dx(T)/s, -k*dy(T)/s, -k*dz(T)*s)
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Natural Boundary Conditions

The natural boundary condition defines the argument of the outermost derivative operator (or the
argument of the divergence).  In the conservative equation (2):

Components in the unscaled direction have been divided by s. Therefore the natural boundary
conditions for these components must be divided by s.  (e.g. NATURAL(T) = x_flux/s    on x-normal
surfaces.)
In the scaled direction, the value defined by the natural is k*s*dz(T) which is in fact k*dw(T), the flux
in the physical coordinate system. The natural in the scaled direction is therefore unmodified by the
scaling.   (e.g. NATURAL(T) = z_flux on z-normal surfaces.)

Examples

"Samples | Usage | Coordinate_Scaling | Scaled_Z.pde"  shows the implementation of this technique.  
"Samples | Usage | Coordinate_Scaling | UnScaled_Z.pde"  provides an unscaled reference for
comparison.

4.13 Making Movies

Since version 5, FlexPDE has had a simplified the process of creating movies from problem data.

1) Replaying a movie from a stored .PG7 file:  

Open a .PG7 file from the "View | View File" menu.

You can use the "View | Frame Delay" menu item to set the delay between frames (default 500 ms).

Double-click to maximize a selected frame in the thumbnail display

Click "View | Movie" to replay all the instances of the selected frame.

Click "View | Restart" whenever you wish to begin a new replay, to move the reader to the beginning
of the file.

2) Exporting a Movie from a stored .PG7 file to graphic files on disk:  

Open a .PG7 file from the "View | View File" menu.

Double-click a thumbnail to maximize a selected frame.

Click "View | Export Movie". This will bring up a selection dialog to set the export parameters.

The selected frame will be scanned as for Movie, and all files will be written according to the selected
parameters.
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Use JASC AnimationShop to assemble the individual files into a GIF animation.

Use GIF2SWF or other conversion program to create Flash animations.

See Viewing Saved Graphic Files  for more information.

4.14 Converting from Version 4 to Version 5

Several items have been changed in version 5 that may require some attention for users of FlexPDE
version 4.  In general, we have tried to make the transition as simple as possible.

ERROR ESTIMATION:  The algorithms used for error estimation have been changed in version 5.  In
most cases, the new measures are more pessimistic that those used in version 4, resulting in some
cases in more intense mesh refinement and longer running.  Nevertheless, we feel that the new
algorithms provide an error measure closer to the actual disparity between the numerical and analytical
solutions in test problems.  In order to ameliorate the impact of this change, we have relaxed the
default ERRLIM to 0.002 and allowed individual cells to exceed the ERRLIM specification, as long as
a weighted average of errors is below ERRLIM.  You may wish to adjust your ERRLIM
specifications to reflect this new behavior.

SMOOTHING INITIAL VALUES:  Version 5 applies a smoothing procedure to initial conditions in
time-dependent problems, to ameliorate the harsh behaviour caused by discontinuous initial conditions.
 In most cases, you will experience a much quicker startup, with no significant difference in solution. 
The smoothing operation is scaled to cell sizes, so you can recover accurate resolution of initial
transients by merely specifying dense meshing at important initial discontinuities.  The smoothing
operation can be suppressed by SELECT SMOOTHINIT=OFF.

CLOSE:  The reserved word FINISH used in previous versions has been changed to CLOSE, to
more accurately reflect its function.  You will be warned once, after which FINISH will be accepted as
in version 4.  Except in cases where you want to run a problem on both versions, we suggest
converting to the new format.

GLOBAL:  The designation SCALAR VARIABLES used in version 4 has been changed to
GLOBAL VARIABLES, to more accurately reflect its function.  You will be warned once, after
which SCALAR VARIABLES will be accepted as in version 4.  Except in cases where you want to
run a problem on both versions, we suggest converting to the new format.

4.15 Converting from Version 5 to Version 6

FlexPDE version 6 is almost totally backward-compatible with version 5.

In order to support the new features of version 6, however, we have had to make a few syntactic
changes:
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Parentheses
Parens "( )" are no longer interchangeable with square brackets "[ ]".  In particular, 

Square brackets can no longer be used in expression grouping.  They are reserved for array and
matrix indexing.

Parentheses can no longer be used for array indexing.  Only square brackets will serve in this capacity.

Exponentiation
Double-asterisk "**" can no longer be used as an exponentiation operator.  Double-asterisk is now the
matrix multiply operator.  Use the caret "̂ " for exponentiation.

Solution Controls
Error estimation algorithms are somewhat different, and may result in somewhat shorter timesteps and
longer running for time-dependent problems.  These changes were made in the interest of more truthful
reports of error.

The selector NRMATRIX has been changed to an ON/OFF selector REMATRIX which selects
recomputation of the Jacobian matrix on every Newton iteration.  The default is OFF.  Even without
this selector, FlexPDE will recompute the Jacobian matrix whenever the variable changes are greater
than an internal threshold.

Nonlinear time-dependent problems default to one Newton step per timestep, with timestep controls
to cut the timestep if convergence is not readily achieved.  This is usually a more efficient scheme than
other alternatives.  The Selector NEWTON=number is available for specifying a more strenuous
convergence policy.  The Selector PREFER_STABILITY can be used to allow up to 5 Newton
iterations per timestep, with full re-computation of the Jacobian matrix on each iteration.  This is the
most expensive option, but should provide the most stable operation.

Reserved Names
The names REAL and IMAG can no longer be used as user-defined values.  They are now built-in
component selectors for Complex data types.  See the list of Reserved Words  for other changes.

4.16 Converting from Version 6 to Version 7

FlexPDE version 7 is almost totally backward-compatible with version 6.
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However, we have made a few changes:

FEM Basis
Version 7 now uses a hierarchical basis system.  Higher order components of the interpolation are now
the coefficients of higher order terms in the polynomial approximation, not additional nodal values.  As
a result, the “Nodes” report in the Status panel is not directly comparable to the report in version 6. 
The new "DOF" (degrees of freedom) report in version 7 is directly comparable to the version 6
"Nodes" report.

Cubic basis is now the default.  To replicate the behavior of version 6, you must either specify
“quadratic” in the Select section, or use the preference panel to default to order=2.  The cubic model
will run somewhat longer than a quadratic model on the same mesh.  However, the cubic model can
return accurate results on a smaller mesh than the quadratic model.  Actual results will be problem
dependent.

File Consolidation
Version 7 by default creates a subdirectory (<problem name>_output) for each script that is run, and
into which all the associated output files are written (this default can be changed in the Preferences
control ).  Scripts that TRANSFER files from other runs need to provide the proper path to find the
appropriate import files.

Solution Controls
Error estimation algorithms are somewhat different, and may result in different behavior than with
previous versions.  Our goal is to make the behavior consistent across versions, but this is not always
possible for all problems.

Reserved Names
In previous versions, the names LAMBDA and MODE were activated only in eigenvalue problems. 
In version 7, they are always reserved and can no longer be used as user-defined values.  See the list
of Reserved Words  for other changes.

29

155



Sample Problems

Part

V



Sample Problems :  360

5 Sample Problems

The standard distribution of FlexPDE includes over one hundred example scripts, showing the
application of FlexPDE to many areas of study. These sample problems have been prepared by PDE
Solutions staff and show various applications of FlexPDE, or illustrate features or techniques.

Many of these problems contain commentary describing the derivation of the model.  All are keyed for
execution in Professional mode by the Lite version of FlexPDE. These scripts are installed by the
standard installation procedure.  Modifying a copy of an existing descriptor is frequently the most
efficient way to start building a descriptor for a new problem.  On Windows, sample scripts are installed
in the "FlexPDE7 user" folder in the user's home folder as well as in the FlexPDE installation folder. The
copy in the installation folder can be used as master copies.

Also included in the distribution, in the "Backstrom_Books" folder, are many samples from books written
by Prof. Gunnar Backstrom showing the use of FlexPDE in a variety of fields.  See Backstrom's books
online at http://www.amazon.com/Gunnar-Backstrom/e/B003B80CE2/.

5.1 Applications

5.1.1 Chemistry

5.1.1.1 chem burn

{  CHEMBURN.PDE 
 
   This problem models an extremely nonlinear chemical reaction in an open tube 
   reactor with a gas flowing through it. The problem illustrates the use of 
   FlexPDE to solve mixed boundary value - initial value problems and involves 
   the calculation of an extremely nonlinear chemical reaction. 
 
   While the solutions sought are the 3D steady state solutions, the problems 
   are mixed boundary value / initial value problems with vastly different 
   phenomena dominating in the radial and axial direction. 
 
   The equations model a cross-section of the reactor which flows with the 
   gas down the tube.  There is therefore a one to one relation between the 
   time variable used in the equations and distance down the tube given by 
   z = v*t. 
 
   The chemical reaction has a reaction rate which is exponential in 
   temperature, and shows an explosive reaction completion, once an 
   'ignition' temperature is reached.  The problem variable 'C' represents 
   the fractional conversion (with 1 representing reaction completion). 
   The reaction rate 'RC' is given by 
 
        RC(C,Temp) = (1-C)*exp[gamma*(1-1/Temp)] 
 
   where the parameter GAMMA is related to the activation energy of the 
   reaction. 
 
   The gas is initially at a temperature of 1, in our normalized units, with 
   convective cooling at the tube surface coupled to a cooling bath at a 
   temperature of 0.92. 
 
   The problem is cylindrically symmetric about the tube axis. Because of 
   the reaction the axis of the tube will remain hotter than the periphery, 
   and eventually the reaction will ignite on the tube axis, sending 
   completion and temperature fronts propagating out toward the wall. For 
   small GAMMA, these fronts are gentle, but for GAMMA greater than about 
   twelve the fronts becomes very steep and completion is reached rapidly 

http://www.amazon.com/Gunnar-Backstrom/e/B003B80CE2/
http://www.amazon.com/Gunnar-Backstrom/e/B003B80CE2/
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   and sharply creating very rapid transition from a very high reaction rate 
   reaction rate to a zero reaction rate.  The adaptive gridding and 
   adaptive evolution 'time' stepping capabilities of FlexPDE come into 
   play in this extreme nonlinear and process nonisotropic problem, 
   allowing a wave of dense gridding in time to accompany the completion 
   and temperature fronts across the tube. 
 
   In this problem we introduce a heating strip on the two vertical 
   faces of the tube, for a width of ten degrees of arc.  These strips are 
   held at a temperature of 1.2, not much above the initial gas temperature. 
   The initial timesteps are held small while the abrupt temperature gradient 
   at the heating strips diffuses into the gas. 
 
   As the cross-section under study moves down the reactor, the heat generated 
   by the reaction combines with the heat diffusing in from the strip heater to cause 
   ignition at a point on the x-axis and cause the completion front and temperature 
   front to progate from this point across the cross-section. 
 
   We model only a quarter of the tube, with mirror planes on the X- and Y-axes. 
   The calculation models a cross-section of the tube, and this cross-section 
   flows with the gas down the tube. 
 
   The "cycle=10" plots allow us to see the flame-front propagating across 
   the volume, which happens very quickly, and would not be seen in a 
   time-interval sampling. 
 
   While the magnitudes of the numerical values used for the various 
   constants including gamma are representative of those found with real 
   reactions and real open tube reactors they are not meant to represent 
   a particular reaction or reactor. 
 
 }  
  
title  
  'Open Tube Chemical Reactor with Strip Heater'  
  
select  
   painted      { make color-filled contour plots }  
  
variables  
  Temp(threshold=0.1)  
  C(threshold=0.1)  
  
definitions  
  Lz = 1  
  r1=1  
  heat=0  
  gamma = 16  
  beta = 0.2  
  betap = 0.3  
  BI = 1  
  T0 = 1  
  TW = 0.92  
  { the very nasty reaction rate: } 
  RC = (1-C)*exp(gamma-gamma/Temp)   
  xev=0.96      { some plot points }  
  yev=0.25  
  
initial values  
  Temp=T0  
  C=0  

equations  
  Temp:     div(grad(Temp)) + heat + betap*RC = dt(Temp)  
  C:        div(grad(C)) + beta*RC = dt(C)  
  
boundaries
  region 1
    start (0,0)

    { a mirror plane on X-axis }
    natural(Temp) = 0
    natural(C) = 0
    line to (r1,0)

    { "Strip Heater" at fixed temperature }



Sample Problems : Applications 362

    { ramp the boundary temp in time, because  discontinuity is costly to diffuse }
    value(Temp)=T0 + 0.2*uramp(t,t-0.05)

    natural(C)=0                { no mass flow on strip heater }
    arc(center=0,0) angle 5

    { convective cooling and no mass flow on outer arc }
    natural(Temp)=BI*(TW-Temp)
    natural(C)=0
    arc(center=0,0) angle 85

    { a mirror plane on Y-axis }
    natural(Temp) = 0
    natural(C) = 0
    line to (0,0) to close

time 0 to 1

plots
  for cycle=10                  { watch the fast events by cycle }
    grid(x,y)
    contour(Temp) fixed range (0.9,2.5)
    contour(C) as "Completion" fixed range(0,1.1)

  for t= 0.1 by 0.05 to 0.2 by 0.01 to 0.3 0.5 endtime   { show some surfaces during burn
}
    contour(Temp) fixed range (0.9,2.5)
    surface(Temp) fixed range (0.9,2.5)
    contour(C) as "Completion" fixed range(0,1.1)
    surface(C) as "Completion" fixed range(0,1.1)
  
histories  
  history(Temp) at (0,0) (xev/2,yev/2) (xev,yev) (yev/2,xev/2) (yev,xev)  
  history(C) at (0,0)  (xev/2,yev/2) (xev,yev) (yev/2,xev/2) (yev,xev) as "Completion"  
  
end  
  

5.1.1.2 m elting

{  MELTING.PDE 
 
  This problem shows the application of FlexPDE to the melting of metal. 
 
  We choose as our system variables the temperature, "temp", and the 
  fraction of material which is solid at any point, "solid". 
 
  The temperature is given by the heat equation, 
 
        rho*cp*dt(temp) - div(lambda*grad(temp)) = Source 
 
  where cp is the heat capacity, rho the density and lambda the conductivity. 
 
  The latent heat, Qm, is an amount of heat released as "Solid" changes from 
  zero to one.  We have Qm = integral[0,1]((dH/dSolid)*dSolid), or assuming 
  dH/dSolid is constant, dH/dSolid = Qm. 
  Then heat source from freezing is 
 
        dH/dt = (dH/dSolid)*(dSolid/dt) = Qm*dt(Solid). 
 
  We assume that the solid fraction can be represented by a linear ramp from  
  one down to zero as the temperature passes from (Tm-T0/2) to (Tm+T0/2). 
 
        solid = 1                   when  temp  <  Tm-T0 
                (Tm+T0/2-temp)/T0   when  Tm-T0 <= temp <= Tm+T0 
                0                   when  temp  >  Tm+T0 
 
  where Tm is the melting temperature, and T0 is a temperature range over 
  which the melting transition occurs.  Since there are no spatial derivatives 
  in this equation, we introduce a diffusion term with small coefficient to act 
  as a noise filter. 
 
  The particular problem addressed here is a disk of cold solid material 
  immersed in a bath of liquid.  The initial temperatures are such that material 
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  first freezes onto the disk, but after  equilibrium is reached all the material 
  is liquid.    The outer boundary is insulated. 
 
  Since the initial condition is a discontinuous distribution, we use a separate 
  REGION  to define the cold initial disk, so that the grid lines will follow the 
  shape.  We also add a  FEATURE  bounding the disk  to help the gridder 
  define the abrupt transition.  SELECT  SMOOTHINIT  helps minimize 
  interpolator overshoots. 
 
}  
  
TITLE  
  'Melting Metal'  
  
COORDINATES  
  ycylinder('r','z')  
  
SELECT  
  smoothinit  
  threads=2  
  
VARIABLES  
  temp(threshold=1)  
  solid(threshold=0.01)  
  
DEFINITIONS  
  
  Qm= 225000        { latent heat }  
  Tm=1850           { Melting temperature }  
  T0= 20            { Melting interval +- T0 }  
  temp_liq=2000     { initial liquid temperature }  
  temp_sol=400      { initial solid temperature }  
  Tinit  
  
  R_inf = 0.7       { Domain Radius m}  
  
  { plate }  
  d=0.05  
  dd = d/5          { a defining layer around discontinuity }  
  R_Plate=0.15  
  
  
  K = 30+4.5e-5*(temp-1350)^2  { Conductivity }  
  rho=2500                     { Density kg/m3 }  
  cp = 700                     { heat capacity }  
  
INITIAL VALUES  
  temp=Tinit  
  solid =  0.5*erfc((tinit-Tm)/T0)  
  
EQUATIONS  
  temp:  rho*cp*dt(temp) - div(K*grad(temp)) = Qm*dt(solid)  
  solid: solid - 1e-6*div(grad(solid)) = RAMP((temp-Tm), 1, 0, T0)     
  
BOUNDARIES  
  
  region 'Outer'  
     Tinit = temp_liq  
     start 'outer' (0,-R_inf)  
       value(temp)= temp_liq    arc(center=0,0) angle 180  
       natural(temp)=0          line to close  
  
  region 'Plate'  
     Tinit = temp_sol
     start(0,0)  
       mesh_spacing=dd  
       line to (R_Plate,0) to (R_Plate,d) to (0,d) to close  
  
TIME  0 by 1e-5 to 600  
  
MONITORS  
 for cycle=10  
   grid(r,z) zoom (0,-0.1,0.25,0.25)  
   elevation(temp)  from(0.1,-0.1) to (0.1,0.15) range=(0,2000)  
   elevation(solid) from(0.1,-0.1) to (0.1,0.15) range=(0,1)  
  
PLOTS  

229

233

182 183
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   for t= 0 1e-4 1e-3 1e-2 0.1 1 10 by 10 to 100 by 100 to 300 by 300 to endtime  
  
   contour(temp)    range=(0,2000)  
   contour(temp)    zoom (0,-0.2,0.45,0.45) range=(0,2000)  
   elevation(temp)  from(0.1,-0.1) to (0.1,0.15) range=(0,2000)  
   contour(solid)   range=(0,1)  
   contour(solid)   zoom (0,-0.2,0.45,0.45) range=(0,1)  
   surface(solid)   zoom (0,-0.2,0.45,0.45) range=(0,1) viewpoint(1,-1,30)  
   elevation(solid) from(0.1,-0.1) to (0.1,0.15) range=(0,1)  
  
HISTORIES  
  
   history(temp)  at (0.051,d/2) (0.075,d/2) (R_plate,d/2)  
   history(temp)  at (0.051,d)   (0.075,d)   (R_plate,d)  
   history(solid) at (0.051,d/2) (0.075,d/2) (R_plate,d/2)  
   history(solid) at (0.051,d)   (0.075,d)   (R_plate,d)  
   history(integral(cp*temp+Qm*(1-solid))) as "Total Energy"  
  
  
END  
  

5.1.1.3 reaction

{   REACTION.PDE  
  
    This example shows the application of FlexPDE to the solution 
    of reaction-diffusion problems. 
  
    We describe three chemical components, A,B and C, which react and 
    diffuse, and a temperature, which is affected by the reactions. 
  
       I) A combines with B to form C, liberating heat. 
      II) C decomposes to A and B, absorbing heat. The decomposition rate 
          is temperature dependent. 
     III) A, B, C and Temperature diffuse with differing diffusion constants. 
  
    The boundary of the vessel is held cold, and heat is applied 
    to a circular exclusion patch near the center, intended to model an 
    immersion heater. 
  
    A, B and C cannot diffuse out the boundary. 
  
    The complete equations including the Arrhenius terms that describe 
    the system are: 
  
     div(Kt*grad(Temp)) + heat + K1*exp(-H1/(Temp+273))*eabs*A*B 
          - K2*exp(-H2/(Temp+273))*eabs*C*(Temp+273) = 0 
     div(Ka*grad(A)) - K1*exp(-H1/(Temp+273))*A*B 
          + K2*exp(-H2/(Temp+273))*C*(Temp+273) = 0 
     div(Kb*grad(B)) - K1*exp(-H1/(Temp+273))*A*B 
          + K2*exp(-H2/(Temp+273))*C*(Temp+273) = 0 
     div(Kc*grad(C)) + K1*exp(-H1/(Temp+273))*A*B 
          - K2*exp(-H2/(Temp+273))*C*(Temp+273) = 0 
  
    where Kt,Ka,Kb and Kc are the diffusion constants, EABS is the heat 
    liberated when A and B combine, and HEAT is any internal heat source. 
  
    Notice that the system is non-linear, as it contains terms involving 
    A*B and C*Temp. 
  
    There are an infinite number of solutions to these equations, differing 
    only in the total particle count.  In reality, since particles are 
    conserved, the final solution is uniquely determined by the initial 
    conditions.  But this fact is not embodied in the steady-state equations. 
    The only way to impose this condition on the steady-state system 
    is through an integral constraint equation, which describes the 
    conservation of total particle number. 
  
}  
   
  title "Chemical Beaker"  
   
  variables         { declare the system variables }  
    temp,a,b,c  
   
  definitions  
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    kt = 0.001     { define the diffusivities }  
    ka = 0.005  
    kb = 0.02  
    kc = 0.01  
   
    heat = 0       { define the volume heat source }  
    eabs = 0.0025  { define the reaction energy }  
   
    K1 = 1         { Reaction rate coef for  A + B -> C }  
    H1 = 10        { Activation energy/K for A + B -> C }  
    K2 = 0.0025    { Reaction rate coef for  C -> A + B }  
    H2 = 200       { Activation energy/K for C -> A + B }  
   
    a0 = 0.1       { define the initial distribution }  
    b0 = 0.1       { (we will need this for the constraint) }  
    c0 = 0.01  
   
    tabs =  Temp+273  
    tfac1 = K1*exp(-H1/tabs)  
    tfac2 = K2*exp(-H2/tabs)  
   
  initial values    { Initialize the variables }  
    temp = 100*(1-x^2-y^2)  
    a = a0  
    b = b0  
    c = c0  
   
  equations         { define the equations }  
    temp:  div(kt*grad(Temp)) + heat + tfac1*eabs*a*b - tfac2*eabs*c*tabs = 0  
    a:     div(ka*grad(a)) - tfac1*a*b + tfac2*c*tabs = 0  
    b:     div(kb*grad(b)) - tfac1*a*b + tfac2*c*tabs = 0  
    c:     div(kc*grad(c)) + tfac1*a*b - tfac2*c*tabs = 0  
   
  constraints       { demand particle conservation }  
    integral(a+b+2*c) = integral(a0+b0+2*c0)  
   
  boundaries  
    Region 1  
      { the cold outer boundary - impermeable to the chemicals }
      start(0,-1)  
        value(temp)= 0      
        natural(a) = 0      
        natural(b) = 0  
        natural(c) = 0  
      arc to (1,0) to (0,1) to (-1,0) to close  
   
      { the hot inner boundary - also impermeable to the chemicals }     
       start(-0.2,0)  
        value(temp)= 100    
         natural(a) = 0    
         natural(b) = 0  
         natural(c) = 0  
      arc(center=-0.2,-0.2) angle 360  
  
  monitors  
     contour(temp)  
     contour(a)  
     contour(b)  
     contour(c)  
   
  plots  
     contour(temp)  
     contour(a)  
     contour(b)  
     contour(c)  
     surface(temp) as "temperature"  
     surface(a) as "A-concentration"  
     surface(b) as "B-concentration"  
     surface(c) as "C-concentration"  
   
  end  
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5.1.2 Control

5.1.2.1 control_steady

{  CONTROL_STEADY.PDE  
  
    This example shows the use of a GLOBAL VARIABLE  in a control application. 
    It is analogous to the example USAGE/OPTIMIZATION/POWER_CONTROL.PDE .
    We wish to find the required power input to a heater, such that the resulting 
    average temperature over the domain is a specified value. 
  
    Notice that the equation nominally defining power does not explicitly reference 
    the power variable, but is coupled through the heat term in the temperature 
    equation.  
}  
   
TITLE "steady-state Control test"  
   
VARIABLES  
  temp      { The temperature field }  
   
GLOBAL VARIABLES  
  power     { a single value for input power }  
   
DEFINITIONS  
  setpoint=700      { the desired average temperature }  
  skintemp=325      { fixed outer boundary temperature }  
  k=1               { conductivity }  
  heat=0            { the heat function for the temperature. 
                      it is non-zero only in the heater region }  
   
  tcontrol=integral(temp)/integral(1)   { the control function, average temperature }  
{  tcontrol=val(temp,0,0)     -- an alternative control method, unused here }  
    
INITIAL VALUES  
  temp = setpoint  
  power= 100        { initial guess for power  }  
   
EQUATIONS  
  temp:   div(-k*grad(temp))-heat = 0   { diffusion of temperature field }  
  power:  tcontrol = setpoint           { single equation defining power }  
   
BOUNDARIES  
   
  REGION 'Insulation'  
    k=0.1  
    heat=0  
    start(-4,-4)  
      value(temp)=skintemp  
    line to (4,-4) to (4,4) to (-4,4) to close  
   
  REGION 'Heater'  
    k=50  
    heat=power  
    start(-1,-1) line to (1,-1) to (1,1) to (-1,1) to close  
   
MONITORS  
  contour(temp)  
    report power  
    report tcontrol  
   
PLOTS
  contour(temp)
    report power
    report power*integral(1,'Heater') as "Total Power"
    report tcontrol as "Average Temp"
  elevation(temp) from(-4,0)  to (4,0)
  elevation(temp) from(-4,-4) to (4,4)
  summary 
      report power*integral(1,'heater') as "Total Power needed to establish an average
temperature of 700 "
   
END  
  

199
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5.1.2.2 control_transient

{  CONTROL_TRANSIENT.PDE   
  
    This example shows the use of a GLOBAL VARIABLE  in a control application. 
    We wish to find the required power input to a heater, such that the resulting 
    average temperature over the domain is a specified value. 
  
    The temperature on the outer surface is prescribed, with a time-sinusoidal  
    oscillation.   
 
    The input power is driven by a time-relaxation equation.  The coefficient 
    of the right hand side is the reciprocal of the response time of the power. 
  
    This problem is a modification of CONTROL_STEADY.PDE , showing the use of 
    time-dependent GLOBAL equations.  
  
}  
   
TITLE "Time-dependent Control test"  
   
VARIABLES  
  temp      { The temperature field }  
   
GLOBAL VARIABLES  
  power     { a single value for input power }  
   
DEFINITIONS  
  
  setpoint = 700            { the desired average temperature }  
  skintemp = 325+20*sin(t)  { oscillating outer boundary temperature }  
  responsetime = 0.1        { response time of the power input }  
  k=1       { conductivity }  
  heat=0    { the heat function for the temperature. 
                it is non-zero only in the heater region }  
  
  { the control function, average temperature }  
  tcontrol = integral(temp)/integral(1)    
  {  tcontrol = val(temp,0,0)   -- an alternative control method, which tracks the 
                                temperature value at a specified point (unused here) }  
   
  {initial guess for temperature distribution }  
  tinit1=min(1767-400*abs(x), 1767-400*abs(y))   
   
INITIAL VALUES  
  temp=min(1500,tinit1)   
  power=137     { initial guess for power  }  
   
EQUATIONS  
  temp:   div(-k*grad(temp))-heat = 0   { diffusion of temperature field }  
  { single equation defining power.  response time is 1/100  }  
  power:  dt(power) = (setpoint - tcontrol)/responsetime    
   
BOUNDARIES  
   
    REGION 'Insulation'  
        k=0.1  
        heat=0  
        start(-4,-4)  
            value(temp)=skintemp  
        line to (4,-4) to (4,4) to (-4,4) to close  
   
    REGION 'Heater'  
        k=50  
        heat = power  
        start(-1,-1)  line to (1,-1) to (1,1) to (-1,1) to close  
   
TIME 0 to 20 by 1e-4  
   
PLOTS  
 for cycle=10  
  contour(temp)  
    report power  
    report tcontrol as "Avg Temp"  
   
HISTORIES  
  History(tcontrol-setpoint, skintemp-325) as "Skin Temperature and Error"  

199
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  History(tcontrol-setpoint) as "Controlled temperature error"  
  History(power)  
   
END  
  

5.1.3 Electricity

5.1.3.1 3d_capacitor

{  3D_CAPACITOR.PDE   
 
  This problem is an extension of "3D_EXTRUSION_SPEC.PDE" , and shows 
  a capacitor formed by two metal strips of different size separated 
  by a sheet of dielectric. 
 
}  
   
TITLE '3D Capacitor'  
   
COORDINATES  
  CARTESIAN3  
   
SELECT  
  { rename the axes }
  alias(x) = "X(mm)"      
  alias(y) = "Y(mm)"  
  alias(z) = "Z(mm)"  
  { paint all contours } 
  PAINTED                
   
VARIABLES  
  V  
   
DEFINITIONS  
  Kdiel= 6  
  Kmetal=1e6  
  Kair=1  
  K = Kair  { default K to Kair - this will change in some layers/regions }  
  V0 = 0  
  V1 = 1  
  Eps0 = 8.854e-12                      { Farads/M }  
  Eps0mm = 0.001*Eps0                   { Farads/mm }  
  W = integral(0.5*K*eps0mm*grad(V)^2)  { Stored Energy }  
  C = 1.0e6*2*W/(V1-V0)^2               { Capacitance in microFarads }  
   
EQUATIONS  
  V : DIV(K*GRAD(V)) = 0  
   
EXTRUSION  
  SURFACE   "Bottom"                    Z=0  
    LAYER   "Bottom Air"  
  SURFACE   "Bottom Air - Metal"        Z=0.9  
    LAYER   "Bottom Metal"  
  SURFACE   "Bottom Metal - Dielectric" Z=1  
    LAYER   "Dielectric"  
  SURFACE   "Top Metal - Dielectric"    Z=2  
    LAYER   "Top Metal"  
  SURFACE   "Top Metal - Air"           Z=2.1  
    LAYER   "Top Air"  
  SURFACE   "Top"                       Z=3  
   
BOUNDARIES  
  SURFACE "Bottom" NATURAL(V)=0  { Insulators top and bottom }  
  SURFACE "Top"    NATURAL(V)=0  
  
  REGION 1  { this is the outer boundary of the system }  
      LAYER "dielectric" K = Kdiel  { all other layers default to Kair }  
      START(0,0)  
      LINE TO (5,0)  TO (5,5)  TO(0,5)  to close  
  
   LIMITED REGION 2 { the larger bottom plate }  
      SURFACE "Bottom Air - Metal"        VALUE(V)=V0
      SURFACE "Bottom Metal - Dielectric" VALUE(V)=V0
      LAYER "Bottom Metal" K = Kmetal  
      START(1,0)  

469
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      LAYER "Bottom Metal" VALUE(V)=V0  
      LINE TO (4,0)  
      LAYER "Bottom Metal" NATURAL(V)=0  
      Line TO (4,4) TO (1,4) to close  
  
   LIMITED REGION 3 { the smaller top plate}  
      SURFACE "Top Metal - Dielectric" VALUE(V)=V1
      SURFACE "Top Metal - Air"        VALUE(V)=V1
      LAYER "Top Metal" K = Kmetal  
      START(2,1)  
      LINE TO (3,1) TO (3,5)  
      LAYER "Top Metal" VALUE(V)=V1  
      LINE TO (2,5)  
      LAYER "Top Metal" NATURAL(V)=0  
      LINE to close  
   
MONITORS  
  CONTOUR(V) ON Y=2.5  
  
PLOTS  
  GRID(X,Z)  ON Y=2.5  
  CONTOUR(V) ON X=2.5 REPORT(C) as "Capacitance(uF)"  
  CONTOUR(V) ON Y=2.5 REPORT(C) as "Capacitance(uF)"  
  CONTOUR(V) ON Z=1.5 REPORT(C) as "Capacitance(uF)"  
  CONTOUR(1/K) ON Y=2.5 as "Material"  
   
END  
  

5.1.3.2 3d_capacitor_check

{  3D_CAPACITOR_CHECK.PDE   
 
  This problem shows a parallel-plate capacitor, and compares the computed 
  capacitance to the ideal value. 
}  
   
TITLE '3D Capacitor validation'  
   
COORDINATES  
  CARTESIAN3  
   
SELECT  
  { rename the axes }
  alias(x) = "X(mm)"      
  alias(y) = "Y(mm)"  
  alias(z) = "Z(mm)"  
  { paint all contours } 
  PAINTED                
   
VARIABLES  
  V  
   
DEFINITIONS  
  Kmetal=1e6  
  Kdiel = 88    { Water @ 0 C }  
  Kair=1  

  K = Kair      { default K to Kair - this will change in some layers/regions }  
  V0 = 0  
  V1 = 1  
   
  X0 = 2    Xwid = 3    X1 = X0+Xwid    X2 = X1+X0      Xc = X2/2  
  Y0 = 2    Ywid = 3    Y1 = Y0+Ywid    Y2 = Y1+Y0      Yc = Y2/2  
  Z0 = 3    Zdist=0.1   Zthick=0.1      Zc = Z0+Zdist/2  
   
  Eps0 = 8.854e-12                      { Farads/M }  
  Eps0mm = 0.001*Eps0                   { Farads/mm }  
  W = integral(0.5*K*eps0mm*grad(V)^2)  { Stored Energy }  
  C = 1.0e6*2*W/(V1-V0)^2               { Capacitance in microFarads }  
  C0 = 1.0e6*Kdiel*eps0mm*Xwid*Ywid/Zdist  
   
EQUATIONS  
  V : DIV(K*GRAD(V)) = 0  
   
EXTRUSION  



Sample Problems : Applications 370

  SURFACE   "Bottom"                    Z=0  
    LAYER   "Bottom Air"  
  SURFACE   "Bottom Air - Metal"        Z=Z0-Zthick  
    LAYER   "Bottom Metal"  
  SURFACE   "Bottom Metal - Dielectric" Z=Z0  
    LAYER   "Dielectric"  
  SURFACE   "Top Metal - Dielectric"    Z=Z0+Zdist  
    LAYER   "Top Metal"  
  SURFACE   "Top Metal - Air"           Z=Z0+Zdist+Zthick  
    LAYER   "Top Air"  
  SURFACE   "Top"                       Z=Z0+Zthick+Zdist+Zthick+Z0  
   
BOUNDARIES  
  SURFACE "Bottom" natural(V)=0  
  SURFACE "Top" natural(V)=0  
   
  REGION 1  { this is the outer boundary of the system }  
      START(0,0)  
      LINE TO (X2,0)  TO (X2,Y2)  TO(0,Y2)  to close  
   
  LIMITED REGION 2  { plates and dielectric }  
      SURFACE "Bottom Air - Metal"        VALUE(V)=V0
      SURFACE "Bottom Metal - Dielectric" VALUE(V)=V0
      SURFACE "Top Metal - Dielectric"    VALUE(V)=V1
      SURFACE "Top Metal - Air"           VALUE(V)=V1
      LAYER "Bottom Metal" K = Kmetal  
      LAYER "Dielectric" K = Kdiel  
      LAYER "Top Metal" K = Kmetal  
      START(X0,Y0)  
        LAYER "Bottom Metal" VALUE(V)=V0  
        LAYER "Top Metal" VALUE(V)=V1  
      LINE TO (X1,Y0)  TO (X1,Y1) TO (X0,Y1) to close  
   
MONITORS  
  CONTOUR(V) ON Y=Yc  
      REPORT(C) as "Capacitance(uF)"  
      REPORT(C0) as "Cideal(uF)"  
  CONTOUR(magnitude(grad(V))) ON Y=Yc as "Em"  
      ZOOM(X0-Zthick,Z0-2*Zthick, 5*Zthick,5*Zthick)  
   
PLOTS  
  CONTOUR(V) ON X=Xc  
      REPORT(C)  as "Capacitance(uF)"  
      REPORT(C0) as "Cideal(uF)"  
  CONTOUR(V) ON Y=Yc  
      REPORT(C)  as "Capacitance(uF)"  
      REPORT(C0) as "Cideal(uF)"  
  CONTOUR(V) ON  Z=Zc  
      REPORT(C)  as "Capacitance(uF)"  
      REPORT(C0) as "Cideal(uF)"  
  CONTOUR(V) ON Y=Yc  
      ZOOM(X0-Zthick,Z0-2*Zthick, 5*Zthick,5*Zthick)  
  GRID(X,Z) ON Y=Yc  
  GRID(X,Y) ON Z=Zc  
  CONTOUR(log10(K)) ON Y=Yc PAINTED as "Material"  
   
  SUMMARY  
      REPORT(C)  as "Capacitance(uF)"  
      REPORT(C0) as "Cideal(uF)"  
      REPORT(W)  as "Stored Energy"  
   
END  
  

5.1.3.3 3d_dielectric

   
{  3D_DIELECTRIC.PDE 
 
   This problem is a 3D extension of DIELECTRIC.PDE  
}  
   
title  
  'Electrostatic Potential'  
   
coordinates  
  cartesian3  
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variables  
  V  
   
definitions  
  eps = 1  
   
equations  
  div(eps*grad(V)) = 0  { Potential equation }  
   
extrusion  
  surface "bottom"  z=0  
  surface "dielectric_bottom" z=0.1  
 layer "dielectric"  
  surface "dielectric_top"  z=0.2  
  surface "top"  z=0.3  
   
boundaries  
   
  surface "bottom" natural(V)=0  
  surface "top" natural(V)=0  
   
  region 1  
    start (0,0)  
    value(V) = 0     line to (1,0)  
    natural(V) = 0      line to (1,1)  
    value(V) = 100      line to (0,1)  
    natural(V) = 0      line to close  
   
  region 2  
    layer "dielectric"  eps = 50  
      start (0.4,0.4)  
      line to (0.8,0.4) to (0.8,0.8) to (0.6,0.8)   
           to (0.6,0.6) to (0.4,0.6) to close  
   
monitors  
  contour(V) on z=0.15 as 'Potential'  
   
plots  
  contour(V) on z=0.15 as 'Potential'  
  vector(-dx(V),-dy(V)) on z=0.15 as 'Electric Field'  
  contour(V) on x=0.5 as 'Potential'  
   
end
  

5.1.3.4 capacitance

  
{ CAPACITANCE.PDE 
 
   See discussion in Help section "Electromagnetic Applications | Electrostatics" . 
}  
  
TITLE 'Capacitance per Unit Length of 2D Geometry'
{ 17 Nov 2000 by John Trenholme }

SELECT
  errlim 1e-4
  thermal_colors on
  plotintegrate off
VARIABLES
  v
DEFINITIONS
  mm = 0.001            ! meters per millimeter
  Lx = 300 * mm         ! enclosing box dimensions
  Ly = 150 * mm
  b = 0.7               ! radius of conductor / radius of entire cable
  x0 = 0.25 * Lx        ! position and size of cable raised to fixed potential
  y0 = 0.5 * Ly
  r0 = 15 * mm
  x1 = 0.9 * Lx
  y1 = 0.3 * Ly
  r1 = r0
  epsr                  ! relative permittivity of any particular region
  epsd = 3              ! relative permittivity of cable dielectric
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  eps0 = 8.854e-12      ! permittivity of free space
  eps = epsr * eps0
  v0 = 1                ! fixed potential of the cable

  energyDensity = dot( eps * grad( v), grad( v))/2   ! field energy density

EQUATIONS
  div( eps * grad( v)) = 0

BOUNDARIES
  region 1  'inside'  epsr = 1
    start  'outer'  ( 0, 0)  value( v) = 0
    line to ( Lx, 0) line to ( Lx, Ly) line to ( 0, Ly) line to close
  region 2  'diel0'  epsr = epsd
    start  'dieb0'  ( x0 + r0, y0)
    arc ( center = x0, y0) angle = 360
  region 3  'cond0'  epsr = 1
    start  'conb0'  ( x0 + b * r0, y0)  value( v) = v0
    arc ( center = x0, y0) angle = 360
  region 4  'diel1'  epsr = epsd
    start  'dieb1'  ( x1 + r1, y1)
    arc ( center = x1, y1) angle = 360
  region 5  'cond1'  epsr = 1000          ! fake metallic conductor
    start  'conb1'  ( x1 + b * r1, y1)
    arc ( center = x1, y1) angle = 360

PLOTS
  grid(x,y)  zoom(x0-1.1*r0, y0-1.1*r0, 2.2*r0)    ! 3-term zoom generates a square
window }
  contour( v) as 'Potential'
  contour( v) as 'Potential Near Driven Conductor'
    zoom(x0-1.1*r0, y0-1.1*r0, 2.2*r0)
  contour( v) as 'Potential Near Floating Conductor'
    zoom(x1-1.1*r1, y1-1.1*r1, 2.2*r1)
  elevation( v) as 'Potential from Wall to Driven Conductor' from ( 0,y0) to ( x0, y0)
  elevation( v) as 'Potential from Driven to Floating Conductor' from ( x0, y0) to ( x1,
y1) 
  vector( grad( v)) as 'Field'
  contour( energyDensity) as 'Field Energy Density'  png(3072,2)
  contour( energyDensity) as 'Field Energy Density Near Floating Conductor'
    zoom(x1-1.2*r1, y1-1.2*r1, 2.4*r1)
  elevation( energyDensity) from ( x1 - 2 * r1, y1) to ( x1 + 2 * r1, y1)
    as 'Field Energy Density Near Floating Conductor'
  contour( epsr) paint on "inside" as 'Definition of Inside'

SUMMARY png(3072,2)
    report sintegral( normal( eps * grad( v)), 'conb0', 'diel0') as 'Driven charge'
    report sintegral( normal( eps * grad( v)), 'outer', 'inside') as 'Outer charge'
    report sintegral( normal( eps * grad( v)), 'conb1', 'diel1') as 'Floating charge'
    report sintegral( normal( eps * grad( v)), 'conb0', 'diel0') / v0 as 'Capacitance (f/
m)'
    report integral( energyDensity, 'inside') as 'Energy (J/m)'
    report 2 * integral( energyDensity, 'inside') / v0^2 as 'Capacitance (f/m)'
    report 2 * integral( energyDensity, 'inside') / ( v0 * sintegral( normal( eps *
grad( v)), 'conb0', 'diel0'))
      as 'cap_by_energy / cap_by_charge'
  
END 

5.1.3.5 dielectric

  
{  DIELECTRIC.PDE 
 
    This problem shows the electrostatic potential and the electric field 
    in a rectangular domain with an internal region in which the dielectric 
    constant is fifty times that of the surrounding material. 
    The electric field E is -grad(V), where V is the electrostatic potential. 
     
    See also FIELDMAP.PDE  
}  
  
title 'Electrostatic Potential'  
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variables V  
  
definitions  
  eps = 1  
  
equations  
  div(eps*grad(V)) = 0    
  
boundaries  
  region 1  
    start (0,0)  
    value(V) = 0    line to (1,0)  
    natural(V) = 0  line to (1,1)  
    value(V) = 100  line to (0,1)  
    natural(V) = 0  line to close  
  region 2  
    eps = 50  
    start (0.4,0.4)  
    line to (0.8,0.4) to (0.8,0.8)  
         to (0.6,0.8) to (0.6,0.6)  
         to (0.4,0.6) to close  
  
monitors  
  contour(V) as 'Potential'  
  
plots  
  grid(x,y)  
  contour(V) as 'Potential'  
  vector(-dx(V),-dy(V)) as 'Electric Field'  
  
end

5.1.3.6 fieldm ap

{  FIELDMAP.PDE   
 
    This example shows the use of the adjoint equation to display Electric field 
    lines and to compare these to the vector plot of E. 
  
    The problem shows the electrostatic potential and the electric field 
    in a rectangular domain with an internal region in which the dielectric 
    constant is five times that of the surrounding material. 
    The electric field E is -grad(V), where V is the electrostatic potential.

    The adjoint equation method of generating field lines will only work if there
    are no internal sources (charged bodies).

    See also DIELECTRIC.PDE
}  
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title  
  'Electrostatic Potential and Electric Field'  
   
variables  
  V  
  Q  
   
definitions  
  eps = 1  
   
equations  
  { Potential equation }  
  V:    div(eps*grad(V)) = 0  
  then  
  { adjoint equation }  
  Q:    div(grad(Q)/eps) = 0 
   
boundaries  
  region 1  
    start (0,0)  
      value(V) = 0    
      natural(Q) = tangential(grad(V))  
    line to (1,0)  
      natural(V) = 0  
      natural(Q) = tangential(grad(V))  
    line to (1,1)  
      value(V) = 100  
      natural(Q) = tangential(grad(V))  
    line to (0,1)  
      natural(V) = 0  
      natural(Q) = tangential(grad(V))  
    line to close  

  region 2  
    eps = 5  
    start (0.4,0.4)  
    line to (0.8,0.4) to (0.8,0.8) to (0.6,0.8)  
         to (0.6,0.6) to (0.4,0.6) to close 

  feature start "V100" (0,1) line to (1,1) 
   
monitors  
  contour(V) as 'Potential'  
  contour(Q) as 'Field'  
   
plots  
  grid(x,y)  
  contour(V) as 'Potential'  
  contour(Q) as 'Adjoint Field Lines'  
  contour(V,Q) as 'Potential and Adjoint Field Lines'  
  vector(-dx(V),-dy(V)) as 'Electric Field'  
  vector(-dx(V),-dy(V)) norm notips as 'Electric Field'  
  fieldmap(V) on "V100" fieldlines=24 points=200 as "Field Map"
  contour fieldmap(V) on "V100" fieldlines=24 points=200 as "Potential and Field Map" 

end  
  

5.1.3.7 plate_capacitor

{  PLATE_CAPACITOR.PDE   
   
  This problem computes the field around a plate capacitor. 
  (adapted from "Fields of Physics on the PC" by Gunnar Backstrom) 
 
}  
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title 'Plate capacitor'  
  
variables  
  u  
  
definitions  
  Lx=1      Ly=1  
  delx=0.5  d=0.2  
  ddy=0.2*d  
  Ex=-dx(u)     Ey=-dy(u)  
  Eabs=sqrt(Ex^2+Ey^2)  
  eps0=8.854e-12  
  eps  
  DEx=eps*Ex    DEy=eps*Ey  
  Dabs=sqrt(DEx^2+DEy^2)  
  zero=1.e-15  
  
equations  
  u : div(-eps*grad(u)) = 0  
  
boundaries  
  Region 1  
    eps=eps0  
    start "V0" (-Lx,-Ly)  
        Load(u)=0  
    line to (Lx,-Ly) to (Lx,Ly) to (-LX,Ly) to close  
  
    start "V1" (-delx/2,-d/2)  
        value(u)=0  
    line to (delx/2,-d/2) to (delx/2,-d/2-ddy) to (-delx/2,-d/2-ddy)  
         to close  
  
    start(-delx/2,d/2+ddy)  
        value(u)=1  
    line to (delx/2,d/2+ddy) to (delx/2,d/2) to(-delx/2,d/2)  
         to close  
  
  Region 2  
    eps = 7.0*eps0  
    start(-delx/2,-d/2)  
    line to (delx/2,-d/2) to (delx/2,d/2) to(-delx/2,d/2)  
         to close  
  
monitors  
   contour(u)  
  
plots  
   contour(u)  
   surface(u)  
   vector(dx(u),dy(u))  
   fieldmap(u) on "V1" fieldlines=40 as "Field Map"
   contour fieldmap(u) on "V1" fieldlines=40 points=400 as "Potential and Field Map"

end  
  

5.1.3.8 space_charge

{  SPACE_CHARGE.PDE   
 
  This problem describes the electric field in an insulated cardioid-like 
  chamber due to an electrode at the tip of the cardioid and a localized 
  space charge near the center of the body. 
 
  Adaptive grid refinement detects the space charge and refines 
  the computation mesh to resolve its shape. 
 
 }  
  
title "Electrostatic Potential with probe and space charge"  
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select errlim = 1e-4  
  
definitions  
  bigr = 1  
  smallr = 0.4  
  x0 = sqrt(bigr^2/2)  
  y0 = x0  
  r = sqrt(x^2+y^2)  
  { define the electrode center }  
  xc = sqrt((bigr-smallr)^2/2)  
  yc = xc  
  { A space charge source at -xc }  
  source = x/((x+xc)^2 + y^2 + 0.001)  
  k=0.1  
  
variables  
  V  
  
equations  
  V : div(k*grad(V)) + source = 0  
  
boundaries  
  region 1  
    start(xc,yc-smallr)  
        natural(V) = 0      { -- insulated outer boundary }  
        arc(center=xc,yc) to (x0,y0)  
        arc(center=0,0) angle 270  
        arc(center=xc,-yc) to (xc,smallr-yc)  
        value(V)=1          { -- applied voltage = 1 on tip }  
        arc(center=xc,0) angle -180 to close  
  
plots  
  grid(x,y)  
  contour(V) as "Potential"  
  contour(V) zoom(0.2,-0.2,0.4,0.4)  
  surface(V) viewpoint (0,10,30)  
  surface(V) zoom(-0.6,-0.2,0.4,0.4)  
  surface(source) zoom(-0.6,-0.2,0.4,0.4)  
  
end  
  

5.1.4 Fluids

5.1.4.1 1d_eulerian_shock

{  1D_EULERIAN_SHOCK.PDE 
 
   Comparison with shock tube problem of G.A. Sod 
 
   See 1D_LAGRANGIAN_SHOCK.PDE  for a Lagrangian model of the same problem. 
 
   Ref: G.A. Sod, "A Survey of Several Finite Difference Methods for Systems of
   Nonlinear Hyperbolic Conservation Laws", J. Comp. Phys. 27, 1-31 (1978) 
 
   See also Kershaw, Prasad and Shaw, "3D Unstructured ALE Hydrodynamics with the 
   Upwind Discontinuous Finite Element Method", UCRL-JC-122104, Sept 1995. 
}  
  
TITLE "Sod's Shock Tube Problem - Eulerian"  
  
COORDINATES   
  cartesian1  
  
SELECT  
  ngrid=200     { increase the grid density }  
  regrid=off    { disable the adaptive mesh refinement }  
  errlim=1e-4   { lower the error limit }  
  
VARIABLES  
  rho(1)  
  u(1)  
  P(1)  
  
DEFINITIONS  
  len = 1  
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  gamma = 1.4  
  smeardist = 0.001 { a damping term to kill unwanted oscillations }  
  eps = sqrt(gamma)*smeardist   { ~ cspeed*dist }  
  
INITIAL VALUES  
  rho = 1.0 - 0.875*uramp(x-0.49, x-0.51)  
  u = 0  
  P = 1.0 - 0.9*uramp(x-0.49, x-0.51)  
  
EQUATIONS  
  rho:  dt(rho) + u*dx(rho) + rho*dx(u)  = eps*dxx(rho)  
  u:    dt(u) + u*dx(u) + dx(P)/rho  = eps*dxx(u)  
  P:    dt(P) + u*dx(P) + gamma*P*dx(u)  = eps*dxx(P)  
  
BOUNDARIES  
  REGION 1  
    START(0)  point value(u)=0  
    Line to (len) point value(u)=0  
  
TIME 0 TO 0.375  
  
MONITORS  
  for cycle=5  
    elevation(rho) from(0) to (len)  
    elevation(u)   from(0) to (len)  
    elevation(P)   from(0) to (len)  
    history(rho) at (0.5)  
    history(u)   at (0.48) (0.49) (0.5) (0.51) (0.52)  
    history(p)   at (0.48) (0.49) (0.5) (0.51) (0.52)  
    history(deltat) 
    grid(x)  
  
PLOTS  
  for t=0.143, 0.375  
    elevation(rho) from(0) to (len)  
    elevation(u)   from(0) to (len)  
    elevation(P)   from(0) to (len)  
    history(rho) at (0.48) (0.49) (0.5) (0.51) (0.52)  
    history(u)   at (0.48) (0.49) (0.5) (0.51) (0.52)  
    history(p)   at (0.48) (0.49) (0.5) (0.51) (0.52)  
  
END  
  

5.1.4.2 1d_lagrangian_shock

{  1D_LAGRANGIAN_SHOCK.PDE 
 
   This example solves Sod's shock tube problem on a 1D moving mesh. 
   Mesh nodes are given the local fluid velocity, so the model is fully Lagrangian. 
 
   See 1D_EULERIAN_SHOCK.PDE  for an Eulerian model of the same problem. 
 
   Ref: G.A. Sod, "A Survey of Several Finite Difference Methods for Systems of
   Nonlinear Hyperbolic Conservation Laws", J. Comp. Phys. 27, 1-31 (1978) 
 
   See also Kershaw, Prasad and Shaw, "3D Unstructured ALE Hydrodynamics with the 
   Upwind Discontinuous Finite Element Method", UCRL-JC-122104, Sept 1995. 
}  
  
TITLE "Sod's Shock Tube Problem - Lagrangian"  
  
COORDINATES  
  cartesian1  
  
SELECT  
  ngrid = 100   { increase the grid density }  
  regrid = off  { disable the adaptive mesh refinement }  
  errlim = 1e-4 { lower the error limit }  
  
VARIABLES  
  rho(1)  
  u(1)  
  P(1)  
  xm=move(x)  
  
DEFINITIONS  
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  len = 1  
  gamma = 1.4  
  smeardist = 0.001 { a damping term to kill unwanted oscillations }  
  eps = sqrt(gamma)*smeardist  { ~ cspeed*dist }  
  
  v = 0  
  rho0 = 1.0 - 0.875*uramp(x-0.49, x-0.51)  
  p0   = 1.0 - 0.9*uramp(x-0.49, x-0.51)  
  
INITIAL VALUES  
  rho = rho0  
  u = 0  
  P = p0  
  
EULERIAN EQUATIONS  
  { equations are stated as appropriate to the Eulerian (lab) frame. 
    FlexPDE will convert to Lagrangian form for moving mesh }  
  rho:  dt(rho) + u*dx(rho) + rho*dx(u)  = eps*dxx(rho)  
  u:    dt(u) + u*dx(u) + dx(P)/rho  = eps*dxx(u)  
  P:    dt(P) + u*dx(P) + gamma*P*dx(u)  = eps*dxx(P)  
  xm:   dt(xm) = u  
  
BOUNDARIES  
  REGION 1  
    START(0)        point value(u)=0    point value(xm)=0  
    line to (len)   point value(u)=0    point value(xm)=len  
  
TIME 0 TO 0.375  
  
MONITORS  
  for cycle=5  
    elevation(rho) from(0) to (len) range (0,1)  
    elevation(u)   from(0) to (len) range (0,1)  
    elevation(P)   from(0) to (len) range (0,1)  
  
PLOTS  
  for t=0 by 0.02 to 0.143, 0.16 by 0.02 to 0.375  
    elevation(rho) from(0) to (len) range (0,1)  
    elevation(u)   from(0) to (len) range (0,1)  
    elevation(P)   from(0) to (len) range (0,1)  
    grid(x)
  
END  
  

5.1.4.3 2d_eulerian_shock

{  2D_EULERIAN_SHOCK.PDE 
 
   Comparison with shock tube problem of G.A. Sod 
 
   See 1D_EULERIAN_SHOCK.PDE  for a 1D model of the same problem. 
 
   Ref: G.A. Sod, "A Survey of Several Finite Difference Methods for Systems of
   Nonlinear Hyperbolic Conservation Laws", J. Comp. Phys. 27, 1-31 (1978) 
 
   See also Kershaw, Prasad and Shaw, "3D Unstructured ALE Hydrodynamics with the 
   Upwind Discontinuous Finite Element Method", UCRL-JC-122104, Sept 1995. 
}  
  
TITLE "Sod's Shock Tube Problem - 2D Eulerian"  
   
SELECT  
  ngrid = 100   { increase the grid density }  
  regrid = off  { disable the adaptive mesh refinement }  
  errlim = 1e-4 { lower the error limit }  
   
VARIABLES  
  rho(1)  
  u(1)  
  P(1)  
   
DEFINITIONS  
  len = 1  
  wid = 0.02  
  gamma = 1.4  
  eps = 0.001  {=4*(1/63)^2}  
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INITIAL VALUES  
  rho = 1.0 - 0.875*uramp(x-0.49, x-0.51)  
  u   = 0  
  P   = 1.0 - 0.9*uramp(x-0.49, x-0.51)  
   
EQUATIONS  
  rho:  dt(rho)+u*dx(rho) = eps*div(grad(rho)) - rho*dx(u)  
  u:    dt(u)+u*dx(u) = eps*div(grad(u)) - dx(P)/rho  
  P:    dt(P)+u*dx(P) = eps*div(grad(P)) - gamma*P*dx(u)  
   
BOUNDARIES  
  REGION 1  
    START(0,0)  
    Line to (len,0) 
    Value(u)=0 line to (len,wid) 
    Natural(u)=0 line to (0,wid) to close  
   
TIME 0 TO 0.375  
   
MONITORS  
  for cycle=5  
    elevation(rho) from(0,wid/2) to (len,wid/2)  
    elevation(u)   from(0,wid/2) to (len,wid/2)  
    elevation(P)   from(0,wid/2) to (len,wid/2)  
    history(rho) at (0.5,wid/2)  
    history(u)   at (0.48,wid/2) (0.49,wid/2) (0.5,wid/2) (0.51,wid/2) (0.52,wid/2)  
    history(p)   at (0.48,wid/2) (0.49,wid/2) (0.5,wid/2) (0.51,wid/2) (0.52,wid/2)  
    history(deltat)   
  
PLOTS  
  for t=0.143, 0.375  
    elevation(rho) from(0,wid/2) to (len,wid/2)  
    elevation(u)   from(0,wid/2) to (len,wid/2)  
    elevation(P)   from(0,wid/2) to (len,wid/2)  
    history(rho) at (0.48,wid/2) (0.49,wid/2) (0.5,wid/2) (0.51,wid/2) (0.52,wid/2)  
    history(u)   at (0.48,wid/2) (0.49,wid/2) (0.5,wid/2) (0.51,wid/2) (0.52,wid/2)  
    history(p)   at (0.48,wid/2) (0.49,wid/2) (0.5,wid/2) (0.51,wid/2) (0.52,wid/2)  
  
END  
  

5.1.4.4 2d_piston_m ovingm esh

{  2D_PISTON_MOVINGMESH.PDE 
 
  This problem models the flow of a perfect gas in a compressor cylinder. 
  The initial gas pressure is chosen as 1e-4 Atm, to show interesting swirling. 
  The boundaries of the domain are moved according to the oscillation of the piston, 
  while the interior mesh is tensioned within the moving boundaries. 
  This results in a mixed Lagrange/Eulerian model, in that the mesh is moving, 
  but with different velocity than the fluid. 
}   

TITLE "Piston"  
  
COORDINATES  
  Ycylinder  
  
SELECT  
  regrid=off    { disable the adaptive mesh refinement }  
  painted       { paint all contours }  
  
DEFINITIONS  
  my_ngrid = 30 { later applied to the NGRID control and smoother }  
  stroke = 8    { cylinder stroke cm }  
  rad = 4       { cylinder bore radius cm }  
  zraise = 1        { raised height of piston center }  
  rraise = 3*rad/4  { radius or raised piston center }  
  gap = 2           { piston/head clearance }  
  gamma = 1.4  
  
  rho0 = 0.001  
  P0 = 100      { initial pressure (dyne/cm2) = 1e-4 Atm }  
  visc = 0.15   { kinematic viscosity, cm^2/sec }  
  
  rpm = 1000        { compressor speed }  
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  period = 60/rpm   { seconds }  
  vpeak = (pi*stroke/period)  
  
  { velocity profile: }  
  vprofile =vpeak*sin(2*pi*t/period)  
  
  { the piston shape: }  
  zpiston = if r<rraise then zraise else zraise*(rad-r)/(rad-rraise)  
  
  { the time-dependent piston profile: }  
  zprofile = zpiston+0.5*stroke*(1-cos(2*pi*t/period))  
  ztop = stroke+gap+zraise  { maximum z postion }  
  
VARIABLES  
  rho(threshold = rho0/10)      { gas density }  
  u(threshold = vpeak/10)       { radial velocity }  
  v(threshold = vpeak/10)       { axial velocity }  
  P(threshold = P0/10)          { pressure }  
  vm(threshold = vpeak/10)      { mesh velocity }  
  zm=move(z)        { mesh position }  
  
DEFINITIONS  
  { sound speed }  
  cspeed = sqrt(gamma*P/rho)  
  cspeed0 = sqrt(gamma*P0/rho0)  
  
  { a smoothing coefficient: }  
  smoother = cspeed0*(rad/my_ngrid)  
  evisc = max(visc,smoother)  
  
SELECT  
  ngrid= my_ngrid  
  
INITIAL VALUES  
  rho = rho0  
  u = 0  
  v = 0  
  P = P0  
  
EULERIAN EQUATIONS  
  { Eulerian gas equations: (FlexPDE will add motion terms) }  
  rho: dt(rho) + dr(rho*u*r)/r + dz(rho*v) = smoother*div(grad(rho))  
  u:   dt(u) + u*dr(u)+v*dz(u) + dr(P)/rho  = evisc*div(grad(u))-evisc*u/r^2  
  v:   dt(v) + u*dr(v)+v*dz(v) + dz(P)/rho  = evisc*div(grad(v))  
  P:   dt(P) + u*dr(P)+v*dz(P) + gamma*P*(dr(r*u)/r+dz(v)) = smoother*div(grad(P))  
  vm:  dzz(vm)=0    { balance mesh velocities in z only }  
  zm:  dt(zm)=vm    { node positions - move only in z }  
  
BOUNDARIES  
  { use a piston and compression chamber with beveled edge, to create a swirl }  
  REGION 1  
    START(0,zraise)  
        value(u)=0 value(v)=vprofile value(vm)=vprofile dt(zm)=vprofile  
    line to (rraise,zraise) to (rad,0)  
        value(u)=0 nobc(v) nobc(vm) nobc(zm)  
    line to (rad,stroke+gap)  
        value(u)=0 value(v)=0 value(vm)=0 dt(zm)=0  
    line to (rraise,ztop) to (0,ztop)  
        value(u)=0 nobc(v) nobc(vm) nobc(zm)  
    line to close  
  
  { add a diagonal feature to help control cell shapes at upper corner }  
  FEATURE start(rraise,zraise) line to (rad,stroke+gap)  
  
TIME 0 TO 2*period by 1e-6  
  
PLOTS  
  for t=0 by period/120 to endtime  
  { control the frame size and data scaling to create a useable movie 
    - the movie can be created by replaying the .PG7 file and selecting 
      EXPORT MOVIE, or we could add PNG() commands here to create it directly }
  grid(r,z) frame(0,0, rad,ztop)  
  contour(rho) frame(0,0, rad,ztop) fixed range(0,0.01) contours=50  nominmax  
  contour(u) frame(0,0, rad,ztop) fixed range(-500,500) contours=50  
  contour(v) frame(0,0, rad,ztop) fixed range(-550,550) contours=50  
  contour(P) frame(0,0, rad,ztop) fixed range(0,2600) contours=50  nominmax  
  vector(u,v) frame(0,0, rad,ztop) fixed range(0,550)  
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  contour(cspeed) frame(0,0, rad,ztop) fixed range(0,600)  
  contour(magnitude(u,v)/cspeed) frame(0,0, rad,ztop) fixed range(0,1.5)  
  
  history(vprofile/vpeak,zprofile/stroke) range(-1,1)  
        report(vpeak) report(stroke)  
  history(globalmax(P), globalmin(P))  
  history(integral(P))  
  history(globalmax(rho), globalmin(rho))  
  history(integral(rho))  
  history(deltat)  
  
END  
  

5.1.4.5 3d_flowbox

{  3D_FLOWBOX.PDE 
 
  This problem demonstrates the use of FlexPDE in 3D fluid flow.  It shows the flow of
fluid
  through a plenum box with a circular inlet at the bottom and an offset circular outlet
at the top.
  The corners of the duct are beveled to remove discontinuities in the flow, and the
inlet pressure
  is arbitrarily set at 0.05 units.

  The solution uses a "penalty pressure", in which the pressure variable is used merely
to guarantee
  mass conservation. This technique is described in more detail in VISCOUS.PDE.

  The order of interpolation is staged from linear to quadratic to cubic, which allows
FlexPDE
  to solve for the general distribution with far fewer unknowns, and then solve for more
detail
  in later stages.

  Adaptive mesh refinement is turned off for speed in demonstration.

}  
   
title '3D flow through a plenum'  
   
coordinates  
  cartesian3  
   
variables  
  v(1e-6) = vector(vx,vy,vz)
  p 
   
select  
  order = staged(1,2,3) 
  regrid = off  
   
definitions  
  long = 2  
  wide = 1  
  high = 1/2  
  xin = -1   yin = 0  
  xout = 1   yout = 0  
  rc = 0.5  
  duct = 0.2  
   
  { construct beveled surface }
  b = 0.05  ! duct bevel
  r2 = sqrt((x-xin)^2+(y-yin)^2)
  H2 = -high-(rc+b)
  z2 = max(min(H2+r2,-high),-high-b)
  r3 = sqrt((x-xout)^2+(y-yout)^2)
  H3 = high+(rc+b)
  z3 = min(max(H3-r3,high),high+b)

  dens = 1        { fluid density }  
  visc = 0.01     { fluid viscosity }  
  vm = magnitude(v)  
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  div_v = dx(vx) + dy(vy) + dz(vz)  
   
  pfactor = 500
  PENALTY = pfactor*visc/high^2
   
  Pin = 0.05  
  Pout = 0  
   
initial values  
  v = vector(0,0,0) 
  p = Pin+(Pout-Pin)*(z+high+duct)/(2*high+2*duct) 
 
equations  
  v:    dens*dot(v,grad(v)) + grad(p) - visc*div(grad(v)) = 0  
  p:    div(grad(p)) = PENALTY*div_v  
   
extrusion z = -high-duct,z2,z3,high+duct
   
boundaries
 
    region 1    { plenum box }
       surface 2 value(v) = vector(0,0,0) natural(p)=0
       surface 3 value(v) = vector(0,0,0) natural(p)=0
       layer 1 void
       layer 3 void
       start(-long,-wide)
            value(v) = vector(0,0,0) natural(p)=0   { fix all side values }
         line to (long,-wide)
           to (long,wide)
           to (-long,wide)
           to close
 
    limited region 2    { input hole }
      layer 1
      surface 1 natural(v) = vector(0,0,0) value(p)=Pin     { input duct opening }
      start(xin,yin-rc)
            layer 1   value(v) = vector(0,0,0) natural(p)=0 { duct sidewall drag }
    surface 2 mesh_spacing=rc/2
        arc(center=xin,yin) angle=360
 
    limited region 3    { exit hole }
      layer 3
      surface 4 natural(v) = vector(0,0,0) value(p)=Pout    { output duct opening }
      start(xout,yout-rc)
            layer 3   value(v) = vector(0,0,0) natural(p)=0 { duct sidewall drag }
   surface 3 mesh_spacing=rc/2
        arc(center=xout,yout) angle=360
 
limited feature
  surface 2 
  start(xin,yin-rc-b)  arc(center=xin,yin) angle=360 

limited feature
  surface 3 
  start(xout,yout-rc-b)  arc(center=xout,yout) angle=360 

monitors
    grid(x,z) on y=0
    contour(vx)  on x=0 report dens report pin
    contour(vx)  on y=0 report dens report pin
    contour(vz)  on y=0 report dens report pin
    vector(vx,vz)on y=0 report dens report pin
    contour(vx)  on z=0 report dens report pin
    contour(vy)  on z=0 report dens report pin
    contour(vz)  on z=0 report dens report pin
    vector(vx,vy)on z=0 report dens report pin
    contour(p)   on y=0 report dens report pin
    contour(div_v)   on y=0 report dens report pin
 
plots
    grid(x,z) on y=0
    contour(vx)  on x=0 report dens report pin
    contour(vx)  on y=0 report dens report pin
    contour(vz)  on y=0 report dens report pin
    vector(vx,vz)on y=0 report dens report pin
    contour(vx)  on z=0 report dens report pin
    contour(vy)  on z=0 report dens report pin
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    contour(vz)  on z=0 report dens report pin
    vector(vx,vy)on z=0 report dens report pin
    contour(p)   on y=0 report dens report pin
    contour(div_v)   on y=0 report dens report pin
 
summary
    report(sintegral(vz,1,2)) as "Inflow"
    report(sintegral(vz,4,3)) as "Outflow"
    report(sintegral(vz,4,3)/sintegral(vz,1,2)) as "Ratio"

end

5.1.4.6 airfoil

{  AIRFOIL.PDE 
  
  This example considers the laminar flow of an incompressible, inviscid 
  fluid past an obstruction. 
  
  We assume that the flow can be represented by a stream function, PSI, 
  such that the velocities, U in the x-direction and V in the y-direction, 
  are given by: 
  
        U = -dy(PSI) 
        V = dx(PSI) 
  
  The flow can then be described by the equation 
  
        div(grad(PSI)) = 0. 
  
  The contours of PSI describe the flow trajectories of the fluid. 
  
  The problem presented here describes the flow past an airfoil-like figure. 
  The left and right boundaries are held at PSI=y, so that U=-1, and V=0. 
  
}  
   
title "Stream Function Flow past an Airfoil"  
   
variables  
   { define PSI as the system variable } 
   psi      
   
definitions  
   far = 5      { size of solution domain }  
   psi_far = y  { solution at large x,y }  
   
equations   { the equation of continuity: }  
   psi : div(grad(psi)) = 0  
   
boundaries  
   region 1 { define the domain boundary }  
      start(-far,-far)  { start at the lower left }  
        { impose -dy(psi)=U=-1 (outward normal of psi) on the bottom boundary }  
        natural(psi)= -1  
      line to (far,-far)    { walk the boundary Counter-Clockwise }  
        natural(psi)=0      { impose dx(psi)=0 on right }  
      line  to (far,far)  
        natural(psi)=1      { impose dy(psi)=-U=1 on top }  
      line  to (-far,far)  
        natural(psi)=0      { impose -dx(psi)=0 on left }  
      line to close         { return to close }  
   
      start(-0.5,-0.05) { start at lower left corner of airfoil }  
        value(psi)=0    { specify no flow through the airfoil surface }  
      arc to (0.0,0.02) to (0.5,0.05)       { specify a gentle arc by three points }  
      arc (center=0.495,0.1) to (0.5,0.15)  { a tight arc by two points and center }  
      arc to (0.075,0.105) to (-0.35,0)     { the top arc by three points }  
      line to close     { finally a straight line to close the figure }  
   
monitors{ monitor progress while running }  
   contour(psi) zoom (-0.6,-0.4,1.4,1.2) as "stream lines"  
   
plots   { write hardcopy files at termination }  
   grid(x,y) zoom (-0.6,-0.4,1.4,1.2)  
   contour(psi) zoom (-0.6,-0.4,1.4,1.2) as "stream lines"  painted  
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   { show the flow vectors: }  
   vector(-dy(psi),dx(psi)) zoom (-0.6,-0.4,1.4,1.2)as "flow" norm  
   surface(psi) zoom (-0.6,-0.4,1.4,1.2) as "stream lines"  
   
end  
  

5.1.4.7 black_oil

{  BLACK_OIL.PDE   
 
  This example considers the transport of oil and water in soil. 
  
  The model is given in Gelinas, et al, "Adaptive Forward-Inverse Modeling 
  of Reservoir Fluids Away from Wellbores",  (Lawrence Livermore National 
  Laboratory report UCRL-ID-126377) and in Saad & Zhang, " Adaptive Mesh for 
  Two-Phase Flow in Porous Media" (in Recent Advances in Problems of Flow and 
  Transport in Porous Media, Crolet and El Hatri, eds., Kluwer Academic Publishers, 
  Boston, 1998). 
  
  The saturation of water is represented by S, with the saturation of oil defined 
  as 1-S.  The relative permeabilities of water and oil are assumed to be S^2 and 
  (1-S)^2, respecitvely.  The total mobility M is defined as 
        M = S^2/muw + (1-S)^2/muo, 
  where muw and muo are the viscosities of water and oil. 
  
  The total velocity, V, and the fractional flux, f, are defined as 
        V = - K*M grad(P) 
        f = [S^2/muw]/M, 
  where K represents the saturation-independent permeability coefficient, and 
  P is the pressure, assuming capillary to be zero and oil and water pressures 
  equal. 
  
  If the porosity Phi is taken as constant and gravity effects are negligible, the 
  PDE's governing the system reduce to 
        Phi*dt(S) + div(V*f) = 0 
        div(V) = 0. 
  
  Here we study the flow through a 30-meter box with an inlet pipe in the upper 
  left and   an outlet pipe in the lower right.  The box is initially filled with oil, 
  and water is pumped into the inlet pipe at a constant pressure.  Time is measured 
  in seconds. 
  
         --  Submitted by Said Doss, Lawrence Livermore National Laboratory. 
  
 }  
   
TITLE 'Black Oil Model'  
   
SELECT  
      smoothinit    { Smooth the initial conditions a little, to minimize 
                        the time wasted tracking the initial discontinuity }  
   
VARIABLES  
      s(1), p          { Saturation and Pressure }  
   
DEFINITIONS  
      muo = 4.e-3               { oil viscosity }  
      muw = 1.e-3               { water viscosity }  
      K = 1.e-12                { Saturation-independent permeability coefficient }  
      Pin = 1.5e6               { Inlet pressure }  
      Pout = 1.e6               { Outlet pressure }  
      M = S^2/muw + (1-S)^2/muo { Total mobility }  
      f = S^2/muw/M             { Fractional flux }  
      krw = S^2/muw             { Relative permeability of water }  
      phi =.206                 { porosity }  
   
      xmax = 30                 { Box dimensions }  
      ymax = xmax  
      out_ctr = 8  
      tfrac = 2*out_ctr  
      diam = 2  
      in_ctr = ymax-out_ctr  
      rad = diam/5  
      pipe = 2*rad          {an extended inlet and outlet pipe}
   
      epsvisc = 1.e-6       { A little artificial diffusion helps smooth the solution }  
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      sint = integral(s)    { the total extraction integral }  
   
      hour = 60*60  
      day = hour*24         { seconds per day }  
   
 INITIAL VALUES  
       s = max(0,-x/pipe )          { start with all oil , but ramp the value in the
inlet pipe to speed startup }
       p = Pin + (Pout-Pin)*x/xmax  { start with a rough approximation to the pressure }
 
   
 EQUATIONS  
       s:  phi*dt(s) - div(K*krw*grad(p)) - epsvisc*div(grad(s)) = 0  
       p:  div(K*M*grad(p)) = 0  
  
 BOUNDARIES  
    REGION 1  
      { fillet the input pipe, and define 
        no-flow boundaries of the box }  
      start(-pipe,in_ctr-diam)  
        natural(p)=0 natural(s) = 0  
        line to (0,in_ctr-diam) fillet(rad)  
        line to (0,0) to (xmax,0) 
             to (xmax,out_ctr-diam) fillet(rad)  
        line to (xmax+pipe,out_ctr-diam)  
   
        { set constant outlet pressure, and 
          "tautological" saturation flux }  
        value(p) = Pout  
        natural(s) =  -K*krw*dx(p)  
        line to (xmax+pipe,out_ctr+diam)  
   
        { reset no-flow box boundaries }  
        natural(p)=0  natural(s)=0  
        line to (xmax,out_ctr+diam) fillet(rad)  
        line to (xmax,ymax) to (0,ymax) 
             to (0,in_ctr+diam) fillet(rad)  
        line to (-pipe,in_ctr+diam)  
   
        { set constant inlet pressure and saturation
}  
        value(p) = Pin   value(s) = 1  
        line to close  
   
 TIME   0 to 120*day  by 10  
 
 MONITORS  
     for cycle=5  
       contour(s) as "Saturation" range(0,1)  
       contour(s) zoom(xmax-tfrac+pipe,0, tfrac,tfrac) as "Outflow Saturation"  
           range(0,1)  
       contour(p) as "Pressure"  
       vector(-K*M*grad(p)) norm as "Flow Velocity"  
   
 PLOTS  
    for t = day by day  to 20*day  
                by 10*day  to 120*day  
       grid(x,y)  
       contour(s) as "Saturation" range(0,1) painted  
       surface(s) as "Saturation" range(0,1) painted  viewpoint(60,-120,30)  
       contour(s) zoom(xmax-tfrac+pipe,0,  tfrac,tfrac) as "Outflow Saturation"  
           range(0,1)  painted  
       contour(p) as "Pressure" painted  
       vector(-K*M*grad(p)) norm as "Flow Velocity"  
       contour(K*M*magnitude(grad(p))) norm as "Flow Speed" painted  
   
 HISTORIES  
       history(sint) at (0,0) as "Extraction"  
   
 END  
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5.1.4.8 buoy ant

{  BUOYANT.PDE   
 
  This example addresses the problem of thermally driven buoyant flow 
  of a viscous liquid in a vessel in two dimensions. 
 
  In the Boussinesq approximation, we assume that the fluid is incompressible, 
  except for thermal expansion effects which generate a buoyant force. 
 
  The incompressible form of the Navier-Stokes equations for the flow of a fluid 
  can be written 
        dt(U) + U.grad(U) + grad(p) = nu*div(grad(U)) + F 
        div(U) = 0 
  where U represents the velocity vector, 
        p is the pressure, 
        nu is the kinematic viscosity 
  and   F is the vector of body forces. 
 
  The first equation expresses the conservation of momentum, while the second, 
  or Continuity Equation, expresses the conservation of mass. 
  If the flow is steady, we may drop the time derivative. 
 
  If we take the curl of the (steady-state) momentum equation, we get 
        curl(U.grad(U)) + curl(grad(p)) = nu*curl(div(grad(U)) + curl(F) 
 
  Using div(U)=0 and div(curl(U))=0, and defining the vorticity W = curl(U), 
  we get 
        U.grad(W) = W.grad(U) + nu*div(grad(W)) + curl(F) 
 
  W.grad(U) represents the effect of vortex stretching, and is zero in 
  two-dimensional systems. Furthermore, in two dimensions the velocity has 
  only two components, say u and v, and the vorticity has only one, 
  which we shall write as w. 
 
  Consider now the continuity equation.  If we define a scalar function psi 
  such that 
        u = dy(psi)    v = -dx(psi) 
  then div(U) = dx(dy(psi))-dy(dx(psi)) = 0, and the continuity equation is 
  satisfied exactly.  We may write 
        div(grad(psi)) = -dx(v)+dy(u) = -w 
 
  Using psi and w, we may write the final version of the Navier-Stokes 
  equations as 
        dy(psi)*dx(w) -dx(psi)*dy(w) = nu*div(grad(w)) + curl(F) 
        div(grad(psi)) + w = 0 
 
  If F is a gravitational force, then 
        F = (0,-g*rho) and 
        curl(F) = -g*dx(rho) 
  where rho is the fluid density and g is the acceleration of gravity. 
 
  The temperature of the system may be found from the heat equation 
        rho*cp*[dt(T)+U.grad(T)] = div(k*grad(T)) + S 
 
  Dropping the time derivative, approximating rho by rho0, 
  and expanding U in terms of psi, we get 
        div(k*grad(T)) + S = rho0*cp*[dy(psi)*dx(temp) - dx(psi)*dy(temp)] 
 
  If we assume linear expansion of the fluid with temperature, then 
        rho = rho0*(1+alpha*(T-T0)) and 
        curl(F) = -g*rho0*alpha*dx(T) 
 
  -------------------------- 
 
  In this problem, we define a trough filled with liquid, heated along a center 
  strip by  an applied heat flux, and watch the convection pattern and the heat 
  distribution.  We compute only half the trough, with a symmetry plane 
  in the center. 
 
  Along the symmetry plane, we assert w=0, since on this plane 
  dx(v) = 0 and u=0, so dy(u) = 0. 
 
  Applying the boundary condition psi=0 forces the stream lines to be parallel 
  to the boundary, enforcing no flow through the boundary. 
 
  On the surface of the bowl, we apply a penalty function to enforce a "no-slip" 
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  boundary condition.  We do this by using a natural BC to introduce a surface 
  source of vorticity to counteract the tangential velocity. The penalty weight 
  was arrived at by trial and error.  Larger weights can force the surface 
  velocity closer to zero, but this has no perceptible effect on the temperature 
  distribution. 
 
  On the free surface, the proper boundary condition for the vorticity is 
  problematic. We choose to apply NATURAL(w)=0, because this implies no vorticity 
  transport across the free surface.    (11/16/99) 
 
 }  
 
TITLE 'Buoyant Flow by Stream Function and Vorticity - No Slip'   
  
VARIABLES  
   temp psi w  
  
DEFINITIONS  
   Lx = 1   Ly = 0.5  
   Rad = 0.5*(Lx^2+Ly^2)/Ly  
   Gy = 980  
  
   { surface heat loss coefficient } 
   sigma_top = 0.01   
   { bowl heat loss coefficient }  
   sigma_bowl = 1         
   { thermal conductivity }  
   k = 0.0004         
   { thermal expansion coefficient }  
   alpha = 0.001    
   visc = 1  
   rho0 = 1    
   heatin = 10  { heat source }
   t0 = 50  
  
   dens = rho0*(1 - alpha*temp)  
   cp = 1  
  
   penalty = 5000  
  
   u = dy(psi)  
   v = -dx(psi)  
  
EQUATIONS  

   temp: div(k*grad(temp)) = rho0*cp*(u*dx(temp) + v*dy(temp))  
   psi:  div(grad(psi)) + w = 0  
   w:    u*dx(w) + v*dy(w) = visc*div(grad(w)) - Gy*dx(dens)  
  
BOUNDARIES  
   region 1  
  
    { on the arc of the bowl, set Psi=0, and apply a conductive loss to T. 
        Apply a penalty function to w to force the tangential velocity to zero }  
    start "outer" (0,0)  
      natural(temp) = -sigma_bowl*temp  
      value(psi) = 0  
      natural(w)= penalty*tangential(curl(psi))  
      arc (center=0,Rad) to (Lx,Ly)  
  
      { on the top, continue the Psi=0 BC, but add the heat in put term to T, 
        and apply a natural=0 BC for w }  
      natural(w)=0  
      load(temp) = heatin*exp(-(10*x/Lx)^2) - sigma_top*temp  
      line to (0,Ly)  
  
      { in the symmetry plane assert w=0, with a reflective BC for T }  
      value(w)=0  
      load(temp) = 0  
      line to close  
  
MONITORS  
   contour(temp) as "Temperature"  
   contour(psi)  as "Stream Function"  
   contour(w)    as "Vorticity"  
   vector(u,v)   as "Flow Velocity" norm  
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PLOTS  
   grid(x,y)  
   contour(temp) as "Temperature"  painted  
   contour(psi)  as "Stream Function"  
   contour(w)    as "Vorticity"  painted  
   vector(u,v)   as "Flow Velocity" norm  
   contour(dens) as "Density"  painted  
   contour(magnitude(u,v)) as "Speed"  painted  
   elevation(magnitude(u,v)) on "outer"  
   elevation(temp) on "outer"  
  
END  
  

5.1.4.9 buoy ant+tim e

{  BUOYANT+TIME.PDE 
 
  This example is the time-dependent form of the steady-state example 
  BUOYANT.PDE . 
 
  Here we gradually ramp up the heat input to the level given in the 
  steady-state problem. 
 
  At early times, a single convection cell is established, but at later 
  times the bottom of the bowl stagnates and establishes the two-cell 
  flow pattern seen in the steady problem. 
 
}  
  
TITLE 'Buoyant Flow by Stream Function and Vorticity - no slip'  
  
VARIABLES  
   temp(100)  
   psi(0.001)  
   w(1)  
  
DEFINITIONS  
   Lx = 1   Ly = 0.5  
   Rad = 0.5*(Lx^2+Ly^2)/Ly  
   Gy = 980  
  
   sigma_top = 0.01     { surface heat loss coefficient }  
   sigma_bowl =  1      { bowl heat loss coefficient }  
   k =  0.0004          { thermal conductivity }  
  
   alpha = 0.001        { thermal expansion coefficient }  
   visc = 1  
  
   heatin = min(10,t)  
   t0 = 50  
  
   rho0 = 1  
   rho = rho0*(1 - alpha*temp)  
   cp = 1  
  
   u = dy(psi)  
   v = -dx(psi)  
  
   penalty = 5000  
  
EQUATIONS  
   temp: div(k*grad(temp)) = rho0*cp*(dt(temp) + u*dx(temp) + v*dy(temp))  
   psi:  div(grad(psi)) + w = 0  
   w:    dt(w) + u*dx(w) + v*dy(w) = visc*div(grad(w)) - Gy*dx(rho)  
  
BOUNDARIES  
   region 1  
  
    { on the arc of the bowl, set Psi=0, apply conduction loss to T, 
        and apply penalty function to w to enforce no-slip condition. }  
    start(0,0)  
      natural(temp) = -sigma_bowl*temp  
      value(psi) = 0  
      natural(w)=penalty*tangential(u,v)  
      arc (center=0,Rad) to (Lx,Ly)  
  

386



FlexPDE 7 : Sample Problems389

      { on the top, continue the prior BC for Psi, 
        but apply a heat input and loss to T. 
        Apply natural=0 BC (no vorticity transport) for w }  
      load(temp) = heatin*exp(-(10*x/Lx)^2) - sigma_top*temp  
      natural(w)=0  
      line to (0,Ly)  
  
      { in the symmetry plane assert w=0, with a reflective BC for T }  
      value(w)=0  
      load(temp) = 0  
      line to close  
  
TIME 0 to 100  
  
MONITORS  
   for cycle=5  { watch what's happening }  
   contour(temp) as "Temperature"  
   contour(psi)  as "Stream Function"  
   contour(w)    as "Vorticity"  
   vector(curl(psi)) as "Flow Velocity" norm  
  
PLOTS  
   for t = 1 by 1 to 10 by 10 to endtime  
   grid(x,y)  
   contour(temp) as "Temperature"  painted  
   contour(psi)  as "Stream Function"  
   contour(w)    as "Vorticity"  painted  
   vector(curl(psi)) as "Flow Velocity" norm  
   contour(rho)  as "Density"  painted  
  
HISTORIES  
  history(temp) at (0.1*Lx,Ly) (0.2*Lx,Ly) (0.5*Lx,Ly) (0.8*Lx,Ly)  
         (0.7*Lx,0.5*Ly) (0.04*Lx,0.1*ly) as "Temperature"  
  history(u) at (0.1*Lx,Ly) (0.2*Lx,Ly) (0.5*Lx,Ly) (0.8*Lx,Ly)  
         (0.7*Lx,0.5*Ly) (0.04*Lx,0.2*Ly) as "X-velocity"  
  history(v) at  (0.04*Lx,0.1*ly) as "Y-velocity"  
  
  
END  
  

5.1.4.10 channel

{  CHANNEL.PDE  
 
  This example is a modification of the LOWVISC.PDE  problem, in which the 
  no-slip boundary has been placed at the bottom of the domain, with free flow 
  at the top. 
   
  The declared parameters in this problem are chosen for demonstration purposes,  
  and are not intended to represent any real conditions.  The fluid is far more 
  viscous than water. 
  
}  
   
title 'Flow in 2D channel'  
   
select errlim = 0.005  
   
variables  
   u(0.1)  
   v(0.01)  
   p(1)  
   
definitions  
   Lx = 5       Ly = 1.5  
   p0 = 1       { input pressure }  
   speed2 = u^2+v^2  
   speed = sqrt(speed2)  
   dens = 1  
   visc = 0.04                
   vxx = -(p0/(2*visc*(2*Lx)))*y^2   { open-channel x-velocity with drag at the bottom }
 
   
   rball=0.4  
   cut = 0.1    { value for bevel at the corners of the obstruction }  
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   penalty = 100*visc/rball^2  
   Re = globalmax(speed)*(Ly/2)/(visc/dens)  
   
initial values  
  { In nonlinear problems, Newton's method requires a good initial guess at the solution,
 
    or convergence may not be achieved.  You can use SELECT CHANGELIM=0.1 to  
    force the solver to creep toward a solution from a bad guess.   
    In our problem, the open channel velocity is a good place to start. }  
   u = vxx  v = 0  p = p0*x/(2*Lx)  
   
equations  
   u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))  
   v:  visc*div(grad(v)) - dy(p)  = dens*(u*dx(v) + v*dy(v))  
   p:  div(grad(p)) = penalty*(dx(u)+dy(v))  
   
boundaries  
   region 1  
      start(-Lx,0)  
      value(u) = 0   value(v) = 0   load(p) = 0  
        line to (Lx/2-rball,0)  
             to (Lx/2-rball,rball) bevel(cut)  
             to (Lx/2+rball,rball) bevel(cut)  
             to (Lx/2+rball,0)  
             to (Lx,0)  
   
      load(u) = 0  value(v) = 0  value(p) = p0  
      mesh_spacing=Ly/20  
        line to (Lx,Ly)  
   
      mesh_spacing=100  
      load(p) = 0  
        line to (-Lx,Ly)  
   
      value(p) = 0  
        line to close  
   
monitors  
   contour(speed)  report(Re)  
   
plots  
   contour(u)  report(Re)  
   contour(v)  report(Re)  
   contour(speed) painted  report(Re)  
   vector(u,v) as "flow"   report(Re)  
   contour(p)  as "Pressure" painted  
   contour(dx(u)+dy(v)) as "Continuity Error"  
   elevation(u) from (-Lx,0) to (-Lx,Ly)  
   elevation(u) from (0,0)   to (0,Ly)  
   elevation(u) from (Lx/2,0)to (Lx/2,Ly)  
   elevation(u) from (Lx,0)  to (Lx,Ly)  
  
end  
  

5.1.4.11 contam inant_transport

{ CONTAMINANT_TRANSPORT.PDE 
 
  This example shows the use of sequenced equations in the calculation of steady-state 
  contaminant transport  in which the fluid properties are independent of the
contaminant 
  concentration. 
 
  Fluid equations are solved first on each grid refinement, then the contaminant 
  concentration is updated. 
 
  The problem is a modification of the example CHANNEL.PDE . 
 
}  
  
title 'Contaminant transport in 2D channel'  
  
select 
   errlim = 0.005  
   ngrid = 40
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variables  
   u(0.1)  
   v(0.01)  
   p(1)  
   c(0.01)  
  
definitions  
   Lx = 5       Ly = 1.5  
   p0 = 2  
   speed2 = u^2+v^2  
   speed = sqrt(speed2)  
   dens = 1  
   visc = 0.04  
   vxx = -(p0/(2*visc*(2*Lx)))*y^2   { open-channel x-velocity with drag at the bottom }
 
  
   rball=0.4  
   cut = 0.1    { value for bevel at the corners of the obstruction }  
  
   penalty = 100*visc/rball^2  
   Re = globalmax(speed)*(Ly/2)/(visc/dens)  
  
   Kc = 0.01    { contaminant diffusivity }  
  
initial values  
   u =  vxx   v=0  p = p0*x/Lx  
  
equations  
   u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))  
   v:  visc*div(grad(v)) - dy(p) = dens*(u*dx(v) + v*dy(v))  
   p:  div(grad(p)) = penalty*(dx(u)+dy(v))  
then  
   c:  u*dx(c) + v*dy(c) = div(Kc*grad(c))  
  
boundaries  
   region 1  
      start(-Lx,0)  
      value(u) = 0   value(v) = 0   load(p) = 0  natural(c)=0  
        line to (Lx/2-rball,0)  
             to (Lx/2-rball,rball) bevel(cut)  
             to (Lx/2+rball,rball) bevel(cut)  
             to (Lx/2+rball,0)  
             to (Lx,0)  
  
      mesh_spacing=Ly/20  
      load(u) = 0  value(v) = 0  value(p) = p0  value(c) = Upulse(y,y-Ly/3)  
        line to (Lx,Ly)  
  
      mesh_spacing = 100  
      load(p) = 0 natural(c)=0  
        line to (-Lx,Ly)  
  
      value(p) = 0  
        line to close  
  
monitors  
     contour(speed)  
     contour(c)  
  
plots  
   contour(c)  report(Re)  
   contour(u)  report(Re)  
   contour(v)  report(Re)  
   contour(speed) painted  report(Re)  
   vector(u,v) as "flow"   report(Re)  
   contour(p)  as "Pressure" painted  
   contour(dx(u)+dy(v)) as "Continuity Error"  
   elevation(u) from (-Lx,0) to (-Lx,Ly)  
   elevation(u) from (0,0)   to (0,Ly)  
   elevation(u) from (Lx/2,0)to (Lx/2,Ly)  
   elevation(u) from (Lx,0)  to (Lx,Ly)  
  
end  
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5.1.4.12 coupled_contam inant

{  COUPLED_CONTAMINANT.PDE

  This example shows the use of FlexPDE in a contaminant transport
  calculation in which the fluid viscosity is strongly dependent on the contaminant
concentration.

  The example LOWVISC.PDE  must first be solved to establish flow velocities.
  This time-dependent modification of that example then reads the initial values and
  computes the flow of a contaminant in the channel.
  Fluid equations are solved fully implicitly with the contaminant concentration.
}

title 'Contaminant transport in 2D channel, Re > 40'

variables
   u(0.1)
   v(0.01)
   p(1)
   c(0.01)

definitions
   Lx = 5       Ly = 1.5
   p0 = 2
   speed = sqrt(u^2+v^2)
   dens = 1
   visc0 = 0.04
   visc = visc0*(1+c)
   vxx = -(p0/(2*visc*(2*Lx)))*(Ly^2-y^2)        { open-channel x-velocity }

   rball=0.4
   cut = 0.1        { value for bevel at the corners of the obstruction }

   penalty = 100*visc/rball^2
   Re = globalmax(speed)*(Ly/2)/(visc0/dens)

   { define a contaminant pulse function in space and time
        use SWAGE to eliminate discontinuous changes }
   swagepulse(f,a,b,rise) = swage(f-a,0,1,rise)*swage(f-b,1,0,rise)
   C0=2
   cinput = C0*swage(y-0.4,1,0,0.08 )*swagepulse(t,0.4,1,0.08)

   Kc = 0.002        { contaminant diffusivity }

   { read the initial velocity field from Lowvisc.pde }
   transfermesh("lowvisc_output/lowvisc_01.xfr", uin, vin, pin)

Initial Values
  u=uin
  v=vin
  p=pin

equations
   u:  visc*div(grad(u)) - dx(p) = dens*dt(u) + dens*(u*dx(u) + v*dy(u))
   v:  visc*div(grad(v)) - dy(p) = dens*dt(v) + dens*(u*dx(v) + v*dy(v))
   p:  div(grad(p)) = penalty*(dx(u)+dy(v))
   c:  dt(c) + u*dx(c) + v*dy(c) = div(Kc*grad(c))

boundaries
   region 1
      start(-Lx,0)
      load(u) = 0   value(v) = 0   load(p) = 0  load(c)=0
        line to (Lx/2-rball,0)
      value(u) = 0  value(v) = 0  load(p) = 0
      mesh_spacing=rball/10  ! dense mesh to resolve obstruction
        line to (Lx/2-rball,rball) bevel(cut)
             to (Lx/2+rball,rball) bevel(cut)
             to (Lx/2+rball,0)
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      mesh_spacing=10*rball  ! cancel dense mesh requirement
      load(u) = 0  value(v) = 0  load(p) = 0
        line to (Lx,0)

      load(u) = 0  value(v) = 0  value(p) = p0
      { Introduce a lump of contaminant: }
      value(c) = cinput
      mesh_spacing=Ly/20
                line to (Lx,Ly)

      mesh_spacing=100
      value(u)=0  value(v)=0  load(p)= 0  load(c)=0
                line to(-Lx,Ly)

      load(u) = 0  value(v) = 0  value(p) = 0
        line to close

time 0 to 10

monitors
   for cycle = 1
   contour(speed)  report(Re)
   contour(c) range(0,1)  report(Re)
   elevation(cinput) from (Lx,-Ly) to (Lx,Ly) range=(0,C0)

plots
   for t=0 by 0.05 to endtime
   contour(u)  report(Re)
   contour(v)  report(Re)
   contour(speed) painted  report(Re)
   vector(u,v) as "flow"   report(Re)
   contour(p)  as "Pressure" painted
   contour(dx(u)+dy(v)) as "Continuity Error"

   history(integral(c))
   history(u) at (0,0.8) (2,0.8) (3,0.8) (4,0.8) (Lx,0)
   history(v) at (0,0.8) (2,0.8) (3,0.8) (4,0.8)

end

5.1.4.13 coupled_contam inant_initeq

{  COUPLED_CONTAMINANT_INITEQ.PDE

  This example is a modification of the example COUPLED_CONTAMINANT.PDE  where
  LOWVISC.PDE  does not need to be run first. Instead it uses the INITIAL EQUATIONS
  section to solve for the flow velocities.
}

title 'Contaminant transport in 2D channel, Re > 40'

variables
   u(0.1)
   v(0.01)
   p(1)
   c(0.01)

definitions
   Lx = 5       Ly = 1.5
   p0 = 2
   speed = sqrt(u^2+v^2)
   dens = 1
   visc0 = 0.04

392
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   visc = visc0*(1+c)
   vxx = -(p0/(2*visc*(2*Lx)))*(Ly^2-y^2)        { open-channel x-velocity }

   rball=0.4
   cut = 0.1        { value for bevel at the corners of the obstruction }

   penalty = 100*visc/rball^2
   Re = globalmax(speed)*(Ly/2)/(visc0/dens)

   { program a contaminant pulse in space and time
        use SWAGE to eliminate discontinuous changes }
   swagepulse(f,a,b,rise) = swage(f-a,0,1,rise)*swage(f-b,1,0,rise)
   C0=2
   cinput = C0*swage(y-0.4,1,0,0.08 )*swagepulse(t,0.4,1,0.08)

   Kc = 0.002        { contaminant diffusivity }

Initial Values
   u = 0.5*vxx  v = 0  p = p0*(Lx+x)/(2*Lx)

initial equations
   { solve these steady-state equations to establish initial conditions for the time-
dependent run }
   u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))
   v:  visc*div(grad(v)) - dy(p) = dens*(u*dx(v) + v*dy(v))
   p:  div(grad(p)) = penalty*(dx(u)+dy(v))

equations
   u:  visc*div(grad(u)) - dx(p) = dens*dt(u) + dens*(u*dx(u) + v*dy(u))
   v:  visc*div(grad(v)) - dy(p) = dens*dt(v) + dens*(u*dx(v) + v*dy(v))
   p:  div(grad(p)) = penalty*(dx(u)+dy(v))
   c:  dt(c) + u*dx(c) + v*dy(c) = div(Kc*grad(c))

boundaries
   region 1
      start(-Lx,0)
      load(u) = 0   value(v) = 0   load(p) = 0  load(c)=0
        line to (Lx/2-rball,0)
      value(u) = 0  value(v) = 0  load(p) = 0
      mesh_spacing=rball/10  ! dense mesh to resolve obstruction
        line to (Lx/2-rball,rball) bevel(cut)
             to (Lx/2+rball,rball) bevel(cut)
             to (Lx/2+rball,0)

      mesh_spacing=10*rball  ! cancel dense mesh requirement
      load(u) = 0  value(v) = 0  load(p) = 0
        line to (Lx,0)

      load(u) = 0  value(v) = 0  value(p) = p0
      { Introduce a lump of contaminant: }
      value(c) = cinput
      mesh_spacing=Ly/20
                line to (Lx,Ly)

      mesh_spacing=100
      value(u)=0  value(v)=0  load(p)= 0  load(c)=0
                line to(-Lx,Ly)

      load(u) = 0  value(v) = 0  value(p) = 0
        line to close

time 0 to 10

monitors
   for cycle = 10
   contour(speed)  report(Re)
   contour(c) range(0,1)  report(Re)
   elevation(cinput) from (Lx,-Ly) to (Lx,Ly) range=(0,C0)
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plots
   for t=0 by 0.5 to endtime
   contour(c) range(0,1)  report(Re)
   contour(u)  report(Re)
   contour(v)  report(Re)
   contour(speed) painted  report(Re)
   vector(u,v) as "flow"   report(Re)
   contour(p)  as "Pressure" painted
   contour(dx(u)+dy(v)) as "Continuity Error"

   history(integral(c))
   history(u) at (0,0.8) (2,0.8) (3,0.8) (4,0.8) (Lx,0)
   history(v) at (0,0.8) (2,0.8) (3,0.8) (4,0.8)

end

5.1.4.14 flowslab

 
{  FLOWSLAB.PDE 
  
  This problem considers the laminar 
  flow of an incompressible, inviscid 
  fluid past an obstruction. 
  
  We assume that the flow can be 
  represented by a stream function, PSI, 
  such that the velocities, U in the 
  x-direction and V in the y-direction, 
  are given by:   
        U = -dy(PSI) 
        V = dx(PSI) 
  
  The flow can then be described by the 
  equation   
        div(grad(PSI)) = 0. 
  
  The contours of PSI describe the flow 
  trajectories of the fluid. 
  
  The problem presented here describes 
  the flow past a slab tilted at 
  45 degrees to the flow direction. The 
  left and right boundaries are held 
  at PSI=y, so that U=-1, and V=0. 
  
}  
title "Stream Function Flow past 45-degree slab"  
   
variables  
   psi              { define PSI as the system variable }  
   
definitions  
   a = 3;  b = 3    { size of solution domain }  
   len = 0.5        { projection of length/2 }  
   wid = 0.1        { projection of width/2 }  
   psi_far = y      { solution at large x,y }  
   
equations           { the equation of continuity: }  
   psi : div(grad(psi)) = 0  
   
boundaries  
   region 1                 { define the domain boundary }  
      start(-a,-b)          { start at the lower left }  
      value(psi)= psi_far   { impose U=-1 on the outer boundary }  
      line to (a,-b)        { walk the boundary Counter-Clockwise }  
           to (a,b)  
           to (-a,b)  
           to close         { return to close }  
   
      start(-len-wid,len-wid)   { start at upper left corner of slab }  
      value(psi)=0              { specify no flow on the slab surface }  



Sample Problems : Applications 396

      line to (-len+wid,len+wid){ walk around the slab CLOCKWISE for exclusion }  
           to (len+wid,-len+wid)  
           to (len-wid,-len-wid)  
           to close             { return to close }  
   
monitors  
   contour(psi) { show the potential during solution }  
   
plots           { write hardcopy files at termination }  
   grid(x,y)                    { show the final grid }  
   grid(x,y)   zoom(-1,0,1,1)   { magnify gridding at corner }  
   contour(psi) as "stream lines"       { show the stream function }  
   vector(-dy(psi),dx(psi)) as "flow"   { show the flow vectors }  
   vector(-dy(psi),dx(psi)) as "flow" zoom(-1,0,1,1)  
   
end  
  

5.1.4.15 geoflow

{ GEOFLOW.PDE  
  
  In its simplest form, the nonlinear steady-state quasi-geostrophic equation 
  is the coupled set: 
  
              q  = eps*del2(psi) + y                    (1) 
  
        J(psi,q) = F(x,y) - k*del2(psi)                 (2) 
  
  
  where psi     is the stream function 
        q       is the absolute vorticity 
        F       is a specified forcing function 
  
        eps and k are specified parameters 
  
        J       is the Jacobian operator: 
  
                J(a,b) = dx(a)*dy(b) - dy(a)*dx(b) 
  
  The single boundary condition is the one on psi stating that the closed 
  boundary C of the 2D area should be streamline: 
  
        psi = 0 on C. 
  
  In this test, the term k*del2(psi) in (2) has been replaced by (k/eps)*(q-y), 
  and a smoothing diffusion term damp*del2(q) has been added. 
  
  Only the natural boundary condition is needed for Q. 
}  
   
title 'Quasi-Geostrophic Equation, square, eps=0.005'  
   
variables  
    psi  
    q  
   
definitions  
    kappa = .05  
    epsilon = 0.005  
    koe = kappa/epsilon  
    size = 1.0  
    f = -sin(pi*x)*sin(pi*y)  
    damp =  1.e-3*koe  
   
initial values  
    psi = 0.  
    q   = y  
   
equations  
    psi: epsilon*del2(psi) - q = -y  
    q:   dx(psi)*dy(q) - dy(psi)*dx(q) + koe*q - damp*del2(q) = koe*y + f  
   
boundaries  
    region 1  
        start(0,0) value(psi)=0  natural(q)=0
        line to (1,0) to (1,1) to (0,1) to close  
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monitors  
    contour(psi)  
    contour(q)  
   
plots  
    contour(psi) as "Potential"  
    contour(q)   as "Vorticity"  
    surface(psi) as "Potential"  
    surface(q)   as "Vorticity"  
    vector(-dy(psi),dx(psi)) as "Flow"  
  
end  
  

5.1.4.16 hy perbolic

{ HYPERBOLIC.PDE   
 
  This problem shows the capabilities of FlexPDE in hyperbolic systems. 
  
  We analyze a single turn of a helical tube with a programmed flow velocity. 
  A contaminant is introduced into the center of the flow on the input surface. 
  Contaminant outflow is determined from the flow equations. 
  The contaminant concentration should flow uniformly around the helix. 
}  
   
title 'Helical Flow: a hyperbolic system.'  
   
select  
  ngrid=30
  regrid=off  { Fixed grid works better in hyperbolic systems } 
  vandenberg   { most effective method  for hyberbolic systems }

variables  
  u  
   
definitions  
  Rin = 1  
  Rout = 2  
  R0 = 1.5    
  dR = 0.3    { width of the input contaminant profile }  
  gap = 10    { angular gap between input and output faces } 
  gapr = gap*pi/180 { gap in radians }  
  cg = cos(gapr)  
  sg = sin(gapr)  
  pin = point(Rin*cg,-Rin*sg)  
  pout = point(Rout*cg,-Rout*sg)  
   
  r = magnitude(x,y)  
  v = 1  
  vx = -v*y/r  
  vy = v*x/r  
  q = 0        { No Source }  
  sink = 0     { No Sink }  
   
initial values
  u = 0

equations  
  u : div(vx*u, vy*u) + sink*u + q = 0  
   
boundaries  
  region 1  
    start (Rout,0)  
    value(u) = 0        { We know there should be no contaminant on walls  }  
      arc(center=0,0) angle=360-gap   { positive angle on outside }  
   
    nobc(u) { "No BC" on exit plane allows internal solution to dictate outflow }  
      line to pin  
   
    value(u)=0  
      arc(center=0,0) angle=gap-360   { negative angle on inside }  
   
    value(u)=exp(-((x-R0)/dR)^4)    { programmed inflow is supergaussian }  
      line to (1.2,0) to (1.4,0) to (1.6,0) to (1.8,0) to close  { resolve shape }  
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monitors  
  contour(u)  
  
plots  
  contour(u) painted  
  surface(u)  
  elevation(u) from (Rin,0.01) to (Rout,0.01)  
  elevation(u) from (0,Rin) to (0,Rout)  
  elevation(u) from (-Rin,0.01) to (-Rout,0.01)  
  elevation(u) from (0,-Rin) to (0,-Rout)  
  elevation(u) from pout to pin  
   
end  
  

5.1.4.17 landfill_gas_flow

{ LANDFILL_GAS_FLOW.PDE

  This script solves 2D flow of ideal gas through a porous medium combined of
  2 contiguous layers of distinct permeability in elliptic coordinates. The
  outermost of the two layers generates gas that flows inwards and is
  collected by a pipe in the centre. When the cross-sections are ellipses of
  a common focal length f, there are exact solutions available that are used
  for verification. Note: the domain appears almost circular, but if the
  coordinates are checked carefully, all boundaries are ellipses.

  Includes usage of:
  - redefinition of Cartesian coordinates to custom curvilinear system
  - definition of inverse hyperbolic functions
  - discontinuous material properties
  - definition of features via a repeat loop
  - file export via a repeat loop

  Written at:
  Department of Mathematics, Thompson Rivers University (British
  Columbia, Canada) by Damian Halvorsen and Yana Nec.
  Reference for the geometry and all formulae: appendix B in
  DOI: https://doi.org/10.1016/j.pce.2018.10.003 ;
  http://faculty.tru.ca/ynec/index_papers.html
}

Title 'Planar flow, elliptic geometry, 2 laminae'

COORDINATES cartesian2

VARIABLES P

DEFINITIONS
  C2K = 273.15  { 0 deg C in Kelvin }
  g = 9.8067    { gravity constant m/s^2 }
  ps = 101325   { standard atmospheric pressure at sea level Pa }
  Ts = C2K+15   { standard atmospheric temperature at sea level K }
  Tc = C2K+20   { standard chemical temperature K }
  Latm = 0.0065 { standard atmospheric cooling rate deg/m }
  R_air = 286.9 { air gas constant p = rho R T }
  Ro = 8.3145   { universal gas constant, specific R = Ro/M }
  i2m_p = ps/406.8 { inWc to Pa conversion factor }

  elev = 0; { surface elevation m }
  p_bar = ps { barometer pressure Pa }
  p_atm = p_bar*(1-Latm*elev/Ts)^(g/(R_air*Latm)) { atmospheric pressure at given
elevation}
  pB = p_atm-0.5*i2m_p { pressure under the cover (if applicable), converted from inWc }
  p_out = p_atm-15*i2m_p { outlet pressure, converted from inWc }
  d_P = 0.5*0.3048 { pipe diameter m }
  r_P = d_P/2 {pipe radius}

  { pack, waste and cover laminae thickness m }
  h = array(1,8,3)
  r_A = r_P+h[1] {gravel pack radius}
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  r_B = r_A+h[2] {landfill cavity radius}

  { porosity }
  p_eps = array(0.6,0.4,0.7)
  { effective packing sphere diameter to represent grain size m }
  sphere_diam = array(0.05,0.1,0.01) {k_b>k_a}
  { tortuosity }
  tau = 100

  k = p_eps^3*sphere_diam^2*(72*tau*(1-p_eps)^2)^(-1)

  { temperature deg C }
  Tlfg = 15+C2K

  { hole diameter m }
  dh = 3/8*0.0254

  { # of holes in each perforated cross-section }
  nh = 2
  dl = nh*(dh/2)^2/d_P

  {molar weights}
  M_CH4 = 0.016044
  M_CO2 = 0.04401
  M_O2 = 0.0319988
  M_N2 = 0.0280134
  Mw = array(M_CH4,M_CO2,M_O2,M_N2)
  { gas composition CH4, CO2 and O2, balance N2 }
  Xlfg0 = array(0.5,0.4,0.01);
  Xlfg = array(Xlfg0[1],Xlfg0[2],Xlfg0[3],1-sum(i,1,3,Xlfg0[i]))
  Rlfg = Ro/sum(i,1,4,Xlfg[i]*Mw[i])

  { Sutherland's formula }
  { base values for Sutherland's formula }

  To_CH4 = 273.15; s_CH4 = 197.8; muo_CH4 = 12.01*10^(-6);
  To_CO2 = 293.15; s_CO2 = 240; muo_CO2 = 14.8*10^(-6);
  !To_CO2 = 273.15; s_CO2 = 222.2; muo_CO2 = 13.7*10^(-6);
  To_O2 = 292.25; s_O2 = 127; muo_O2 = 20.18*10^(-6);
  To_N2 = 300.55; s_N2 = 111; muo_N2 = 17.81*10^(-6);

  mu_CH4 = muo_CH4*(Tlfg/To_CH4)^1.5*(To_CH4+s_CH4)/(Tlfg+s_CH4);
  mu_CO2 = muo_CO2*(Tlfg/To_CO2)^1.5*(To_CO2+s_CO2)/(Tlfg+s_CO2);
  mu_O2 = muo_O2*(Tlfg/To_O2)^1.5*(To_O2+s_O2)/(Tlfg+s_O2);
  mu_N2 = muo_N2*(Tlfg/To_N2)^1.5*(To_N2+s_N2)/(Tlfg+s_N2);

  { exponential formula }

  mu = array(mu_CH4, mu_CO2, mu_O2, mu_N2)
  a = 3/8 { empirical constant from Thomas A. Davidson's paper - 3/8 or 1/3
           a = 3/8 appears to work negligibly better }
  Ylfg = sum(i,1,4,sqrt(Mw[i])*Xlfg[i])

  fl = 2^a/Ylfg^2*sum(i,1,4,sum(j,1,4,
                  Xlfg[i]*Xlfg[j]*Mw[i]^((a+1)/2)*Mw[j]^((a+1)/2)/
                 (sqrt(mu[i]*mu[j])*(Mw[i]+Mw[j])^a)))
  mu_lfg = 1/fl

  { number of perforated cross-sections }
  n = 28

  { generation rate m^3/hr }
  C_init = 375
  C = C_init*ps/(3600*Rlfg*Tc*pi*(r_B^2-r_A^2)*dl*n)
  RT = Rlfg*Tlfg
  muRT = mu_lfg*RT
  muRTC = muRT*C

  Kp
  Cp
  ang_jump = pi/8
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  Px ! constant, to be used as a normalisation pressure value
  Px2 = Px^2
  f = 0.5*r_P ! focal length, common to all ellipses
  fb = f^2*muRTC/(4*Px2*k[2]) ! combined constants
  fc = f^2*muRT*Cp/(4*Px2*Kp)
  muRTCpx = muRT*Cp/Px2
  grav = 0*vector(0,-g,0) ! toggle the factor to turn gravity on and off

  ! define inverse hyperbolic functions not available as built in functions
  atanh(q) = 0.5*ln((1+q)/(1-q)) 
  acosh(q) = ln(q+sqrt(q^2 -1))
  asinh(q) = ln(q+sqrt(q^2 +1))

  { define the elliptic coordinates: xi runs along the hyperbolae (normal 
   coordinate) and phi is the elliptic arc length (tangential coordinate)
   Note: radial arc length = angle from horizontal, 
   elliptic arc length != angle from horizontal except 0, pi
  }
  xyf = f^2+y^2-x^2
  tanhxi = if(x=0) then sqrt(y^2/xyf) 
           else sqrt(0.5*(-xyf+sqrt(xyf^2+(2*x*y)^2))/x^2)
  xi = atanh(tanhxi)
  phi = if(x=0) then pi/2*sign(y)
        else if(x>0) then arctan(y/(x*tanhxi))
        else arctan(y/(x*tanhxi))+pi
  ! common expressions needed in exact solutions
  xip = acosh(r_P/f)
  xia = acosh(r_A/f)
  xib = acosh(r_B/f)
  xiPB = xip-xib
  xiBA = xib-xia
  xiAP = xia-xip

  r_outx = f*cosh(xib)
  r_outy = f*sinh(xib)
  r_inx = f*cosh(xia)
  r_iny = f*sinh(xia)
  r_px = f*cosh(xip)
  r_py = f*sinh(xip)

  ! coefficients needed in exact solutions
  ! block/unblock one type of boundary condition
  ! pressure boundary condition
  Px = pB
  rhs = -fb*(1+k[2]/(k[1]-k[2])*cosh(2*xiBA)+
        k[1]/(k[1]-k[2])*(sinh(2*xiPB)+sinh(2*xiBA)*cosh(2*xiAP))/sinh(2*xiAP))
  theta_P = 0
  theta_B = rhs-theta_P*k[1]/k[2]*sinh(2*xiBA)/sinh(2*xiAP)
  a0a = k[2]/(k[2]*xiAP+k[1]*xiBA)*((pB/Px)^2-(p_out/Px)^2+
        fb*(cosh(2*xib)-cosh(2*xia))-2*fb*sinh(2*xia)*xiBA)
  a0b = 1/(k[2]*xiAP+k[1]*xiBA)*(((pB/Px)^2-(p_out/Px)^2+
        fb*(cosh(2*xib)-cosh(2*xia)))*k[1]+2*k[2]*fb*sinh(2*xia)*xiAP)
  b0a = (p_out/Px)^2-a0a*xip
  b0b = (pB/Px)^2-a0b*xib+fb*cosh(2*xib)
  a1a = 1/(sinh(2*xiPB))*(theta_P*cosh(2*xib)-theta_B*k[2]/k[1]*cosh(2*xip)+
        fb*k[2]/k[1]*cosh(2*xip)*(cosh(2*xiBA)-1))
  b1b = 1/(sinh(2*xiPB))*(-theta_P*k[1]/k[2]*sinh(2*xib)+theta_B*sinh(2*xip)+
        fb*(sinh(2*xip)-sinh(2*xib)*cosh(2*xiAP)))
  a1b = 1/(sinh(2*xiPB))*(theta_P*k[1]/k[2]*cosh(2*xib)-theta_B*cosh(2*xip)+
        fb*(cosh(2*xib)*cosh(2*xiAP)-cosh(2*xip)))
  b1a = 1/(sinh(2*xiPB))*(-theta_P*sinh(2*xib)+theta_B*k[2]/k[1]*sinh(2*xip)+
        fb*k[2]/k[1]*sinh(2*xip)*(1-cosh(2*xiBA)))
  a0
  b0
  a1
  b1
  P_ell = sqrt(a0*xi+b0-fc*cosh(2*xi)+
        cos(2*phi)*(a1*sinh(2*xi)+b1*cosh(2*xi)-fc))

MATERIALS
'ACmat' :
    Kp = k[2]
    Cp = C
    a0 = a0b
    b0 = b0b
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    a1 = a1b
    b1 = b1b
'ABmat' :
    Kp = k[1]
    Cp = 0
    a0 = a0a
    b0 = b0a
    a1 = a1a
    b1 = b1a

INITIAL VALUES
  P = P_atm/Px

EQUATIONS
  div(Kp*p*(grad(p)-p/RT*grav)) = -muRTCpx

BOUNDARIES
  REGION 'AC'
    use material 'ACmat'
    start (r_outx,0)
    value(P) = sqrt((pB/Px)^2 +theta_B*cos(2*phi)) ! pressure boundary condition
    arc(center=0,0) to (0,r_outy) to (-r_outx,0)
                    to (0,-r_outy) to (r_outx,0)
    start (r_px,0)
    value(P) = sqrt((P_out/Px)^2 + theta_P*cos(2*phi))
    arc(center=0,0) to (0,r_py) to (-r_px,0)
                    to (0,-r_py) to (r_px,0)

  REGION 'AB'
    use material 'ABmat'
    start (r_inx,0)
    arc(center=0,0) to (0,r_iny) to (-r_inx,0)
                    to (0,-r_iny) to (r_inx,0)
    start (r_px,0)
    arc(center=0,0) to (0,r_py) to (-r_px,0)
                    to (0,-r_py) to (r_px,0)

  repeat th = 0 by ang_jump to 3/8*pi
    Feature 'Ray_'+$th
      start(r_px*cos(th),r_py*sin(th)) line to (r_outx*cos(th), r_outy*sin(th))
  endrepeat

PLOTS
  contour(P) painted zoom(-r_px,-r_px,2*r_px)
  
  repeat th = 0 by ang_jump to 3/8*pi
    Elevation (P, P_ell) on 'Ray_'+$th as 'P on Ray_'+$th
        export points=30 file = 'qpe2L_'+$round(th*10000)+'.tbl'
    Elevation (P-P_ell) on 'Ray_'+$th as 'P error on Ray_'+$th
  endrepeat  

END

5.1.4.18 lowvisc

{  LOWVISC.PDE 
 
  This example is a modification of the VISCOUS.PDE  problem, in which the 
  viscosity has been lowered to produce a Reynold's number of approximately 
  40.  This seems to be the practical upper limit or Reynolds number for 
  steady-state solutions of Navier-Stokes equations with FlexPDE. 
 
  As the input pressure is raised, the disturbance in velocities propagates farther 
  down the channel.  The channel must be long enough that the velocities 
  have returned to the open-channel values, or the P=0 boundary condition 
  at the outlet will be invalid and the solution will not succeed. 
 
  The problem computes half of the domain, with a reflective boundary at the bottom. 
 
  We have included four elevation plots of X-velocity, at the inlet, channel 
  center, obstruction center and outlet of the channel.  The integrals presented 
  on these plots show the consistency of mass transport across the channel. 

405
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  We have added a variable psi to compute the stream function for plotting stream lines.

}  
  
title 'Viscous flow in 2D channel, Re > 40'  

  
variables  
   u(0.1)  
   v(0.01)  
   p(1)  
   psi

select
   ngrid = 40

definitions  
   Lx = 5       
   Ly = 1.5  
   p0 = 2  
   speed2 = u^2+v^2  
   speed = sqrt(speed2)  
   dens = 1  
   visc = 0.04    vxx = -(p0/(2*visc*(2*Lx)))*(Ly^2-y^2)  { open-channel x-velocity }  
  
   rball=0.4  
   cut = 0.1    { value for bevel at the corners of the obstruction }  
  
   penalty = 100*visc/rball^2  
   Re = globalmax(speed)*(Ly/2)/(visc/dens)  

   w = zcomp(curl(u,v))  ! vorticity is the source for streamline equation

initial values  
   u = 0.5*vxx  v = 0  p = p0*(Lx+x)/(2*Lx)  
  
equations  
   u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))  
   v:  visc*div(grad(v)) - dy(p) = dens*(u*dx(v) + v*dy(v))  
   p:  div(grad(p)) = penalty*(dx(u)+dy(v))  
then
   psi:  div(grad(psi)) + w = 0  ! solve streamline equation separately from velocities

boundaries  
   region 1  
      start(-Lx,0)  
      load(u) = 0   value(v) = 0  load(p) = 0   value(psi) = 0
        line to (Lx/2-rball,0)  
  
      value(u) = 0  value(v) = 0  load(p) = 0  
      mesh_spacing = rball/10  ! dense mesh to resolve obstruction
        line to (Lx/2-rball,rball) bevel(cut)  
             to (Lx/2+rball,rball) bevel(cut)  
             to (Lx/2+rball,0)  
  
      mesh_spacing = 10*rball  ! cancel dense mesh requirement
      load(u) = 0  value(v) = 0  load(p) = 0  
        line to (Lx,0)  
  
      load(u) = 0  value(v) = 0  value(p) = p0  natural(psi) = 0
        line to (Lx,Ly)  
  
      value(u) = 0  value(v) = 0  load(p) = 0  natural(psi) = normal(-v,u)
        line to (-Lx,Ly)  
  
      load(u) = 0  value(v) = 0  value(p) = 0  natural(psi) = 0
        line to close  
  
monitors  
   contour(speed)  report(Re)  
   contour(psi) as "Streamlines"
   contour(max(psi,-0.003)) zoom(Lx/2-3*rball,0, 3*rball,3*rball)  as "Vortex
Streamlines"
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   vector(u,v) as "flow"    zoom(Lx/2-3*rball,0, 3*rball,3*rball) norm

plots  
   contour(u)  report(Re)  
   contour(v)  report(Re)  
   contour(speed) painted  report(Re)  
   vector(u,v) as "flow"   report(Re)  
   contour(p)  as "Pressure" painted  
   contour(dx(u)+dy(v)) as "Continuity Error"  
   elevation(u) from (-Lx,0) to (-Lx,Ly)  
   elevation(u) from (0,0) to (0,Ly)  
   elevation(u) from (Lx/2,0) to (Lx/2,Ly)  
   elevation(u) from (Lx,0) to (Lx,Ly)  
   contour(psi) as "Streamlines"
   contour(max(psi,-0.003)) zoom(Lx/2-3*rball,0, 3*rball,3*rball)  as "Vortex
Streamlines"
   vector(u,v) as "flow"    zoom(Lx/2-3*rball,0, 3*rball,3*rball) norm

   Transfer(u,v,p)   ! write flow solution as initial values for Coupled_Contaminant.pde

end  
  

5.1.4.19 swirl

{  SWIRL.PDE 
 
  This problem addresses swirling flow in a cylindrical 
  vessel driven by a bottom impeller using a vector 
  description of the equations. 
  
  In two-dimensional cylindrical coordinates, we can 
  represent three velocity components (radial, axial 
  and tangential) as long as there is no variation of 
  cross-section or velocity in the azimuthal coordinate. 
  
  The Navier-Stokes equation for flow in an incompressible 
  fluid with no body forces can be written in FlexPDE 
  notation as  
    dens*(dt(U) + dot(U,grad(u)) = -grad(p) + visc*del2(U)   
  where U represents the vector fluid velocity, p is the 
  pressure, dens is the density and visc is the viscosity 
  of the fluid.  Here the pressure can be considered as 
  the deviation from static pressure, because uniform static 
  forces like gravity can be cancelled out of the equation. 
  
  In two-dimensional steady-state axisymmetric form, this 
  equation becomes three component equations, radial (vr), 
  tangential (vt) and axial (vz):  
    dens*(vr*dr(vr) - vt^2/r  + vz*dz(vr)) + dr(p) = 
                                visc*[div(grad(vr)) - vr/r^2]

    dens*(vr*dr(vt) + vr*vt/r + vz*dz(vt)) = 
                                visc*[div(grad(vt)) - vt/r^2]

    dens*(vr*dr(vz) + vz*dz(vz)) + dz(p) = visc*div(grad(vz))
 
  Notice that various strange terms arise, representing centrifugal and coriolis 
  forces in cylindrical coordinates and derivatives of the unit vectors in the 
  viscosity term. Notice also that there are no tangential derivatives, these 
  having been assumed zero. 
  
  In principle, these equations are supplemented by the equation of incompressible 
  mass conservation:   
    div(U) = 0   
  but this equation contains no reference to the pressure, which is nominally the 
  remaining variable to be determined. 
  
  In practice, we choose to solve a "slightly compressible" system by defining a 
  hypothetical equation of state   
    p(dens) = p0 + L*(dens-dens0)   
  where p0 and dens0 represent a reference density and pressure, and L is a large 
  number representing a strong response of pressure to changes of density.  L is 
  chosen large enough to enforce the near-incompressibility of the fluid, yet not 
  so large as to erase the other terms of the equation in the finite precision 
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  of the computer arithmetic. 
  
  The compressible form of the continuity equation is   
    dt(dens) + div(dens*U) = 0   
  which, together with the equation of state yields   
    dt(p) = -L*dens0*div(U) 
  
  In steady state, we can replace the dt(p) by -div(grad(p))    
     [see Help | Tech Notes | Smoothing Operators in PDEs"] , 
  resulting in the final pressure equation:   
    div(grad(p)) = L*dens*div(U)   
  
  In a real stirring vessel, the fluid is driven by an impeller bar in the bottom 
  of the fluid. Since we cannot directly represent this geometry in an axisymmetric 
  model, we approximate the effect of the impeller by a body force on the fluid 
  in the lower segment of the domain.  This body force attempts to accelerate the 
  fluid to the velocity of the stir bar, with an arbitrary partition of the 
  velocity into vr, vt and vz. 
  
}  
   
TITLE 'Swirling cylindrical flow'

COORDINATES
  ycylinder ('r','z')

VARIABLES
  V(0.001)  = vector(vr, vz, vt)
  p(0.001)  { pressure, with linear interpolation and minimum expected range  }

DEFINITIONS
  rad=0.01    { vial radius }
  ht=0.02     { vial height }
  radimp = 0.98*rad  { radial impeller size }
  radwall = 0.95*rad { a gridding feature to put finer mesh at vial wall }

  dens=1000     { fluid density }
  visc=0.001    { fluid viscosity }

  vm=magnitude(V)

  div_v=  div(V)    { velocity divergence }

  PENALTY = 1e4*visc/rad^2  { the phony equation of state coefficient }

  band = ht/20  { height of force band }
  bf = 1e5     { arbitrary body-force scaling }
  f             { stirbar force - assigned by region later }
  rpm =staged(10,20,30)   { several stirring speeds }
  vimp = 2*pi*r*rpm/60      { impeller velocity }
  vr0 = 0.2*vimp    { arbitrary partition of stirring velocity }
  vt0 = 1.0*vimp
  vz0 = 0.3*vimp

  V0 = vector(vr0, vz0, vt0)

  mass_balance = div_v/integral(1)

INITIAL VALUES
  vr=0
  vz=0
  vt=0
  p=0

EQUATIONS
  V: dens*dot(V,grad(V)) + grad(p) - visc*div(grad(V)) = F*(V0-V)
  p: div(grad(p)) =  penalty*div_v

BOUNDARIES

  Region 'domain'

348
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    F=0
    Start 'outer' (0,0)
      { mirror conditions on bottom boundary }
      natural(vr)=0 natural(vt)=0   value(vz)=0     natural(p)=0    line to (rad,0)
      value(vr)=0   ! impenetrable radial wall
      { no slip on sides (ie, velocity=0)  }
!      value(vt)=0     value(vz)=0
      { friction on sides  - generate an outward "Flux" of V (i.e. -visc*grad(V)) to
drive it toward zero  }
      natural(vt)=100*vt     natural(vz)=100*vz     natural(p)=0    line to (rad,ht)
      { zero pressure and no z-flow on top, but free vr and vt }
      natural(vr)=0 natural(vt)=0   value(vz)=0     value(p)=0      line to (0,ht)
      { no radial or tangential velocity on spin axis }
      value(vr)=0   value(vt)=0     natural(vz)=0   natural(p)=0    line to close

  Region "impeller"
    F=bf
    Start(0,0) line to (radimp,0) to (radimp,band) to (0,band) to close

  { add a gridding feature to help resolve the shear layer at the wall }
  Feature start(radwall,0) line to (radwall,ht)

MONITORS
  contour(vr) as "Radial Velocity"  report(rpm)
  contour(vt) as "Swirling Velocity" report(rpm)
  contour(vz) as "Axial Velocity" report(rpm)
  elevation(vt,vt0) from(0,0) to (rad,0)  as "Impeller Velocity" report(rpm)
  contour(p) as "Pressure"
  vector(vr,vz) as "R-Z Flow"

PLOTS
  contour(vr) as "Radial Velocity"  report(rpm)
  contour(vt) as "Swirling Velocity"  report(rpm)
  contour(vz) as "Axial Velocity" report(rpm)
  contour(vm) as "Velocity Magnitude" report(rpm)
  contour(p) as "Pressure" report(rpm)
  vector(vr,vz) norm as "R-Z Flow"  report(rpm)
  contour(mass_balance)  report(rpm)
  elevation(vr) from (0,band) to (rad,band) as "Radial Velocity"   report(rpm)
  elevation(vt) from (0,band) to (rad,band) as "Swirling Velocity" report(rpm)
  elevation(vz) from (0,band) to (rad,band) as "Axial Velocity"  report(rpm)
  elevation(vt,vt0) from(0,band) to (rad,band)  as "Impeller Velocity" report(rpm)
  elevation(vm) from (0,band) to (rad,band) as "Velocity Magnitude" report(rpm)
  elevation(vr) from (0,ht/2) to (rad,ht/2) as "Radial Velocity"   report(rpm)
  elevation(vt) from (0,ht/2) to (rad,ht/2) as "Swirling Velocity" report(rpm)
  elevation(vz) from (0,ht/2) to (rad,ht/2) as "Axial Velocity"  report(rpm)
  elevation(vm) from (0,ht/2) to (rad,ht/2) as "Velocity Magnitude" report(rpm)
  elevation(vr) from (0,0.9*ht) to (rad,0.9*ht) as "Radial Velocity"   report(rpm)
  elevation(vt) from (0,0.9*ht) to (rad,0.9*ht) as "Swirling Velocity" report(rpm)
  elevation(vz) from (0,0.9*ht) to (rad,0.9*ht) as "Axial Velocity"  report(rpm)
  elevation(vm) from (0,0.9*ht) to (rad,0.9*ht) as "Velocity Magnitude" report(rpm)
  elevation(vm) from (rad/2,0) to (rad/2,ht) as "Velocity Magnitude" report(rpm)

END

5.1.4.20 viscous

{  VISCOUS.PDE 
 
  This example shows the application of FlexPDE to problems in 
  viscous flow. 
 
  The Navier-Stokes equation for steady incompressible flow in two 
  cartesian dimensions is  
        dens*(dt(U) + U*dx(U) + V*dy(U)) = visc*del2(U) - dx(P) + dens*Fx 
        dens*(dt(V) + U*dx(V) + V*dy(V)) = visc*del2(V) - dy(P) + dens*Fy  
  together with the continuity equation  
        div[U,V] = 0  
  where 
        U and V are the X- and Y- components of the flow velocity 
        P is the fluid pressure 
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        dens is the fluid density 
        visc is the fluid viscosity 
        Fx and Fy are the X- and Y- components of the body force. 
 
  In principle, the third equation enforces incompressible mass conservation, 
  but the equation contains no reference to the pressure, which is nominally 
  the remaining variable to be determined. 
 
  In practice, we choose to solve a "slightly compressible" system by defining a 
  hypothetical equation of state  
    p(dens) = p0 + L*(dens-dens0)  
  where p0 and dens0 represent a reference density and pressure, and L is a large 
  number representing a strong response of pressure to changes of density.  L is 
  chosen large enough to enforce the near-incompressibility of the fluid, yet not 
  so large as to erase the other terms of the equation in the finite precision 
  of the computer arithmetic. 
 
  The compressible form of the continuity equation is  
    dt(dens) + div(dens*U) = 0  
  which, together with the equation of state yields  
    dt(p) = -L*dens0*div(U) 
 
  In steady state, we can replace the dt(p) by -div(grad(p)) 
     [see Help | Tech Notes | Smoothing Operators in PDEs"], 
  resulting in the final pressure equation:  
    div(grad(p)) = M*div(U)  
  Here M has the dimensions of density/time or viscosity/distance^2. 
 
  The problem posed here shows flow in a 2D channel blocked by a bar of square 
  cross-section.  The channel is mirrored on the bottom face, and only the upper 
  half is computed. 
 
  We have chosen a "convenient" value of M, one that gives good 
  accuracy in reasonable time.  The user can alter this value to find one 
  which is satisfactory for his application. 
 
  We have included three elevation plots of X-velocity, at the inlet, center 
  and outlet of the channel.  The integrals presented on these plots show the 
  consistency of mass transport across the channel. 
 
 }  
  
title 'Viscous flow in 2D channel, Re < 0.1'  
  
variables  
   u(0.1)  
   v(0.01)  
   p(1)  

select
   ngrid = 40

definitions  
   Lx = 5       Ly = 1.5  
   Gx = 0       Gy = 0  
   p0 = 1  
   speed2 = u^2+v^2  
   speed = sqrt(speed2)  
   dens = 1  
   visc = 1  

   vxx = (p0/(2*visc*Lx))*(Ly-y)^2  { open-channel x-velocity }  
  
   rball=0.25  
   cut = 0.05   { value for bevel at the corners of the obstruction }  

   pfactor = staged(1,10,100,1000)
   penalty = pfactor*visc/rball^2   { "equation of state" }  
   Re = globalmax(speed)*(Ly/2)/(visc/dens)  
  
initial values  
   u = 0.5*vxx  v = 0  p = p0*x/Lx  
  
equations  
   u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))  
   v:  visc*div(grad(v)) - dy(p) = dens*(u*dx(v) + v*dy(v))  
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   p:  div(grad(p)) = penalty*(dx(u)+dy(v))  
  
boundaries  
   region 1  
     start(0,0)  
       { unspecified boundary conditions default to LOAD=0 }  
       value(v)=0   line to (Lx/2-rball,0)  
       value(u)=0   line to (Lx/2-rball,rball) bevel(cut)  
                    line to (Lx/2+rball,rball) bevel(cut)  
                    line to (Lx/2+rball,0)  
       load(u)=0    line to (Lx,0)  
       value(p)=p0  line to (Lx,Ly)  
       value(u)=0   load(p)=0   line to (0,Ly)  
       load(u)=0    value(p)=0  line to close  
  
monitors  
   contour(speed) report(Re)  
  
plots  
   grid(x,y)  
   contour(u)  report(Re)  
   contour(v)  report(Re)  
   contour(speed) painted  report(Re)  
   vector(u,v) as "flow"   report(Re)  
   contour(p)  as "Pressure" painted  
   contour(dx(u)+dy(v)) as "Continuity Error"  
   contour(p) zoom(Lx/2,0,1,1) as "Pressure"  
   elevation(u) from (0,0) to (0,Ly)  
   elevation(u) from (Lx/2,0) to (Lx/2,Ly)  
   elevation(u) from (Lx,0) to (Lx,Ly)  
  
end  
  

5.1.5 Groundwater

5.1.5.1 porous

{  POROUS.PDE   
 
  This problem describes the flow through an anisotropic porous foundation. 
  It is taken from Zienkiewicz, "The Finite Element Method in Engineering Science", 
  p. 305.  
 
}  
   
title 'Anisotropic Porous flow'  
   
variables  
  pressure  
   
definitions  
  ky = 1  
  kx = 4  
   
equations  
  pressure : dx(kx*dx(pressure)) + dy(ky*dy(pressure)) = 0  
   
boundaries  
  region 1  
      start(0,0)  
        natural(pressure)=0 line to (5,0) to (5,5)  
        value(pressure)=0   line to (2,2)  
        natural(pressure)=0 line to (2.5,2) to (2.5,1.95) to (1.95,1.95)  
        value(pressure)=100 line to close  
  
monitors  
  contour(pressure)  
  
plots  
  contour(pressure)  
  surface(pressure)  
  
end  
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5.1.5.2 richards

{  RICHARDS.PDE

  A solution of Richards' equation in 1D.
  Constant negative head at surface, unit gradient at bottom.
  This problem runs slowly, because the very steep wave front
  requires small cells and small timesteps to track accurately.

  submitted by Neil Soicher of University of Hawaii.
}

title "1-D Richard's equation"

coordinates
    cartesian1('y')

variables
    h (1)

definitions
    thr = 0.2
    ths = 0.58
    alpha = .08
    n = 1.412
    ks = 10
    {Using Van Genuchten parameters for water content (wc),
     water capacitance (C=d(wc)/dh), effecive saturation (se),
     and hydraulic Conductivity (k) }
    m  = 1-1/n
    wc = if h<0 then thr+(ths-thr)*(1+(abs(alpha*h))^n)^(-m) else ths
    C  = ((1-n)*abs(-alpha*h)^n*(1+abs(-alpha*h)^n)^((1/n)-2)*(ths-thr))/h
    se = (wc-thr)/(ths-thr)
    k  = ks*sqrt(se)*(1-(1-se^(1/m))^m)^2

initial values
    h = 199*exp(-(y-100)^2)-200

equations
    h : dy(k*(dy(h)+1)) = C*dt(h)

boundaries
    region 1
        start(0)
        line to (100) point value(h) = -1

front(h+150,1)

time 0 to 2

monitors
    for cycle=10
        elevation(h) from (0) to (100) as "pressure"
        elevation(c) from (0) to (100) as "capacitance"
        elevation(k) from (0) to (100) log as "conductivity"
        grid(y)

plots
     for t=0.001 by 0.001 to 0.01 0.1 by 0.1 to endtime
        elevation(h) from (0) to (100) as "pressure"
        elevation(c) from (0) to (100) as "capacitance"
        elevation(k) from (0) to (100) log as "conductivity"
        grid(y) 

        history(K) at (90) (95) (99) (100)
        history(C) at (90) (95) (99) (100)

end "IE3vuxq/blOMIRLitV++FYgmXZuPz8D1+wvzXgpATJSsnTmsgWgSZOaLi+YOaMBsdxHjOXQUBxLPMVWceTZ



FlexPDE 7 : Sample Problems409

+tzU0r6xbZ0Y9YaEBD8IG48nPCNezshKtEYPOYKh4ucdlKJWvPO8XzbScXAA9wKDowS86YuXXbtMkiY/S4U2KCpa"

5.1.5.3 water

{  WATER.PDE 
 
    This problem shows the flow of water to two wells, through soil regions of 
    differing porosity.  It also displays the ability of FlexPDE to grid features 
    of widely varying size. 
 
}  
  
title 'Groundwater flow to two wells'  
  
definitions  
    k                    { no value is required, as long as it appears later }  
    s = 0                { no volumetric source }  
    k1 = 0.1             { high porosity value }  
    k2 = 1.0e-7          { low  porosity value }  
    sx1 = 0.7   sy1 = 0.4{ well 1 location }  
    sx2 = 0.5   sy2 = 0.2{ well 2 location }  
    srad = 0.001         { well radius = one thousandth of domain size }  
    w = 0.05             { a zoom window size }  
  
    px = 0.4    py = 0.4 { percolation pond center }  
    pr = 0.025           { percolation pond radius }  
    ps = 1e-4            { percolation rate }  
  
variables  
    h  
  
equations  
    h : div(k*grad(h)) + s = 0  
  
boundaries  
  
  region 1  { The domain boundary, held at constant pressure head }  
    k=k1  
    start(0,0)  
    value(h)=0 line to (0.25,-0.1)  
                    to (0.45,-0.1)  
                    to (0.65,0)  
                    to (0.95,0.1)  
                    to (0.95,0.4)  
                    to (0.75,0.6)  
                    to (0.45,0.65)  
                    to (0,0.4)  
                    to close  
  
    { Two wells, held at constant draw-down depths }  
    start(sx1,sy1-srad)  
    value(h) = -1        arc(center=sx1,sy1) angle=-360  
    start(sx2,sy2-srad)  
    value(h) = -2        arc(center=sx2,sy2) angle=-360 
 
  region 2  { Some regions of low porosity }  
    k=k2  
    start(0,0) line to (0.25,-0.1)  
                    to (0.45,-0.1)  
                    to (0.45,0.05)  
                    to (0,0.05)  
                    to close  
  
    start(0.95,0.1) line to (0.95,0.3)  
                    to (0.65,0.3)  
                    to (0.65,0)  
                    to close  
  
    start(0.3,0.3) line to (0.5,0.4)  
                    to (0.5,0.6)  
                    to (0.3,0.5)  
                    to close  
  
  region 3  { A percolation pond }  
    k = k2  
    s = ps  { percolation rate }  
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    start (px,py-pr) arc(center=px,py) angle=360  
  
monitors  
  contour(h)  
  
plots  
  grid(x,y)  
  grid(x,y) zoom(sx1-w/2,sy1-w/2,w,w)  
  grid(x,y) zoom(sx2-w/2,sy2-w/2,w,w)  
  contour(h) as 'Head'  
  contour(h) as 'Head' zoom(0.65,0.35,0.1,0.1)  
  surface(h) as 'Head'  
  
end  
  

5.1.6 Heatflow

5.1.6.1 1d_float_zone

{  1D_FLOAT_ZONE.PDE   
 
   This is a version of the example FLOAT_ZONE.PDE  in 1D cartesian geometry. 
 
}  
  
title  
  "Float Zone in 1D Cartesian geometry"  
  
select  
  cell_limit=100  
  
coordinates  
  cartesian1  
  
variables  
  temp(threshold=100)  
  
definitions  
  k = 10    {thermal conductivity}  
  cp = 1    { heat capacity }  
  long = 18  
  H = 0.4   {free convection boundary coupling}  
  Ta = 25   {ambient temperature}  
  A = 4500  {amplitude}  
  
  source = A*exp(-((x-1*t)/.5)^2)*(200/(t+199))  
  
initial value  
  temp = Ta  
  
equations  
  temp : div(k*grad(temp)) + source -H*(temp - Ta) = cp*dt(temp)  
  
boundaries  
  region 1  
    start(0) point value(temp) = Ta  
    line to (long) point value(temp) = Ta  
  
time -0.5 to 19 by 0.01  
  
monitors  
  for t = -0.5 by 0.5 to (long + 1)  
    elevation(temp) from (0) to (long) range=(0,1800) as "Surface Temp"  
  
plots  
  for t = -0.5 by 0.5 to (long + 1)  
    elevation(temp) from (0) to (long) range=(0,1800) as "Axis Temp"  
    elevation(source) from(0) to (long)  
    elevation(-k*grad(temp)) from(0) to (long)  
  
histories  
  history(temp) at (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)   
                   (10) (11) (12) (13) (14) (15) (16) (17) (18)  
  
end  

414
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5.1.6.2 3d_bricks

{  3D_BRICKS.PDE   
 
 This problem demonstrates the application 
 of FlexPDE to steady-state three dimensional
 heat conduction.  An assembly of four bricks
 of differing conductivities has a gaussian 
 internal heat  source, with all faces held 
 at zero temperature.  After a time, the  
 temperature reaches a stable distribution.     
 
 This is the steady-state analog of problem 
 3D_BRICKS+TIME.PDE   

}  
title 'steady-state 3D heat conduction'  
   
select  
    regrid=off  { use fixed grid }  
   
coordinates  
    cartesian3  

variables  
    Tp  
   
definitions  
    long = 1  
    wide = 1  
    K   { thermal conductivity -- values supplied later }  
    Q = 10*exp(-x^2-y^2-z^2)    { thermal source }  
   
initial values  
    Tp = 0.  
   
equations  
    Tp : div(k*grad(Tp)) + Q = 0    { the heat equation }  
   
extrusion z = -long,0,long      { divide Z into two layers }  
   
boundaries  
    Surface 1 value(Tp)=0       { fix bottom surface temp }  
    Surface 3 value(Tp)=0       { fix top surface temp }  
   
    Region 1    { define full domain boundary in base plane }  
       layer 1 k = 1.0          { bottom right brick }
       layer 2 k = 0.1          { top right brick }
       start(-wide,-wide)  
         value(Tp) = 0          { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2    { overlay a second region in left half }  
       layer 1 k = 0.2          { bottom left brick }
       layer 2 k = 0.4          { top left brick }
       start(-wide,-wide)  
         line to (0,-wide)      { walk left half boundary in base plane }  
           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors  
    contour(Tp) on z=0  as "XY Temp"  
    contour(Tp) on x=0  as "YZ Temp"  
    contour(Tp) on y=0  as "XZ Temp"  
    elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"  
    elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"  
    elevation(Tp) from (0,0,-long) to (0,0,long)  as "Z-Axis Temp"  
   
plots  
    contour(Tp) on z=0  as "XY Temp"  

412
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    contour(Tp) on x=0  as "YZ Temp"  
    contour(Tp) on y=0  as "XZ Temp"  
    elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"
    elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"
    elevation(Tp) from (0,0,-long) to (0,0,long)  as "Z-Axis Temp"
   
end  
  

5.1.6.3 3d_bricks+tim e

{  3D_BRICKS+TIME.PDE 
 
 This problem demonstrates the application of FlexPDE to time-dependent 
 three dimensional heat conduction.  An assembly of bricks of differing 
 conductivities has a gaussian internal heat source, with all faces held 
 at zero temperature.  After a time, the temperature reaches a stable 
 distribution. 
 This is the time-dependent analog of example problem 3D_BRICKS.PDE . 
 
}  
    
title 'time-dependent 3D heat conduction'  
  
select  
    regrid=off  { use fixed grid }  
    ngrid=5     { smaller grid for quicker run }  
  
coordinates  
    cartesian3  
  
variables  
    Tp(threshold=0.1)   { the temperature variable, with approximate size  }  
  
definitions  
    long = 1  
    wide = 1  
    K   { thermal conductivity -- values supplied later }  
    Q = 10*exp(-x^2-y^2-z^2)    { thermal source }  
    tmax = 6                    { plot range control }  
  
initial values  
    Tp = 0.  
  
equations  
    Tp : div(k*grad(Tp)) + Q = dt(Tp)   { the heat equation }  
  
extrusion z = -long,0,long      { divide Z into two layers }  
  
boundaries  
    Surface 1 value(Tp)=0       { fix bottom surface temp }  
    Surface 3 value(Tp)=0       { fix top surface temp }  
  
    Region 1    { define full domain boundary in base plane }  
       k = bylayer (1.0, 0.1)  { bottom and top right brick }
       start(-wide,-wide)  
         value(Tp) = 0          { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
              to (wide,wide)  
              to (-wide,wide)  
              to close  
  
    Region 2    { overlay a second region in left half }  
       k = bylayer (0.2, 0.4)  { bottom and top left brick }
       start(-wide,-wide)  
         line to (0,-wide)      { walk left half boundary in base plane }  
              to (0,wide)  
              to (-wide,wide)  
              to close  
  
time 0 to 3 by 0.01 { establish time range and initial timestep }  
  
monitors  
  for cycle=1  
    contour(Tp) on z=0  as "XY Temp" range=(0,tmax)  
    contour(Tp) on x=0  as "YZ Temp" range=(0,tmax)  
    contour(Tp) on y=0  as "XZ Temp" range=(0,tmax)  

411
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    elevation(Tp) from (-wide,0,0) to (wide,0,0) as "X-Axis Temp" range=(0,tmax)  
    elevation(Tp) from (0,-wide,0) to (0,wide,0) as "Y-Axis Temp" range=(0,tmax)  
    elevation(Tp) from (0,0,-long) to (0,0,long) as "Z-Axis Temp" range=(0,tmax)  
  
plots  
  for t = endtime  
    contour(Tp) on z=0  as "XY Temp" range=(0,tmax)  
    contour(Tp) on x=0  as "YZ Temp" range=(0,tmax)  
    contour(Tp) on y=0  as "XZ Temp" range=(0,tmax)  
  
histories  
    history(Tp) at (wide/2,-wide/2,-long/2)  
                    (wide/2,wide/2,-long/2)  
                    (-wide/2,wide/2,-long/2)  
                    (-wide/2,-wide/2,-long/2)  
                    (wide/2,-wide/2,long/2)  
                    (wide/2,wide/2,long/2)  
                    (-wide/2,wide/2,long/2)  
                    (0,0,0)  range=(0,tmax)  
  
end  
  

5.1.6.4 axisy m m etric_heat

{  AXISYMMETRIC_HEAT.PDE   
  
  This example demonstrates axi-symmetric 
  heatflow. 
  
  The heat flow equation in any coordinate 
  system is   
       div(K*grad(T)) + Source = 0. 
  
  The following problem is taken from 
  Zienkiewicz, "The Finite Element Method 
  in Engineering Science", p. 306 (where 
  the solution is plotted, but no dimensions
  are given). It describes the flow of heat 
  in a spherical vessel. 
  The outer boundary is held at Temp=0, 
  while the inner boundary is held at Temp=100. 
  
}  
   
title "Axi-symmetric Heatflow "  
   
coordinates  
  ycylinder("R","Z")    { select a cylindrical coordinate system, with 
                           the rotational axis along the "Y" direction 
                            and the coordinates named "R" and "Z" }  
variables  
  Temp              { Define Temp as the system variable }  
   
definitions  
  K = 1             { define the conductivity }  
  source = 0        { define the source (this problem doesn't have one) }  
   
Initial values  
  Temp = 0          { unimportant in linear steady-state problems }  
   
equations           { define the heatflow equation: }  
  Temp : div(K*grad(Temp)) + Source = 0  
   
boundaries          { define the problem domain }  
  Region 1          { ... only one region }  
   
    start(5,0)  
    natural(Temp)=0 { define the bottom symmetry boundary condition }  
    line to (6,0)  
   
    value(Temp)=0   { fixed Temp=0 in outer boundary }  
    line to (6,3)   { walk the funny stair-step outer boundary }  
         to (5,3)  
         to (5,4)  
         to (4,4)  
         to (4,5)  
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         to (3,5)  
         to (3,6)  
         to (0,6)  
   
    natural(Temp)= 0    { define the left symmetry boundary }  
    line to (0,5)  
   
    value(Temp)=100     { define the fixed inner temperature }  
    arc( center=0,0) to close   { walk an arc to the starting point }  
   
monitors  
  contour(Temp)     { show contour plots of solution in progress }  
   
plots               { write these hardcopy files at completion }  
  contour(Temp)     { show solution }  
  surface(Temp)  
  vector(-2*pi*r*K*grad(Temp)) as "Heat Flow"  
   
end  
  

5.1.6.5 float_zone

{ FLOAT_ZONE.PDE   
 
  This example illustrates time-dependent axi-symmetric heat flow with a 
  moving source. 
 
  A rod of conductive material of unit radius and "long" units length 
  is clamped to a heat sink at either end.  An RF coil passes the 
  length of the rod, creating a moving heat source of gaussian profile. 
  This produces a moving melt zone which carries impurities with it as it moves. 
  A cam adjusts the source amplitude by 200/(t+199) to produce an approximately 
  constant maximum temperature. 
 
}  
  
title  
  "Float Zone"  
  
coordinates  
  xcylinder('Z','R')  
  
select  
  cubic     { Use Cubic Basis }  
  
variables  
  temp(threshold=100)  
  
definitions  
  k = 0.85      { thermal conductivity }  
  cp = 1        { heat capacity }  
  long = 18  
  H = 0.4       { free convection boundary coupling }  
  Ta = 25       { ambient temperature }  
  A = 4500      { amplitude }  
  
  source = A*exp(-((z-1*t)/.5)^2)*(200/(t+199))  
  
initial value  
  temp = Ta  
  
equations  
  temp : div(k*grad(temp)) + source = cp*dt(temp)  
  
boundaries  
  region 1  
    start(0,0)  
    natural(temp) = 0 line to (long,0)  
    value(temp) = Ta  line to (long,1)  
    natural(temp) = -H*(temp - Ta) line to (0,1)  
    value(temp) = Ta  line to close  
  feature  
    start(0.01*long,0) line to (0.01*long,1)  
  
time -0.5 to 19 by 0.01  
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monitors  
  for t = -0.5 by 0.5 to (long + 1)  
    elevation(temp) from (0,1) to (long,1) range=(0,1800) as "Surface Temp"  
    contour(temp)  
  
plots  
  for t = -0.5 by 0.5 to (long + 1)  
    elevation(temp) from (0,0) to (long,0) range=(0,1800) as "Axis Temp"  
  
histories  
  history(temp) at (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)  
                   (9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0) (16,0)  
                   (17,0) (18,0)  
  
end  
  

5.1.6.6 heat_boundary

{ HEAT_BOUNDARY.PDE  
  
    This problem shows the use of natural boundary conditions to model 
    insulation, reflection, and convective losses. 
  
    The heatflow equation is   
        div(K*grad(Temp)) + Source = 0 
  
    The Natural boundary condition specifies the value of the surface-normal 
    component of the argument of the divergence operator, ie:   
        Natural Boundary Condition  =  normal <dot> K*grad(Temp) 
  
    Insulating boundaries and symmetry boundaries therefore require the 
    boundary condition:   
        Natural(Temp) = 0 
  
    At a convective boundary, the heat loss is proportional to the temperature 
    difference between the surface and the coolant. Since the heat flux is   
        F = -K*grad(Temp)  =  b*(Temp - Tcoolant)   
    the appropriate boundary condition is   
        Natural(Temp) = b*(Tcoolant - Temp). 
  
    In this problem, we define a quarter of a circle, with reflective 
    boundaries on the symmetry planes to model the full circle.  There is a 
    uniform heat source of 4 units throughout the material.  The outer 
    boundary is insulated, so the natural boundary condition is used to 
    specify no heat flow. 
  
    Centered in the quadrant is a cooling hole. The temperature of the 
    coolant is Tzero, and the heat loss to the coolant is (Tzero - Temp) 
    heat units per unit area. 
  
    In order to illustrate the characteristics of the Finite Element model, 
    we have selected output plots of the normal component of the heat flux 
    along the system boundaries.  The F.E. method forms its equations based 
    on the weighted average of the deviation of the approximate solution 
    to the PDE over each cell.  There is no guarantee that on the outer 
    boundary, for example, where the Natural(Temp) = 0, the point-by-point 
    value of the normal derivative will necessarily be zero. But the integral 
    of the PDE over each cell should be correct to within the requested 
    accuracy.   
  
    Here we have requested three solution stages, with successively tighter 
    accuracy requirements of 1e-3, 1e-4 and 1e-5. 
  
    Notice in plot 7 that while the pointwise values of the normal flux 
    oscillate by ten percent in the first stage, they oscillate about the 
    same solution as the later stages, and the integral of the heat loss is 
    2.628, 2.642 and 2.6395 for the three stages.  Compare this with the 
    analytic integral of the source (2.6389) and with the numerical integral 
    of the source in plot 5 (all 2.6434).  The Divergence Theorem is 
    therefore satisfied to 0.004, 0.001, and 0.0002 in the three stages. 
  
    In plot 7,  "Integral" and "Bintegral" differ because they are the result 
    of different quadrature rules applied to the data. 
}  
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title "Coolant Pipe Heatflow"  
   
select  
    stages = 3  
    errlim = staged(1e-3,1e-4,1e-5)  
    autostage=off  
  
variables  
    Temp         
  
definitions  
    K = 1           { conductivity }  
    source = 4      { source }  
    Tzero = 0       { coolant temperature }      
    flux = -K*grad(Temp)  { thermal flux vector }    
initial values  
    Temp = 0        

equations  
    Temp : div(K*grad(Temp)) + source = 0       

boundaries                  { define the problem domain }  
    Region 1                { ... only one region }  
        start "OUTER" (0,0) { start at the center }  
        natural(Temp)=0     { define the bottom symmetry boundary condition }  
        line to(1,0)        { walk to the surface }  
   
        natural(Temp)=0     { define the "Zero Flow" boundary condition }  
        arc (center=0,0) to (0,1)   { walk the outer arc }  
   
        natural(Temp)=0     { define the Left symmetry B.C. }  
        line to close       { return to close }  
  
        start "INNER" (0.4,0.2) { define the excluded coolant hole }  
        natural(Temp)=Tzero-Temp { "Temperature-difference" flow boundary. 
                                    Negative value means negative K*grad(Temp) 
                                      or POSITIVE heatflow INTO coolant hole }  
        arc (center=0.4,0.4){ walk boundary CLOCKWISE for exclusion }  
           to (0.6,0.4)  
           to (0.4,0.6)  
           to (0.2,0.4)  
           to close  
  
monitors  
    contour(Temp)   { show contour plots of solution in progress }  
  
plots               { write these hardcopy files at completion: }  
    grid(x,y)                          { show the final grid }  
    contour(Temp)                      { show the solution  }  
    surface(Temp)  
    vector(-K*dx(Temp),-K*dy(Temp)) as "Heat Flow"  
    contour(source)                    { show the source to compare integral }  
    elevation(normal(flux)) on "outer" range(-0.08,0.08)  
       report(bintegral(normal(flux),"outer")) as "bintegral"  
    elevation(normal(flux)) on "inner" range(1.95,2.3)  
       report(bintegral(normal(flux),"inner")) as "bintegral"  
  
histories  
    history(bintegral(normal(flux),"inner"))  
   
end  
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5.1.6.7 radiation_flow

{ RADIATION_FLOW.PDE  
  
  This problem demonstrates the use of FlexPDE 
  in the solution of problems in radiative transfer. 
  
  Briefly summarized, we solve a Poisson equation 
  for the radiation energy density, assuming that
  at every point in the domain the local 
  temperature has come into equilibrium with the 
  impinging radiation field. 
  
  We further assume that the spectral character-
  istics of the radiation field are adequately 
  described by three average cross-sections:  
  the emission average, or "Planck Mean", sigmap;
  the absorption average, sigmaa; and the transport
  average, or "Rosseland Mean-Free-Path", lambda.  
  These averages may, of course, differ in various
  regions, but they must be estimated by facilities 
  outside the scope of FlexPDE. 
    
  And finally, we assume that the radiation field
  is sufficiently isotropic that Fick's Law, that
  the flux is proportional to the gradient of the 
  energy density, is valid. 
  
  The problems shows a hot slab radiating across an
  air gap and heating a distant dense slab. 
}  

title 'Radiative Transfer'

variables
    erad    { Radiation Energy Density }

definitions
    source          { declare the parameters, values will follow }
    lambdar         { Rosseland Mean Free Path }
    sigmap          { Planck Mean Emission cross-section }
    sigmaa          { absorption average cross-section }
    beta = 1/3      { Fick's Law proportionality factor }

materials
    'air'        : source=0    sigmap=2    sigmaa=1    lambdar=10
    'hot slab'   : source=100  sigmap=10   sigmaa=10   lambdar=1
    'dense slab' : source=0    sigmap=10   sigmaa=10   lambdar=1

equations   { The radiation flow equation: }
    erad : div(beta*lambdar*grad(erad)) + source = 0

boundaries

    region 1    { the bounding region is tenuous }
      use material 'air'
      start(0,0)
      natural(erad)=0       { along the bottom, a zero-flux symmetry plane }
      line to (1,0)
      natural(erad)=-erad   { right and top, radiation flows out }
      line to (1,1) to (0,1)
      natural(erad)=0       { Symmetry plane on left }
      line to close

    region 2    { this region has a source and large cross-section }
      use material 'hot slab'
      start(0,0)
      line to (0.1,0) to (0.1,0.5) to (0,0.5) to close

    region 3    { this opaque region is driven by radiation }
      use material 'dense slab'
      start(0.7,0)
      line to (0.8,0) to (0.8,0.3) to (0.7,0.3) to close
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monitors
    contour(erad)

plots
    contour(erad) as 'Radiation Energy'
    surface(erad) as 'Radiation Energy'
    vector(-beta*lambdar*grad(erad)) as 'Radiation Flux'

    { the temperature can be calculated from the assumption of equilibrium: }
    contour(sqrt(sqrt(erad*sigmaa/sigmap))) as 'Temperature'
    surface(sqrt(sqrt(erad*sigmaa/sigmap))) as 'Temperature'

end

5.1.6.8 radiative_boundary

{  RADIATIVE_BOUNDARY.PDE  
 
   This example demonstrates the implementation of radiative heat loss  
   at the boundary of a heat transfer system. 
 
}  
  
title "Axi-symmetric Anisotropic Heatflow, Radiative Boundary"  
  
select  
  errlim=1.0e-4  
  
coordinates  
  { Define cylindrical coordinates with 
    symmetry axis along "Y" }  
  ycylinder("R","Z")    
  
variables  
  { Define Temp as the system variable, 
    with approximate variation range of 1 } 
  Temp(1)                 
  
definitions  
  kr = 1  { radial conductivity }  
  kz = 4  { axial conductivity }  
  
  { define a Gaussian source density: }  
  source = exp(-(r^2+(z-0.5)^2))  
  
  { define the heat flux: }  
  flux = vector(-kr*dr(Temp),-kz*dz(Temp))  
  
initial values  
  Temp = 1  

equations   { define the heatflow equation: }  
  Temp : div(flux) = Source  
  
boundaries                      { define the problem domain }  
  Region 1                      { ... only one region }  
    start "RAD" (0,0)           { start at bottom on axis and name the boundary }  
    natural(temp)= 0.5*temp^4   { specify a T^4 boundary loss }  
    line to (0.5,0)             { walk the boundary }  
    arc(center=0.5,0.5) angle 180   { a circular outer edge }  
    line to (0,1)  
    natural(temp)=0             { define a symmetry boundary at the axis }  
    line to close  
  
monitors  
  elevation(magnitude(2*pi*r*flux)) on "RAD" as "Heat Flow"  
  contour(Temp)                 { show contour plots of solution in progress }  
  
plots                           { write these hardcopy files at completion }  
  grid(r,z)                     { show final grid }  
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  contour(Temp)                 { show solution }  
  surface(Temp)  
  vector(2*pi*r*flux) as "Heat Flow"  
  elevation(magnitude(2*pi*r*flux)) on "RAD" as "Heat Flow" export  
  
end  
  

5.1.6.9 slider

{  SLIDER.PDE   
  
  This problem represents a cross section of a wood-frame sliding window. 
      -- submitted by Elizabeth Finleyson, Lawrence Berkeley Labs 
}  
   
title  
  "NFRC Wood Slider"  
   
variables  
  Temp  
   
definitions  
  K = 0.97      {Thermal Conductivity}  
  B1 = 1.34     {Film coefficients interior wood}  
  B2 = 1.41     {       ''         interior glass}  
  B3 = 5.11     {       ''         exterior glass}  
  Tin = 70.0    {Ambient Temperature Inside}  
  Tout= 0.0     {       ''          Outside}  
   
equations  
  Temp : dx(K*dx(Temp)) + dy(K*dy(Temp)) = 0  
   
boundaries  
  region 1      {Defines the maximum extent of the system (wood)}  
    start(6.813,1.813)  
    natural(Temp) = B1*(Tin - Temp)  
    line to (6.813,3.001) to (6.344,3.001) to (6.344,3.323)  
    line to (6.183,3.323) to (6.183,4.885) to (5.988,4.885)  
    line to (5.988,5.104) to (5.678,5.104)  
    natural(Temp) = B2*(Tin - Temp)  
    line to (5.678,7.604)  
    natural(Temp) = 0.0  
    line to (5.153,7.604)  
    natural(Temp) = B3*(Tout- Temp)  
    line to (5.153,5.104) to (5.012,5.104) to (5.012,4.889)  
    line to (4.871,4.889) to (4.871,3.323) to (4.248,3.323)  
    line to (4.248,2.845) to (3.233,2.845) to (3.233,3.323) to (2.906,3.323)  
    line to (2.906,3.001) to (2.250,3.001) to (2.250,2.501) to (1.156,2.501)  
    natural(Temp) = 0.0  
    line to (1.156,1.813) to close  
   
  {Rigid PVC}  
  region 2      K = 1.18  
    start(6.516,2.800)  
    line to (6.516,2.845) to (6.344,2.845) to (6.344,3.323)  
    line to (5.737,3.323) to (5.737,3.278) to (6.017,3.278)  
    line to (6.017,2.845) to (5.002,2.845) to (5.002,3.278)  
    line to (5.317,3.278) to (5.317,3.323)  
    line to (4.248,3.323) to (4.248,2.845) to (3.233,2.845)  
    line to (3.233,3.323) to (2.906,3.323) to (2.906,2.845)  
    line to (2.547,2.845) to (2.547,2.800) to close  
   
  {Air cavity overlays}  
  region 3     K = 0.59  
    start(4.293,2.845)  
    line to (4.957,2.845) to (4.957,3.278) to (4.293,3.278) to close  
   
  region 4  k = 0.31  
    start(2.951,2.800)  
    line to (3.188,2.800) to (3.188,3.278) to (2.951,3.278) to close  
   
  region 5  k = 0.51  
    start(2.547,2.501)  
    line to (3.188,2.501) to (3.188,2.800) to (2.547,2.800) to close  
   
  region 6   k = 0.81  
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    start(5.002,2.845)  
    line to (6.017,2.845) to (6.017,3.278) to (5.002,3.278) to close  
   
  region 7   k = 0.39  
    start(5.317,3.278)  
    line to (5.737,3.278) to (5.737,3.551) to (5.317,3.551) to close  
   
  region 8   k = 0.31  
    start(6.062,2.800)  
    line to (6.299,2.800) to (6.299,3.278) to (6.062,3.278) to close  
   
  region 9  k = 0.41  
    start(6.062,2.501)  
    line to (6.516,2.501) to (6.516,2.800) to (6.062,2.800) to close  
   
{Silicon sealant}  
  region 10  k = 2.5  
    start(5.133,4.573)  
    line to (5.153,4.573) to (5.153,5.104) to (5.133,5.104) to close  
   
  region 11  k = 2.5  
    start(5.678,4.573)  
    line to (5.698,4.573) to (5.698,5.104) to (5.678,5.104) to close  
   
{Glass layers}  
  region 12  k = 6.93  
    start(5.153,4.573)  
    line to (5.678,4.573) to (5.678,7.604) to (5.153,7.604) to close  
   
{Eurythane spacer seal}  
  region 13  k = 2.5  
    start(5.278,4.573)  
    line to (5.553,4.573) to (5.553,4.771) to (5.278,4.771) to close  
   
{Spacer}  
  region 14  k = 18.44  
    start(5.278,4.771)  
    line to (5.553,4.771) to (5.553,5.012) to (5.278,5.012) to close  
   
{Gas gap}  
  region 15  k = 0.32  
    start(5.278,5.012)  
    line to (5.553,5.012) to (5.553,7.604) to (5.278,7.604) to close  
   
{Frame fill}  
  region 16  k = 0.21  
    start(3.188,2.501)  
    line to (6.062,2.501) to (6.062,2.800) to (3.188,2.800) to close  
   
{Spacer air gap}  
  region 17  k = 0.28  
    start(5.133,4.479)  
    line to (5.698,4.479) to (5.698,4.573) to (5.133,4.573) to close  
   
   
monitors  
  contour(Temp)  
   
plots  
  grid(x,y)  
  contour(Temp)  
  contour(Temp) zoom(4.6,4.2,1.8,1.8)  
  elevation(Temp) from (5.416,1.813) to (5.416,7.604)  
  vector((K*(-dx(Temp))),(K*(-dy(Temp)))) as "HEAT FLUX"  
   
end  
  

5.1.7 Lasers

5.1.7.1 laser_heatflow

{ LASER_HEATFLOW.PDE  
   
    This problem shows a complex heatflow application. 
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    A rod laser is glued inside a cylinder of copper. 
  
    Manufacturing errors allow the rod to move inside the glue, leaving a 
    non-uniform glue layer around the rod.  The glue is an insulator, and 
    traps heat in the rod.  The copper cylinder is cooled only on a 60-degree 
    portion of its outer surface. 
  
    The laser rod has a temperature-dependent conductivity. 
  
    We wish to find the temperature distribution in the laser rod. 
  
    The heat flow equation is 
  
       div(K*grad(Temp)) + Source = 0. 
  
    We will model a cross-section of the cylinder. While this is a cylindrical 
    structure, in cross-section there is no implied rotation out of the 
    cartesian plane, so the equations are cartesian. 
  
                                -- Submitted by Luis Zapata, LLNL 
}  
   
title "Nd:YAG Rod - End pumped. 200 W/cm3 volume source. 0.005in uropol"  
   
Variables  
    temp    { declare "temp" to be the system variable }  
   
definitions  
    k = 3               { declare the conductivity parameter for later use }  
    krod=39.8/(300+temp){ Nonlinear conductivity in the rod.(W/cm/K) }  
    Rod=0.2             { cm Rod radius }  
    Qheat=200           { W/cc, heat source in the rod }  
  
    kuropol=.0019   { Uropol conductivity }  
    Qu=0            { Volumetric source in the Uropol }  
    Ur=0.005        { Uropol annulus thickness in r dim }  
  
    kcopper=3.0     { Copper conductivity }  
    Rcu=0.5         { Copper convection surface radius }  
  
    tcoolant=0.     { Edge coolant temperature }  
    ASE=0.          { ASE heat/area to apply to edge, heat bar or mount }  
    source=0  
  
initial values  
    temp = 50       { estimate solution for quicker convergence }  
  
equations           { define the heatflow equation }  
    temp : div(k*grad(temp)) + source = 0;  
  
boundaries  
    region 1        { the outer boundary defines the copper region }  
        k = kcopper  
        start (0,-Rcu)  
        natural(temp) = -2 * temp       {convection boundary}  
            arc(center=0,0) angle 60  
        natural(temp) = 0               {insulated boundary}  
            arc(center=0,0) angle 300  
            arc(center=0,0) to close  
  
    region 2        { next, overlay the Uropol in a central cylinder }  
        k = kuropol  
        start (0,-Rod-Ur) arc(center=0,0) angle 360  
   
    region 3        { next, overlay the rod on a shifted center }  
        k = krod  
        Source = Qheat  
        start (0,-Rod-Ur/2) arc(center=0,-Ur/2) angle 360  
  
monitors  
    grid(x,y) zoom(-8*Ur, -(Rod+8*Ur),16*Ur,16*Ur)  
    contour(temp)  
  
plots  
    grid(x,y)  
    contour (temp)  
    contour(temp) zoom(-(Rod+Ur),-(Rod+Ur),2*(Rod+Ur),2*(Rod+Ur))  
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    contour(temp) zoom(-(Rod+Ur)/4,-(Rod+Ur),(Rod+Ur)/2,(Rod+Ur)/2)  
    vector(-k*dx(temp),-k*dy(temp)) as "heat flow"  
    surface(temp)  
  
end  
  

5.1.7.2 self_focus

{  SELF_FOCUS.PDE   
 
   This problem considers the self-focussing of a laser beam of Gaussian profile. 
        -- Submitted by   John Trenholme, LLNL 
}  

title "2D GAUSSIAN BEAM PROFILE"  

select  
  elevationgrid = 300  

variables  
  realf (threshold=0.1)       { real (in-phase) part of field envelope }  
  imagf (threshold=0.1)       { imaginary (quadrature) part of field envelope }  

definitions  
  radX = 2                   { X "radius" of beam }  
  radY = 2                   { Y "radius" of beam }  
  bMax = 2.25                { maximum B integral (= Time)}  
  zm = 5                     { zoom-in factor for plots }  
  xHi = 7.17 * SQRT( radX * radY)      { size of calculation domain... }  
  yHi = 7.17 * SQRT( radX * radY)      { set for field = 0.001 at edge }  
  x45 = xHi * 0.7071         { point on boundary at 45 degrees }  
  y45 = yHi * 0.7071  
  tn =1e-30                  { tiny number to force zero on plot scales }  
  power = PI * radX * radY * 2.73 ^ 2 / 8        { analytic integral }  
  inten = realf * realf + imagf * imagf   { definition for later use }  

time                         { "time" is really B integral }  
  0 to bMax by 0.03 * bMax  

initial values  
  realf = EXP( - ( x / ( radX * 2.73)) ^ 2 - ( y / ( radY * 2.73)) ^ 2)  
  imagf = 0  

equations          { normalized, low-secular-phase nonlinear propagation }  
  realf:    DEL2( imagf) + imagf * ( inten - 1) = -DT( realf)  
  imagf:    DEL2( realf) + realf * ( inten - 1) = DT( imagf)  

boundaries  
  region 1  
    start ( 0, 0)            { bump is at center; only do one quadrant }  
    natural( realf) = 0       { set slope to zero on boundary }  
    natural( imagf) = 0       { if boundary value too big, move boundary out }  
    line to ( xHi, 0)  
    arc ( center = 0, 0) to ( 0, yHi)  
    line to ( 0, 0)  
    to close  

monitors  
  for cycle = 1              { do this every cycle }  
    elevation( inten) from ( 0, 0) to ( xHi, 0) as "INTENSITY"  
      range( 0, tn)  
    contour( inten) as "INTENSITY" zoom ( 0, 0, xHi / zm, yHi / zm)  

plots  
  for t = starttime          { at the beginning only }  
    grid( x, y)  
    surface( inten) as "INTENSITY" range( 0, tn) viewpoint( 1000, 200, 40)  
    elevation( LOG10( inten)) from ( 0, 0) to ( xHi, 0) as "LOG10 INTENSITY"  

  for t = endtime            { at the end only }  
    grid( x, y)  
    grid( x, y) zoom ( 0, 0, xHi / zm, yHi / zm)  
    surface( inten) as "INTENSITY" range( 0, tn) viewpoint( 1000, 200, 40)  
      zoom ( 0, 0, xHi / zm, yHi / zm)  
    elevation( LOG10( inten)) from ( 0, 0) to ( xHi, 0) as "LOG10 INTENSITY"  
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  for t = starttime by ( endtime - starttime) / 5 to endtime    { snapshots }  
    elevation( ARCTAN( imagf / realf) * 180 / PI) from ( 0, 0)  
      to ( xHi / zm, 0) as "PHASE (DEGREES)"  
    elevation( inten) from ( 0, 0) to ( xHi / zm, 0) as "INTENSITY"  
      range( 0, tn)  

histories  
  history( inten) at ( 0, 0) ( 0.01 * xHi, 0) ( 0.03 * xHi, 0) ( 0.1 * xHi, 0)  
    ( 0.3 * xHi, 0) ( xHi, 0) ( x45, y45) as "INTENSITY" export  

  history( realf) at ( 0, 0) ( 0.01 * xHi, 0) ( 0.03 * xHi, 0) ( 0.1 * xHi, 0)  
    ( 0.3 * xHi, 0) as "IN-PHASE FIELD"  

  history( imagf) at ( 0, 0) ( 0.01 * xHi, 0) ( 0.03 * xHi, 0) ( 0.1 * xHi, 0)  
    ( 0.3 * xHi, 0) as "QUADRATURE FIELD"  

  history( ARCTAN( imagf / realf) * 180 / PI) at ( 0, 0) ( 0.01 * xHi, 0)  
    ( 0.03 * xHi, 0) ( 0.1 * xHi, 0) ( 0.3 * xHi, 0) as "PHASE (DEGREES)"  

  history( MIN( ( ABS( inten - 0.33)) ^ ( -0.75), 1)) at ( 0, 0)  
    range ( 0.045, 1) as "( INTENSITY - 0.33) ^ -0.75"  { goes linearly to 0}  

  history( ABS( INTEGRAL( inten) / power - 1)) as "POWER CHANGE (EXACT = 0)"  

end  
  

5.1.8 Magnetism

5.1.8.1 3d_helm holtz_coil

{  HELMHOLTZ_COIL.PDE 

   This example shows the calculation of magnetic fields in a Helmholtz coil.

   -- submitted by Bill Hallbert, Honeywell
}

TITLE 'Helmholtz Coil'
 
COORDINATES cartesian3
 
VARIABLES    A = vector(Ax, Ay) {Magnetic Vector Potential Components}
 
DEFINITIONS
 
    { Defining parameters of the Coil }
    coil_current=200            {Amps in 1 turn}
    Lsep=6.89                   {Layer separation - cm}
    Cthick=2.36                 {Coil thickness - cm}
 
    { Regional Current Definition }
    CurrentControl=1
    Current=CurrentControl*coil_current
 
    { Circulating Current Density in Coil }
    J0=Current/Cthick^2         {A/cm^2}
    theta=atan2(y,x)
    Jx=-J0*sin(theta)
    Jy=J0*cos(theta)
 
    { Magnetic Permeability }
    m0=4*3.1415e-2              {dynes/A^2}
 
    { Coil Radii }
    Rcoil_inner=Lsep            {cm}
    Rcoil_outer=Lsep+Cthick     {cm}
    Rmax=1.5*Lsep               {cm}
 
    { Z Surfaces }
    za=2*Lsep                   {cm}
    zb=za+Cthick                {cm}
    zc=zb+Lsep                  {cm}
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    zd=zc+Cthick                {cm}
    zmax=zd+2*Lsep              {cm}
    zmiddle=(zd+za)/2           {cm}
 
    { Magnetic Field }
    H=curl(A)/m0              {AT}
    Hxx = Xcomp(H)
    Hyy = Ycomp(H)
    Hzz = Zcomp(H)

    { Magnetic Field Error }
    Hzvec=val(Hzz,0,0,zmiddle)
    H_Error=(magnitude(H)-Hzvec)/Hzvec*100
 
EQUATIONS
    A:    div(grad(A))/m0 + vector(Jx,Jy,0) = 0
 
EXTRUSION
    Surface 'Bottom'     z = 0
        Layer 'Bottom_Air'
    Surface 'Coil1B'     z = za
        Layer 'Coil1CU'
    Surface 'Coil1T'     z = zb
        Layer 'Middle_Air'
    Surface 'Coil2B'     z = zc
        Layer 'Coil2CU'
    Surface 'Coil2T'     z = zd
        Layer 'Top_Air'
    Surface 'Top'        z = zmax
 
BOUNDARIES
    Surface "Bottom" value (Ax)=0  value (Ay)=0
    Surface "Top"    value (Ax)=0  value (Ay)=0
 
    REGION 1 'Air'
        CurrentControl=0
        start(Rmax,0) arc(center=0,0) angle =360
 
    LIMITED REGION 2 'Outer Coil'
        CurrentControl=1
        Layer 'Coil1Cu'
        Layer 'Coil2Cu'
        start(Rcoil_outer,0) arc(center=0,0) angle =360
 
    LIMITED REGION 3 'Inner Coil'
        mesh_spacing = Rcoil_inner/10
        CurrentControl=0
        Layer 'Coil1Cu'
        Layer 'Coil2Cu'
        start(Rcoil_inner,0) arc(center=0,0) angle =360
 
MONITORS 
    grid(y,z) on x=0
    grid(x,y) on surface 'Coil1T'
    contour(Ax) on x=0
 
PLOTS 
    grid(y,z) on x=0
    grid(x,y) on surface 'Coil1T'
    contour(Ax) on x=0
    vector(Hxx,Hyy) on surface 'Coil1T'  norm
    vector(Hyy,Hzz) on x=0  norm
    contour(magnitude(H)) on z=zmiddle
    contour(magnitude(H)) on x=0
    contour(H_Error) on Layer 'Middle_Air' on x=0
 
END
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5.1.8.2 3d_m agnetron

{ 3D_MAGNETRON.PDE 
  
  MODEL OF A GENERIC MAGNETRON IN 3D 
 
  The development of this model is 
  described in the Magnetostatics  chapter
  of the Electromagnetic Applications
  section. 
 
}  
   
TITLE 'Oval Magnet '  
   
COORDINATES  
  CARTESIAN3  
   
SELECT  
  ngrid=25  
  alias(x) = "X(cm)"  
  alias(y) = "Y(cm)"  
  alias(z) = "Z(cm)"  
   
VARIABLES  
  Ax,Ay    { assume Az is zero! }  
   
DEFINITIONS  
  MuMag=1.0  ! Permeabilities: 
  MuAir=1.0  
  MuSST=1000  
  MuTarget=1.0  
  Mu=MuAir  ! default to Air    
  MzMag = 10000   ! permanent magnet strength 
  Mz = 0        ! global magnetization variable 
  Nx = vector(0,Mz,0)  
  Ny = vector(-Mz,0,0)  
   
  B = curl(Ax,Ay,0)  ! magnetic induction vector 
  Bxx= -dz(Ay)  
  Byy= dz(Ax)  ! unfortunately, "By" is a reserved word. 
  Bzz= dx(Ay)-dy(Ax)  
   
EQUATIONS  
  Ax:   div(grad(Ax)/mu+Nx) = 0  
  Ay:   div(grad(Ay)/mu+Ny) = 0  
   
EXTRUSION  
   SURFACE "Boundary Bottom"     Z=-5  
   SURFACE "Magnet Plate Bottom"    Z=0  
     LAYER "Magnet Plate"  
   SURFACE "Magnet Plate Top"    Z=1  
     LAYER "Magnet"  
   SURFACE "Magnet Top"      Z=2  
   SURFACE "Boundary Top"     Z=8  
   
BOUNDARIES  
  Surface "boundary bottom" value (Ax)=0  value(Ay)=0  
  Surface "boundary top" value (Ax)=0 value(Ay)=0  
   
  REGION 1     {Air bounded by conductive box }  
      START (20,-10)  
      value(Ax)=0  value(Ay)=0  
      arc(center=20,0) ANGLE=180  
      Line TO (-20,10)  
      arc(center=-20,0) ANGLE=180  
        LINE TO CLOSE  
   
  LIMITED REGION 2     { Magnet Plate }  
      LAYER "Magnet Plate" Mu=MuSST  
      LAYER "Magnet" Mu=MuMag  Mz = MzMag  
      START (20,-8)  
        ARC(center=20,0) ANGLE=180  
        LINE TO (-20,8)  
        ARC(center=-20,0) ANGLE=180  
        LINE TO CLOSE  
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    LIMITED REGION 3     { Inner Gap  }  
      LAYER "Magnet"  
      START (20,-6)       
        ARC(center=20,0) ANGLE=180  
        LINE TO (-20,6)  
        ARC(center=-20,0) ANGLE=180  
        LINE TO CLOSE  
   
    LIMITED REGION 4     {Inner Magnet }  
      LAYER "Magnet" Mu=MuMag  Mz = -MzMag  
      START (20,-2)  
        ARC(center=20,0) ANGLE=180  
        LINE TO (-20,2)  
        ARC(center=-20,0) ANGLE=180  
        LINE TO CLOSE  
   
MONITORS  
  grid(y,z) on x=0  
  grid(x,z) on  y=0  
  grid(x,y) on  z=1.01  
  contour(Ax) on x=0  
  contour(Ay) on y=0  
   
PLOTS  
  grid(y,z) on x=0  
  grid(x,z) on y=0  
  grid(x,y) on z=1.01  
  contour(Ax) on x=0  
  contour(Ay) on y=0  
  vector(Bxx,Byy) on z=2.01 norm  
  vector(Byy,Bzz) on x=0 norm  
  vector(Bxx,Bzz) on y=4 norm  
  contour(magnitude(Bxx,Byy,Bzz)) on z=2  
   
END  
  

5.1.8.3 3d_vector_m agnetron

{ 3D_VECTOR_MAGNETRON 
  
  MODEL OF A GENERIC MAGNETRON IN 3D USING VECTOR VARIABLES 
  This is a modification of 3D_MAGNETRON.PDE . 
 
  The development of this model is described in the Magnetostatics  chapter of the  
  Electromagnetic Applications  section. 
 
}  
   
TITLE 'Oval Magnet'  
   
COORDINATES  
  CARTESIAN3  
   
SELECT  
  ngrid=25  
  alias(x) = "X(cm)"  
  alias(y) = "Y(cm)"  
  alias(z) = "Z(cm)"  
   
VARIABLES  
  A = vector (Ax,Ay)        { assume Az is zero! }  
   
DEFINITIONS  
  MuMag=1.0 ! Permeabilities: 
  MuAir=1.0  
  MuSST=1000  
  MuTarget=1.0  
  Mu=MuAir  ! default to Air 
   
  MzMag = 10000   ! permanent magnet strength 
  Mx=0   My=0   Mz=0  
  M = vector(Mx,My,Mz)      ! global magnetization variable 
  N = tensor((0,Mz,0),(-Mz,0,0),(0,0,0))  
  
  B = curl(Ax,Ay,0)  ! magnetic induction vector 
  Bxx= xcomp(B)  

425

315

296



FlexPDE 7 : Sample Problems427

  Byy= ycomp(B) ! unfortunately, "By" is a reserved word. 
  Bzz= zcomp(B)  
   
EQUATIONS  
  A:  div((grad(A)+N)/mu) = 0  
   
EXTRUSION  
  SURFACE "Boundary Bottom"     Z=-5  
  SURFACE "Magnet Plate Bottom" Z=0  
  LAYER "Magnet Plate"  
  SURFACE "Magnet Plate Top"    Z=1  
  LAYER "Magnet"  
  SURFACE "Magnet Top"      Z=2  
  SURFACE "Boundary Top"    Z=8  
   
BOUNDARIES  
  Surface "boundary bottom" value (Ax)=0  value(Ay)=0  
  Surface "boundary top"    value (Ax)=0  value(Ay)=0  
    REGION 1     {Air bounded by conductive box }  
      START (20,-10)  
      value(A)=vector(0,0,0)  
        ARC(center=20,0) angle=180  
        LINE TO (-20,10)  
        ARC(center=-20,0) angle=180  
        LINE TO CLOSE  
   
    LIMITED REGION 2     { Magnet Plate }  
      LAYER "Magnet Plate" Mu=MuSST  
      LAYER "Magnet" Mu=MuMag  Mz = MzMag  
      START (20,-8)  
        ARC(center=20,0) angle=180  
        LINE TO (-20,8)  
        ARC(center=-20,0) angle=180  
        LINE TO CLOSE  
   
    LIMITED REGION 3     { Inner Gap  }  
      LAYER "Magnet"  
      START (20,-6)       
        ARC(center=20,0) angle=180  
        LINE TO (-20,6)  
        ARC(center=-20,0) angle=180  
        LINE TO CLOSE  
   
    LIMITED REGION 4     {Inner Magnet }  
      LAYER "Magnet" Mu=MuMag  Mz = -MzMag  
      START (20,-2)  
        ARC(center=20,0) angle=180  
        LINE TO (-20,2)  
        ARC(center=-20,0) angle=180  
        LINE TO CLOSE  
   
MONITORS  
  grid(y,z) on x=0  
  grid(x,z) on y=0  
  grid(x,y) on z=1.01  
  contour(Ax) on x=0  
  contour(Ay) on y=0  
   
PLOTS  
  grid(y,z) on x=0  
  grid(x,z) on y=0  
  grid(x,y) on z=1.01  
  contour(Ax) on x=0  
  contour(Ay) on y=0  
  vector(Bxx,Byy) on z=2.01  norm  
  vector(Byy,Bzz) on x=0  norm  
  vector(Bxx,Bzz) on y=4  norm  
  contour(magnitude(Bxx,Byy,Bzz)) on z=2  
   
END  
  

5.1.8.4 m agnet_coil

{ MAGNET_COIL.PDE   
   
  AXI-SYMMETRIC MAGNETIC FIELDS 
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  This example considers the problem of determining the magnetic vector 
  potential A around a coil. 
  
  According to Maxwell's equations,  
        curl H = J  
        div B = 0  
        B = mu*H 
  
  where B is the manetic flux density 
        H is the magnetic field strength 
        J is the electric current density 
  and  mu is the magnetic permeability of the material. 
  
  The magnetic vector potential A is related to B by  
        B = curl A  
  therefore  
        curl( (1/mu)*curl A ) = J 
  
  This equation is usually supplmented with the Coulomb Gauge condition  
        div A = 0. 
  
  In the axisymmetric case, the current is assumed to flow only in the 
  azimuthal direction, and only the azimuthal component of the vector 
  potential is present.  Henceforth, we will simply refer to this component as A. 
  
  The Coulomb Gauge is identically satisfied, and the PDE to be solved in this 
  model takes the form  
        curl((1/mu)*curl (A)) = J(x,y)     in the domain 
                           A  = g(x,y)     on the boundary. 
  
  The magnetic induction B takes the simple form  
        B = (-dz(A), 0, dr(A)+A/r) 
  
  and the magnetic field is given by  
        H = (-dz(A)/mu, 0, (dr(A)+A/r)/mu) 
  
  Expanding the equation in cylindrical geometry results in the final equation,  
        dz(dz(A)/mu) + dr((dr(A)+A/r)/mu) = -J 
  
  The interpretation of the natural boundary condition becomes  
        Natural(A) = n X H 
  
  where n is the outward surface-normal unit vector. 
  
  Across boundaries between regions of different material properties, the 
  continuity of (n X H) assumed by the Galerkin solver implies that the 
  tangential component of H is continuous, as required by the physics. 
  
  
  In this simple test problem, we consider a circular coil whose axis of 
  rotation lies along the X-axis. We bound the coil by a distant spherical 
  surface at which we specify a boundary condition (n X H) = 0. 
  At the axis, we use a Dirichlet boundary condition A=0. 
  
  The source J is zero everywhere except in the coil, where it is defined 
  arbitrarily as "10".  The user should verify that the prescribed values 
  of J are dimensionally consistent with the units of his own problem. 
  
}  
   
title 'AXI-SYMMETRIC MAGNETIC FIELD'  
   
coordinates  
    { Cylindrical coordinates, with cylinder axis along Cartesian X direction }  
    xcylinder(Z,R)    
   
variables  
    Aphi        { the azimuthal component of the  vector potential }  
   
definitions  
    mu = 1              { the permeability }  
    rmu = 1/mu  
    J = 0               { the source defaults to zero }  
    current = 10        { the source value in the coil }  
    Bz = dr(r*Aphi)/r  
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initial values  
    Aphi = 2            { unimportant unless mu varies with H }  
   
equations  
    { FlexPDE expands CURL in proper coordinates }  
    Aphi : curl(rmu*curl(Aphi)) = J   
   
boundaries  
    region 1  
      start(-10,0)  
      value(Aphi) = 0       { specify A=0 along axis }  
        line to (10,0)  
      natural(Aphi) = 0     { H<dot>n = 0 on distant sphere }  
        arc(center=0,0) angle 180 to close  
   
    region 2  
      J = current           { override source value in the coil }  
      start (-0.25,1)  
        line to (0.25,1) to (0.25,1.5) to (-0.25,1.5) to close  
   
monitors  
    contour(Bz) zoom(-2,0,4,4) as 'FLUX DENSITY B'  
    contour(Aphi) as 'Potential'  
   
plots  
    grid(z,r)  
    contour(Bz)  as 'FLUX DENSITY B'  
    contour(Bz) zoom(-2,0,4,4)  as 'FLUX DENSITY B'  
    elevation(Aphi,dr(Aphi),Aphi/r,dr(Aphi)+Aphi/r,Aphi+r*dr(Aphi))   
        from (0,0) to (0,1) as 'Bz'  
    vector(dr(Aphi)+Aphi/r,-dz(Aphi)) as 'FLUX DENSITY B'  
    vector(dr(Aphi)+Aphi/r,-dz(Aphi)) zoom(-2,0,4,4) as 'FLUX DENSITY B'  
    contour(Aphi)  as 'MAGNETIC POTENTIAL'  
    contour(Aphi) zoom(-2,0,4,4)  as 'MAGNETIC POTENTIAL'  
    surface(Aphi)  as 'MAGNETIC POTENTIAL'  viewpoint (-1,1,30)  
   
end  
  

5.1.8.5 perm anent_m agnet

{ PERMANENT_MAGNET.PDE   
 
  This example demonstrates the implementation of permanant magnets in magnetic field
problems. 
 
  FlexPDE integrates second-order derivative terms by parts, which creates surface
integral 
  terms at cell boundaries. 
  By including magnetization vectors inside the definition of H, these surface terms
correctly 
  model the effect of magnetization through jump terms at boundaries. 
  If the magnetization terms are listed separately from H, they will be seen as
piecewise 
  constant in space, and their derivatives will be deleted. 
 
  See the Electromagnetic Applications  section for further discussion. 
 
}  
   
Title 'A PERMANENT-MAGNET PROBLEM'  
   
Variables  
    A  { z-component of Vector Magnetic Potential }
 
   
Definitions  
    mu = 1
    S = 0              { current density }  
    Px = 0             { Magnetization components }
 
    Py = 0  
    P = vector(Px,Py)  { Magnetization vector }  
    H = (curl(A)-P)/mu { Magnetic field }    
    y0 = 8             { Size parameter }  
   
Materials

296
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  'Magnet' : Py = 10
  'Other'  : mu = 5000

Initial values  
     A = 0  
   
Equations     
     A : curl(H) + S = 0  
   
Boundaries  
    Region 1  
      start(-40,0)  
      natural(A) = 0 line to (80,0)  
      value(A) = 0   line to (80,80) to (-40,80) to close  
   
    Region 2  
      use material 'Other' 
      start(0,0)  
      line to (15,0) to (15,20) to (30,20) to (30,y0) to (40,y0) to (40,40)  
                to (0,40) to close  
   
    Region 3    { the permanent magnet }  
      use material 'Magnet' 
      start (0,0) line to (15,0) to (15,10) to (0,10) to close  
   
Monitors  
    contour(A)  
   
Plots  
    grid(x,y)  
    vector(dy(A),-dx(A)) as 'FLUX DENSITY B'  
    vector((dy(A)-Px)/mu, (-dx(A)-Py)/mu) as 'MAGNETIC FIELD H'  
    contour(A)  as 'Az MAGNETIC POTENTIAL'  
    surface(A)  as 'Az MAGNETIC POTENTIAL'  
   
End  
  

5.1.8.6 saturation

{ SATURATION.PDE 
 
  A NONLINEAR MAGNETOSTATIC PROBLEM 
 
  This example considers the problem of determining the magnetic vector 
  potential A in a cyclotron magnet. 
 
  The problem domain consists of 
    1) a ferromagnetic medium - the magnet core, 
    2) the surrounding air medium, 
    3) a current-carrying copper coil. 
 
  According to Maxwell's equations, 
        curl H = J                      (1) 
        div B = 0                       (2) 
  with 
        B = mu*H 
  where B is the magnetic flux density 
        H is the magnetic field strength 
        J is the electric current density 
  and  mu is the magnetic permeability of the material. 
 
  Maxwell's equations can be satisfied if we introduce a magnetic vector 
  potential A such that 
        B = curl A 
  therefore 
        curl( (curl A)/mu ) = J 
 
  This equation is usually supplemented with the Coulomb Gauge condition 
        div A = 0. 
 
  In most common 2D applications, magnet designers assume either 
        1) that the magnet is sufficiently long in the z direction or 
        2) that the magnet is axi-symmetric. 
 
  In the first instance the current is assumed to flow parallel to the z axis, 
  and in the latter it flows in the azimuthal direction.  Under these conditions, 
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  only the z or the azimuthal component of A is present. (Henceforth, we will 
  simply refer to this component as A). 
 
  In the Cartesian case, the magnetic induction B takes the simple form, 
        B = (dy(A), -dx(A), 0) 
  and the magnetic field is given by 
        H = (dy(A)/mu, -dx(A)/mu, 0). 
 
  We can integrate equation (1) over the problem domain using the curl analog 
  of the Divergence Theorem, giving 
        Integral(curl(H))dV = Integral(n x H)dS 
  where dS is a differential surface area on the bounding surface of any region, 
  and n is the outward surface normal unit vector. 
 
  Across interior boundaries between regions of different material properties, 
  FlexPDE assumes cancellation of the surface integrals from the two sides of the 
  boundary.  This implies continuity of (n X H). 
 
  At exterior boundaries, the same theorem defines the natural boundary condition 
  to be the value of (n x H). 
 
  For the present example, let us define the permeability mu by the 
  expression 
        mu =  1                                                    in the air and the
coil 
        mu =  mumax/(1+C*grad(A)^2) + mumin     in the core 
  where C = 0.05 gives a behaviour similar to transformer steel. 
 
  We assume a symmetry plane along the X-axis, and impose the boundary value 
  A = 0 along the remaining sides. 
 
  The core consists of a "C"-shaped region enclosing a rectangular coil region. 
 
  The source J is zero everywhere except in the coil, where it is defined by 
               J = - (4*pi/10)*amps/area 
 
  Note: 
  This example uses scaled units.  It is important for the user to validate 
  the dimensional consistency of his formulation. 
}  
  
Title "A MAGNETOSTATIC PROBLEM"  
  
Select  
    { Since the nonlinearity in this problem is
driven 
      by the GRADIENT of the system variable, we
require 
      a more accurate resolution of the solution: }
 
    errlim = 1e-4      
  
Variables  
    A  
  
Definitions  
    rmu = 1  
    rmu0 = 1  
    mu0core = 5000  
    mu1core = 200  
    mucore = mu0core/(1+0.05*grad(A)^2) + mu1core  
    rmucore = 1/mucore  
    S = 0  
    current = 2  
    y0 = 8  
  
Initial Value  
    { In nonlinear problems, a good starting value
      is sometimes essential for convergence }  
    A = current*(400-(x-20)^2-(y-20)^2)  
  
Equations  
    A : curl(rmu*curl(A)) = S  

Boundaries  
   Region 1            { The IRON core }  
      rmu = rmucore                rmu0 = 1/mu0core  
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      start(0,0)  
      natural(A) = 0        line to (40,0)  
      value(A) = 0   line to (40,40) to (0,40) to close  
  
   Region 2            { The AIR gap }  
      rmu = 1  
      start (15,0) line to (40,0) to (40,y0) to (32,y0)  
      arc (center=32,y0+2) to (30,y0+2)  
      { short boundary segments force finer gridding: }  
      line to (30,19.5) to (30,20) to (29.5,20)  
      to (15.5,20) to (15,20) to close  
  
   Region 3            { The COIL }  
      S = current  
      rmu = 1  
      start (15,12) line to (30,12) to (30,20) to (15,20) to close  
  
Monitors  
   contour(A)  
  
Plots  
   grid(x,y)  
   vector(dy(A),-dx(A)) as "FLUX DENSITY B"  
   vector(dy(A)*rmu, -dx(A)*rmu) as "MAGNETIC FIELD H"  
   contour(A)  as "Az MAGNETIC POTENTIAL"  
   surface(A)  as "Az MAGNETIC POTENTIAL"  
   contour(rmu/rmu0) painted as "Saturation: mu0/mu"  
  
End  
  

5.1.9 Misc

5.1.9.1 diffusion

{ DIFFUSION.PDE   
 
  This problem considers the thermally driven diffusion of a dopant into 
  a solid from a constant source.  Parameters have been chosen to be those 
  typically encountered in semiconductor diffusion. 
 
    surface concentration = 1.8e20 atoms/cm^2 
    diffusion coefficient = 3.0e-15 cm^2/sec 
 
  The natural tendency in this type of problem is to start with zero 
  concentration in the material, and a fixed value on the boundary.  This 
  implies an infinite curvature at the boundary, and an infinite transport 
  velocity of the diffusing particles.  It also generates over-shoot 
  in the solution, because the Finite-Element Method tries to fit a step 
  function with quadratics. 
 
  A better formulation is to program a large input flux, representative of 
  the rate at which dopant can actually cross the boundary, (or approximately 
  the molecular velocity times the concentration deficiency at the boundary). 
 
  Here we use a masked source, in order to generate a 2-dimensional pattern. 
  This causes the result to lag a bit behind the analytical Plane-diffusion 
  result at late times. 
 
}  
  
title  
  'Masked Diffusion'  
  
variables
  u(threshold=0.1)      { fraction of external concentration }

definitions
  concs = 1.8e8             { surface concentration  atom/micron^3}
  D = 1.1e-2                { diffusivity micron^2/hr}
  conc = concs*u
  uexact1d = erfc(x/(2*sqrt(D*t)))   { analytic solution to corresponding 1D problem }
  cexact1d = concs*uexact1d
  M = upulse(y-0.3,y-0.7)    { masked surface flux multiplier }
  
initial values  
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  u = 0  
  
equations  
  u : div(D*grad(u)) = dt(u)  
  
boundaries  
  region 1
    start(0,0)
      natural(u) = 0
      line to (1,0) to (1,1) to (0,1)
      natural(u) = 10*M*(1-u)
      line to close
  
  feature               { a "gridding feature" to help localize the activity }  
    start (0.02,0.3) line to (0.02,0.7)  
  
time 0 to 1 by 0.001  
  
plots  
  for t=1e-5 1e-4 1e-3 1e-2 0.05 by 0.05 to 0.2 by 0.1 to endtime  
    contour(u)  
    surface(u)  
    elevation(u,uexact1d) from (0,0.5) to (1,0.5)  
    elevation(u-uexact1d) from (0,0.5) to (1,0.5)  
  
histories  
  history(u) at (0.05,0.5) (0.1,0.5) (0.15,0.5) (0.2,0.5)  
  
end  
  

5.1.9.2 m inim al_surface

{ MINIMUM_SURFACE.PDE  
 
  This example shows the application of FlexPDE to the non-linear problem 
  of surface tension or "minimal surface". 
 
  The surface area of an infinitesimal rectangular patch of an arbitrary 
  surface 
        U = U(x,y) 
 
  is (by the Pythagorean theorem) 
        dA = dx*dy*sqrt[1 + (dU/dx)^2 + (dU/dy)^2], 
  where dx and dy are the projections of the patch in the X-Y plane. 
 
  The total surface area of a function U(x,y) over a domain is then 
        A = integral(dx*dy*sqrt[1 + dx(U)^2 + dy(U)^2]) 
 
  For the function U to have minimal surface area, it must satisfy the 
  Euler equation 
        dx(dF/dUx) + dy(dF/dUy) - dF/dU = 0 
  where 
        F = sqrt[1 + (dU/dx)^2 + (dU/dy)^2] 
        dF/dUx = (dU/dx)/F 
        dF/dUy = (dU/dy)/F 
        dF/dU  = 0 
 
  The equation for the minimizing surface is therefore (in FlexPDE notation): 
        dx((1/F)*dx(U)) + dy((1/F)*dy(U)) = 0 
 
  This is analogous to a heatflow problem 
        div(K*grad(T)) = 0 
  where the conductivity has the value 
        K = 1/F 
 
  This is a highly nonlinear problem, in that the conductivity, K, becomes 
  small in regions of high gradient, which tends to increase the gradient 
  even more. 
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  In the present example, we stretch a 
  soap-bubble across a square bent wire 
  frame, in which the first quadrant of 
  the boundary has been bent inward 
  and raised up. 
}  
title "MINIMAL SURFACE"  
  
variables  
    u  
  
definitions  
    size = 6  
    a  
    pressure = 0  
    r = sqrt(x^2+y^2)  
  
equations  
    u : div(a*grad(u)) + pressure = 0  
  
boundaries  
    region 1  
      a = 1/sqrt(1+grad(u)^2)  
      start(-size,-size)
        value(u)=0          line to (size ,-size) to (size,0)  
        value(u) = size-r   line to (size/2,0)  
        value(u) = size/2   arc(center=size/2,size/2) angle -90  
        value(u) = size-r   line to (0,size)  
        value(u) = 0        line to (-size,size)  
        to close  
  
monitors  
    contour(u)  
  
plots  
    grid(x,y)  
    contour(u)  
    surface(u)  
  
end  
  

5.1.9.3 surface_fit

{ SURFACE_FIT.PDE  
 
  This problem illustrates the use of FlexPDE in a data fitting 
  application. 
 
  THE NUMERICAL SOLUTION OF THE BIHARMONIC EQUATION WITH A DISCONTINUOUS 
  LINEAR SOURCE TERM USING FlexPDE. 
 
  STATEMENT OF THE PROBLEM: 
 
  Find the solution U of the fourth order elliptic PDE 
 
        (dxx + dyy)(dxx + dyy) (U) = -beta*(U - C)      in O,       (1) 
 
  where in the usual FlexPDE notation, dxx indicates 2nd partial derivative 
  with respect to x, and where O is a given connected domain.  Equation (1) 
  arises from the minimization of the strain energy function of a thin plate 
  which is constrained to nearly pass thru a given set of discrete set of 
  points specified by C and beta.    Namely,  a given  set of n data values 
  [C(i)] is assigned at locations [(x(i), y(i))], i=1,..n , 
  and the factor beta has its support only at the locations (x(i), y(i)). 
 
  Along with equation (1), we must prescribe a set of boundary conditions 
  involving U and its derivatives which must be satisfied everywhere on the 
  domain boundary. 
 
}  
  
title " The Biharmonic Equation in Surface Fitting Designs and Visualization"  

variables  
    U  
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    V  
  
definitions  
    eps = .001  
    beta0 = 1.e7  
    beta = 0.0  
    a = 1/sqrt(2.)  
    two = 2.5  
    b = two*a  
  
    xbox = array (0, 1, -1, 0,  0, a, -a, a, -a,  two, -two, 0, 0, b, -b, b, -b )  
    ybox = array (0, 0,  0, 1, -1, a, -a, -a, a,  0, 0, two, -two, b, -b, -b, b )  
 
    xi = .05   eta = .05  
    r0 =  x*x + y*y  
    C = exp(-r0/1.)*sin(pi*((x^2-y^2)/64.))  
  
initial values  
    U =  0  
    V =  .001  
  
equations  
    U:  del2(U) = V  
    V:  del2(V) = -beta*(U-C)  
  
boundaries  
    region 1  
      start (-4,0)  
      value(U) = C    value(V) = 0.  
      arc(center=0.,0.)     angle -360     to
close  
  
   region 2  beta = beta0  
     repeat i=1 to 17  
         start (xbox[i]-xi,ybox[i]-eta)  
         line to (xbox[i]+xi,ybox[i]-eta)  
         to (xbox[i]+xi,ybox[i]+eta)  
         to (xbox[i]-xi,ybox[i]+eta) to close  
     endrepeat  
 
monitors  
    contour(U)  
    contour(C)  
    contour(C-U)   as "Error C - U"  
  
plots  
    contour (U)  as "Potential"  
    surface(U) as "Potential"  
    surface(C)   as " Expected Surface"  
    contour(beta)  
    surface(beta)  
    surface(U-C)  
  
end  
  

5.1.10 Quantun_Mechanics

5.1.10.1 1d_finite_potential_well

{ 1D_FINITE_POTENTIAL_WELL.PDE
  Submitted by Ali Reza Ghaffari, 07/22/2016.

  This script solves the Schrodinger equation for a one dimensional finite potential well
  and finds energy levels for bound states plus unnormalaized wave functions.
}
TITLE '1D Finite Potential Well'

COORDINATES CARTESIAN1

VARIABLES Phi

SELECT
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    modes=3
    NGRID=30
    ERRLIM=1e-3

DEFINITIONS
    volt { in eV}
    hbar=1.05457e-34
    e0=1.6022e-19
    m0=9.11e-31
    v0=64
    a=1.8e-10

EQUATIONS
    Phi: (-hbar^2/2/m0/e0)*(dx(dx(Phi)))+volt*Phi-LAMBDA*Phi=0

BOUNDARIES 
  REGION 1
    volt=v0
    START (-3*a)   point value(phi)=0
    LINE TO (-a/2)

  REGION 2
    volt=0
    START (-a/2) LINE TO (a/2)

  REGION 3
    volt=v0
    START (a/2)
    LINE TO (3*a )  point value(phi)=0

!MONITORS
! no monitors since problem solves so fast

PLOTS
  elevation(phi*5+lambda,volt) from (-3e-10) to (3e-10)

SUMMARY
  REPORT(LAMBDA)

END

5.1.10.2 2d_finite_potential_well

{ 2D_FINITE_POTENTIAL_WELL.PDE
  Submitted by Ali Reza Ghaffari, 07/22/2016.

  This script solves the Schrodinger equation for a two dimensional finite potential
well.
  This script finds energies and wave functions of a wire with rectangle cross section.
  The wire is made up of GA As which is placed in a AlGalAs medum.
}
TITLE 'infinitely deep rectangular wires'

COORDINATES cartesian2  

VARIABLES Phi      {the wavefunction}

SELECT
    modes=4
    NGRID=13
    ERRLIM=1e-3
    painted              { show colour-filled contours }
    thermal_colors = on  { red is minimum }

DEFINITIONS
    mass{default value}
    volt { in eV}
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    hbar=1.05457e-34
    m0=9.11e-31
    e0=1.6e-19
    xx=200e-10
    yy=200e-10
    x1=50e-10
    y1=50e-10
    x2=150e-10
    y2=150e-10
    v0=.228
    mass_shell=0.067*m0 {mhh}!0.067 {GaAs}
    mass_core=0.1*m0!  {Al0.5Ga0.5As}
    N=integral(phi^2)

EQUATIONS
    Phi: ((-1)* hbar^2/(2*mass*e0))*div(grad(Phi))+volt*Phi-LAMBDA*Phi =0

BOUNDARIES
  Region 1
    mass= mass_shell, volt=v0
    start(0,0)
    point value (phi)=0 line  to (xx,0)
    value (phi)=0 line  to (xx,yy)
    value (phi)=0 line  to (0,yy)
    to close

  Region 2
    mass= mass_core, volt=0
    start(x1,y1)
    line  to (x2,y1) to (x2,y2) to (x1,y2)
    to close

!MONITORS
! no monitors since problem solves so fast

PLOTS
  CONTOUR(Phi^2/sqrt(N))

SUMMARY
  REPORT(LAMBDA*1000) as "Energy Level (meV)" !in milielectron volt

END

5.1.10.3 m orse_potential

{ MORSE_POTENTIAL.PDE
  Submitted by Ali Reza Ghaffari, 07/21/2016.

  This is a Quantum Mechanic example that shows the power of Flexpde to solve such
examples.
  We want to solve the Schrodinger equation for Morse Potential V(x)=V0(1-exp(-alpha*x))
^2 and
  find the Eigen values and functions. The exact energies can be extracted from the
formula below.

  E[n] := h*2^(1/2)*(V0*alpha^2/m0)^(1/2)*(n+1/2)-1/2*alpha^2*h^2/m0*(n+1/2)^2

  For n=0 to 4 :
      E[0] := 3.037277660
      E[1] := 8.361832980
      E[2] := 12.68638830
      E[3] := 16.01094362
      E[4] := 18.33549894

  You can compare the results of this script with above energies.
}

TITLE 'Morse Potential'
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COORDINATES CARTESIAN1

VARIABLES Phi

SELECT
    modes=6
    NGRID=30 
    ERRLIM=1e-3

DEFINITIONS
    volt 
    hbar=1
    m0=1
    v0=20
    a=10 ! the renge of integrals
    alpha=1
    volt=v0*(1-exp(-alpha*x))^2
    N=integral(phi^2) 

EQUATIONS
    Phi : (-hbar^2/2/m0)*(dx(dx(Phi)))+volt*Phi-LAMBDA*Phi=0

BOUNDARIES
  REGION 1
    START (-3*a)  point value(phi)=0
    LINE TO (3*a) point value(phi)=0

!MONITORS
! no monitors since problem solves so fast

PLOTS
  ELEVATION(Phi+lambda,volt) FROM (-1) to (6) zoom (-1,0,6,10)

SUMMARY
  REPORT(LAMBDA)

END

5.1.11 Stress

5.1.11.1 3d_bim etal

{ 3D_BIMETAL.PDE 
 
  This problem considers a small block of aluminum bonded to a larger block 
  of iron.  The assembly is held at a fixed temperature at the bottom, and 
  is convectively cooled on the sides and top.  We solve for the 3D temperature 
  distribution, and the associated deformation and stress. 
  
  All faces of the assembly are unconstrained, allowing it to grow as the 
  temperature distribution demands.  We do not use an integral constraint 
  to cancel translation and rotation, as we have done in 2D samples, 
  because in 3D this is very expensive.  Instead, we let FlexPDE find a solution, 
  and then remove the mean translation and rotation before plotting. 
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}  
   
title 'Bimetal Part'  
   
coordinates  
    cartesian3  
   
select  
    painted   { show color-filled contours }  
    biprecon  { use the Block-Inverse
preconditioner - it works better than the
default ICCG }  
   
variables  
    Tp        { temperature difference from
stress-free state }  
    U         { X displacement }  
    V         { Y displacement }  
    W         { Z displacement }  
   
materials
    'iron' :
       K = 0.11           { thermal conductivity
}
       E = 20e11          { Youngs modulus }
       nu = 0.28          { expansion
coefficient }
       alpha =  1.7e-6    { Poisson's Ratio  }

    'aluminum' :
       K = 0.5
       E = 6e11
       nu = 0.25
       alpha =  2*(2.6e-6)              !
Exaggerate expansion

    'default' :
       K = 1
       E = 1e11
       nu = 0.1
       alpha =  1e-6

definitions  
    long = 1  
    wide = 0.3  
    high = 1  
    tabx = 0.2  
    taby = 0.4  
   
    Q = 0               { Thermal source }  
    Ta = 0.             { define the ambient thermal sink temperature }  
   
    { define the constitutive relations }  
    G = E/((1+nu)*(1-2*nu))  
    C11 = G*(1-nu)  
    C12 = G*nu  
    C13 = G*nu  
    C22 = G*(1-nu)  
    C23 = G*nu  
    C33 = G*(1-nu)  
    C44 = G*(1-2*nu)/2  
    b = G*alpha*(1+nu)  
   
    { Strains }  
    ex = dx(U)  
    ey = dy(V)  
    ez = dz(W)  
    gxy = dy(U) + dx(V)  
    gyz = dz(V) + dy(W)  
    gzx = dx(W) + dz(U)  
   
    { Stresses }  
    Sx  =  C11*ex + C12*ey + C13*ez - b*Tp  
    Sy  =  C12*ex + C22*ey + C23*ez - b*Tp  
    Sz  =  C13*ex + C23*ey + C33*ez - b*Tp  
    Txy =  C44*gxy  
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    Tyz =  C44*gyz  
    Tzx =  C44*gzx  
   
    { find mean translation and rotation }  
    Vol = Integral(1)  
    Tx = integral(U)/Vol                    { X-motion }  
    Ty = integral(V)/Vol                    { Y-motion }  
    Tz = integral(W)/Vol                    { Z-motion }  
    Rz = 0.5*integral(dx(V) - dy(U))/Vol    { Z-rotation }  
    Rx = 0.5*integral(dy(W) - dz(V))/Vol    { X-rotation }  
    Ry = 0.5*integral(dz(U) - dx(W))/Vol    { Y-rotation }  
   
    { displacements with translation and rotation removed }  
    { This is necessary only if all boundaries are free }  
    Up = U - Tx + Rz*y - Ry*z  
    Vp = V - Ty + Rx*z - Rz*x  
    Wp = W - Tz + Ry*x - Rx*y  
   
    { scaling factors for displacement plots }  
    Mx = 0.2*globalmax(magnitude(y,z))/globalmax(magnitude(Vp,Wp))  
    My = 0.2*globalmax(magnitude(x,z))/globalmax(magnitude(Up,Wp))  
    Mz = 0.2*globalmax(magnitude(x,y))/globalmax(magnitude(Up,Vp))  
    Mt = 0.4*globalmax(magnitude(x,y,z))/globalmax(magnitude(Up,Vp,Wp))  
   
initial values  
    Tp = 5.  
    U = 1.e-5  
    V = 1.e-5  
    W = 1.e-5  
   
equations   
    Tp: div(k*grad(Tp)) + Q = 0.         { the heat equation }   
    U:  dx(Sx) + dy(Txy) + dz(Tzx) = 0   { the U-displacement equation }  
    V:  dx(Txy) + dy(Sy) + dz(Tyz) = 0   { the V-displacement equation }  
    W:  dx(Tzx) + dy(Tyz) + dz(Sz) = 0   { the W-displacement equation }  
   
extrusion z = 0,long  
   
boundaries  
    surface 1 value(Tp)=100             { fixed temp bottom }  
    surface 2 natural(Tp)=0.01*(Ta-Tp)  { poor convective cooling top }  
   
    Region 1    { Iron }  
       use material 'iron'
       start(0,0)  
         natural(Tp) = 0.1*(Ta-Tp)      { better convective cooling on vertical sides }  
         line to (wide,0)  
           to (wide,(high-taby)/2)  
           to (wide+tabx,(high-taby)/2)  
           to (wide+tabx,(high+taby)/2)  
           to (wide,(high+taby)/2)  
           to (wide,high)  
           to (0,high)  
           to close  
   
     Region 2   { Aluminum }  
       use material 'aluminum'
       start(wide,(high-taby)/2)  
         line to (wide+tabx,(high-taby)/2)  
           to (wide+tabx,(high+taby)/2)  
           to (wide,(high+taby)/2)  
           to close  
   
monitors  
    contour(Tp) on y=high/2  as "Temperature"  
    contour(Up) on y=high/2 as "X-displacement"  
    contour(Vp) on x=4*wide/5 as "Y-displacement"  
    contour(Wp) on y=high/2 as "Z-displacement"  
    grid(x+My*Up,z+My*Wp) on y=high/2 as "XZ Shape"  
    grid(y+Mx*Vp,z+Mx*Wp) on x=wide/2 as "YZ Shape"  
    grid(x+Mz*Up,y+Mz*Vp) on z=long/4 as "XY Shape"  
    grid(x+Mt*Up,y+Mt*Vp,z+Mt*Wp)  as "Shape"  
   
plots  
    contour(Tp) on y=high/2  as "XZ Temperature"  
    contour(Up) on y=high/2 as "X-displacement"  
    contour(Vp) on x=4*wide/5 as "Y-displacement"  
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    contour(Wp) on y=high/2 as "Z-displacement"  
    grid(x+My*Up,z+My*Wp) on y=high/2 as "XZ Shape"  
    grid(y+Mx*Vp,z+Mx*Wp) on x=4*wide/5 as "YZ Shape"  
    grid(x+Mz*Up,y+Mz*Vp) on z=long/4 as "XY Shape"  
    grid(x+Mt*Up,y+Mt*Vp,z+Mt*Wp)  as "Shape"  
    contour(Sx) on y=high/2 as "X-stress"  
    contour(Sy) on y=high/2 as "Y-stress"  
    contour(Sz) on y=high/2 as "Z-stress"  
    contour(Txy) on y=high/2 as "XY Shear stress"  
    contour(Tyz) on y=high/2 as "YZ Shear stress"  
    contour(Tzx) on y=high/2 as "ZX Shear stress"  
   
end  
  

5.1.11.2 anisotropic_stress

{ ANISOTROPIC_STRESS.PDE 
 
  This example shows the application of FlexPDE to an extremely complex 
  problem in anisotropic thermo-elasticity.  The equations of thermal 
  diffusion and plane strain are solved simultaneously to give the 
  thermally-induced stress and deformation in a laser application. 
 
                -- Submitted by Steve Sutton 
                   Lawrence Livermore National Laboratory 
}  
  
  
title "ANISOTROPIC THERMAL STRESS"  
  
select  
    errlim = 1e-4       { more accuracy to resolve stresses }  
  
variables  
    Tp(5)               { Temperature }  
    up(1e-6)            { X-displacement }  
    vp(1e-6)            { Y-displacement }  
  
definitions  
    Qs                  { The heat source, to be defined }  
    Q0 = 3.16  
    ro = 0.2            { Heat source radius }  
  
    W = 2               { slab size constants }  
    L = 0.5  
    mag = 5000  
  
    kp11 = 0.0135       { anisotropic conductivities }  
    kp33 = 0.0135  
    kp13 = 0.0016  
  
    C11 = 49.22e5       { anisotropic elastic constants }  
    C12 =  3.199e5  
    C13 = 23.836e5  
    C15 = -3.148e5  
    C21 = C12  
    C22 = 67.2e5  
    C23 =  3.199e5  
    C25 =  8.997e5  
    C31 = C13  
    C32 = C23  
    C33 = 49.22e5  
    C35 = -3.148e5  
    C51 = C15  
    C52 = C25  
    C53 = C35  
    C55 = 24.335e5  
  
    
    ayy = 34.49e-6      { anisotropic expansion coefficients }  
    axx = 34.49e-6  
    azz = 25.00e-6  
    axy = 9.5e-6  
  
    h = 1.0  
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    Tb = 0.  
    Q = Q0*(exp(-2*(x^2+y^2)/ro^2))  { Gaussian heat distribution }  
  
  
                { some auxilliary definitions }  
    qx = -kp33*dx(Tp) - kp13*dy(Tp)     { heat flux }  
    qy = -kp13*dx(Tp) - kp11*dy(Tp)  
  
                                        { expansion stress coefficients }  
    apxx = C31*ayy + C32*azz + C33*axx + C35*axy  
    apyy = C11*ayy + C12*azz + C13*axx + C15*axy  
    apzz = C21*ayy + C22*azz + C23*axx + C25*axy  
    apxy = C51*ayy + C52*azz + C53*axx + C55*axy  
  
    exx = dx(up)                        { strain }  
    eyy = dy(vp)  
    exy = 0.5*(dy(up)+dx(vp))  
                                        { stress }  
    sxx = C31*eyy + C33*exx + 2*C35*exy - apxx*Tp  
    syy = C11*eyy + C13*exx + 2*C15*exy - apyy*Tp  
    szz = C21*eyy + C23*exx + 2*C25*exy - apzz*Tp  
    sxy = C51*eyy + C53*exx + 2*C55*exy - apxy*Tp  
  
initial values  
    Tp = 5.  
    up = 0  
    vp = 0  
  
equations  
  
    Tp: dx(qx) + dy(qy) = Qs  
    Up: dx(sxx) + dy(sxy) = 0.  
    Vp: dx(sxy) + dy(syy) = 0.  
  
constraints                             { prevent rigid-body motion: }  
    integral(up) = 0                    { cancel X-motion }  
    integral(vp) = 0                    { cancel Y-motion }  
    integral(dx(vp) - dy(up)) = 0       { cancel rotation }  
  
boundaries  
  region 1  
    Qs = Q  
    start(-0.5*W,-0.5*L)  
        natural(up) = 0.                { zero normal stress on all faces }  
        natural(vp) = 0.  
        natural(Tp) = h*(Tp-Tb)         { convective cooling on bottom boundary }  
    line to (0.5*W,-0.5*L)  
        natural(Tp) = 0.                { no heat flux across end }  
    line to (0.5*W,0.5*L)  
        natural(Tp) = h*(Tp-Tb)         { convective cooling on top boundary }  
    line to (-0.5*W,0.5*L)  
        natural(Tp) = 0.                { no heat flux across end }  
    line to close  
  
monitors  
    grid (x+mag*up,y+mag*vp)  
    contour(Tp) as "Temperature"  
  
plots
    grid (x+mag*up,y+mag*vp)
    contour(Tp) as "Temperature" on grid (x+mag*up,y+mag*vp)
    contour(Tp) as "Temperature" zoom(-.2,-.2,0.4,0.4) on grid (x+mag*up,y+mag*vp)
    contour(up) as "x-displacement" on grid (x+mag*up,y+mag*vp)
    contour(vp) as "y-displacement" on grid (x+mag*up,y+mag*vp)
    vector(up,vp) as "Displacement vector plot" on grid (x+mag*up,y+mag*vp)
    contour(sxx) as "x-normal stress" on grid (x+mag*up,y+mag*vp)
    contour(syy) as "y-normal stress" on grid (x+mag*up,y+mag*vp)
    contour(sxy) as "shear stress" on grid (x+mag*up,y+mag*vp)
    elevation(Tp) from (0,-0.5*L) to (0,0.5*L) as "Temperature"
    elevation(sxx) from (0,-0.5*L) to (0,0.5*L) as "x-normal stress"
    elevation(syy) from (0,-0.5*L) to (0,0.5*L) as "y-normal stress"
    surface(Tp) as "Temperature" 

end  
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5.1.11.3 axisy m m etric_stress

{  AXISYMMETRIC_STRESS.PDE   
 
   This example shows the application of FlexPDE to problems in 
   axi-symmetric stress. 
 
   The equations of Stress/Strain arise from the balance of forces in a 
   material medium, expressed in cylindrical geometry as 
        dr(r*Sr)/r - St/r  + dz(Trz) + Fr = 0 
        dr(r*Trz)/r + dz(Sz) + Fz = 0 
 
   where Sr, St and Sz are the stresses in the r- theta- and z- directions, 
   Trz is the shear stress, and Fr and Fz are the body forces in the 
   r- and z- directions. 
 
   The deformation of the material is described by the displacements, 
   U and V, from which the strains are defined as 
        er = dr(U) 
        et = U/r 
        ez = dz(V) 
        grz = dz(U) + dr(V). 
 
   The quantities U,V,er,et,ez,grz,Sr,St,Sz and Trz are related through the 
   constitutive relations of the material, 
        Sr  =  C11*er + C12*et + C13*ez - b*Temp 
        St  =  C12*er + C22*et + C23*ez - b*Temp 
        Sz  =  C13*er + C23*et + C33*ez - b*Temp 
        Trz =  C44*grz 
 
   In isotropic solids we can write the constitutive relations as 
        C11 = C22 = C33 = G*(1-nu)/(1-2*nu)     = C1 
        C12 = C13 = C23 = G*nu/(1-2*nu)         = C2 
        b = alpha*G*(1+nu)/(1-2*nu) 
        C44 = G/2 
 
   where G = E/(1+nu) is the Modulus of Rigidity 
         E is Young's Modulus 
         nu is Poisson's Ratio 
   and   alpha is the thermal expansion coefficient. 
 
   from which 
        Sr  =  C1*er + C2*(et + ez) - b*Temp 
        St  =  C1*et + C2*(er + ez) - b*Temp 
        Sz  =  C1*ez + C2*(er + et) - b*Temp 
        Trz =  C44*grz 
 
   Combining all these relations, we get the displacement equations: 
        dr(r*Sr)/r - St/r + dz(Trz) + Fr = 0 
        dr(r*Trz)/r + dz(Sz) + Fz = 0 
 
   These can be written as 
        div(P) = St/r - Fr 
        div(Q) = -Fz 
 
   where P = [Sr,Trz] 
   and   Q = [Trz,Sz] 
 
   The natural (or "load") boundary condition for the U-equation defines the 
   outward surface-normal component of P, while the natural boundary condition 
   for the V-equation defines the surface-normal component of Q. Thus, the 
   natural boundary conditions for the U- and V- equations together define 
   the surface load vector. 
 
   On a free boundary, both of these vectors are zero, so a free boundary 
   is simply specified by 
        load(U) = 0 
        load(V) = 0. 
 
   The problem analyzed here is a steel doughnut of rectangular cross-section, 
   supported on the inner surface and loaded downward on the outer surface. 
 
}  
  
title "Doughnut in Axial Shear"  
  
coordinates  
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    ycylinder('R','Z')  
  
variables  
    U           { declare U and V to be the system variables }  
    V  
  
definitions  
    nu = 0.3            { define Poisson's Ratio }  
    E  = 20             { Young's Modulus x 10^-11 }  
    alpha = 0           { define the thermal expansion coefficient }  
    G = E/(1+nu)  
    C1 = G*(1-nu)/(1-2*nu)      { define the constitutive relations }  
    C2 = G*nu/(1-2*nu)  
    b = alpha*G*(1+nu)/(1-2*nu)  
    Fr = 0              { define the body forces }  
    Fz = 0  
    Temp = 0            { define the temperature }  
  
    Sr  =  C1*dr(U) + C2*(U/r + dz(V)) - b*Temp  
    St  =  C1*U/r + C2*(dr(U) + dz(V)) - b*Temp  
    Sz  =  C1*dz(V) + C2*(dr(U) + U/r) - b*Temp  
    Trz =  G*(dz(U) + dr(V))/2  
  
    r1 = 2              { define the inner and outer radii of a doughnut }  
    r2 = 5  
    q21 = r2/r1  
    L = 1.0             { define the height of the doughnut }  
  
initial values  
    U = 0  
    V = 0  
  
equations               { define the axi-symmetric displacement equations }  
  
    U:  dr(r*Sr)/r - St/r + dz(Trz) + Fr = 0  
    V:  dr(r*Trz)/r + dz(Sz) + Fz = 0  
  
boundaries  
    region 1  
      start(r1,0)  
      load(U) =  0          { define a free boundary along bottom }  
      load(V) =  0  
      line to (r2,0)  
  
      value(U) = 0          { constrain R-displacement on right }  
      load(V) = -E/100      { apply a downward shear load }  
      line to (r2,L)  
  
      load(U) =  0          { define a free boundary along top }  
      load(V) =  0  
      line to (r1,L)  
  
      value(U) = 0          { constrain all displacement on inner wall }  
      value(V) = 0  
      line to close  
  
monitors  
    grid(r+U,z+V)           { show deformed grid as solution progresses }  
  
plots                       { hardcopy at to close: }  
    grid(r+U,z+V)           { show final deformed grid }  
    contour(U) as "X-Displacement"          { show displacement field }  
    contour(V) as "Y-Displacement"          { show displacement field }  
    vector(U,V) as "Displacement"           { show displacement field }  
    contour(Trz) as "Shear Stress"  
    surface(Sr) as "Radial Stress"  
  
end  
  

5.1.11.4 bentbar

{ BENTBAR.PDE 
       
  This is a test problem from Timoshenko: Theory of Elasticity, pp41-46 
 
  A cantilever is loaded by a distributed shearing force on the free end, 
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  while a point at the center of the mounted end is fixed. 
 
  The solution is compared to Timoshenko's analytic solution. 
  
  The equations of Stress/Strain arise from the balance of forces in a 
  material medium, expressed as 
        dx(Sx) + dy(Txy) + Fx = 0 
        dx(Txy) + dy(Sy) + Fy = 0 
  where Sx and Sy are the stresses in the x- and y- directions, 
        Txy is the shear stress, and  
        Fx and Fy are the body forces in the x- and y- directions. 
 
  The deformation of the material is described by the displacements, 
  U and V, from which the strains are defined as 
        ex = dx(U) 
        ey = dy(V) 
        gxy = dy(U) + dx(V). 
 
  The eight quantities U,V,ex,ey,gxy,Sx,Sy and Txy are related through the 
  constitutive relations of the material. In general, 
        Sx  =  C11*ex + C12*ey + C13*gxy - b*Temp 
        Sy  =  C12*ex + C22*ey + C23*gxy - b*Temp 
        Txy =  C13*ex + C23*ey + C33*gxy 
 
  In orthotropic solids, we may take C13 = C23 = 0. 
  In this problem we consider the thermal effects to be negligible. 
 
}  
  
title "Timoshenko's Bar with end load"  
  
variables  
    U           { X-displacement }  
    V           { Y-displacement }  
  
definitions  
    L = 1               { Bar length }  
    hL = L/2  
    W = 0.1             { Bar thickness }  
    hW = W/2  
    eps = 0.01*L  
    I = 2*hW^3/3        { Moment of inertia }  
  
    nu = 0.3            { Poisson's Ratio }  
    E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }  
                        { plane stress coefficients }  
    G  = E/(1-nu^2)  
    C11 = G  
    C12 = G*nu  
    C22 = G  
    C33 = G*(1-nu)/2  
  
    amplitude=GLOBALMAX(abs(v)) { for grid-plot scaling }  
    mag=1/amplitude  
  
    force = -250         { total loading force in Newtons (~10 pound force) }  
    dist = 0.5*force*(hW^2-y^2)/I       { Distributed load }  
  
    Sx = (C11*dx(U) + C12*dy(V))        { Stresses }  
    Sy = (C12*dx(U) + C22*dy(V))  
    Txy = C33*(dy(U) + dx(V))  
  
    { Timoshenko's analytic solution:  }  
    Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)  
    Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)  
    Sxexact = -force*x*y/I  
    Txyexact = -0.5*force*(hW^2-y^2)/I  
  
initial values  
    U = 0  
    V = 0  
  
equations             { the displacement equations }  
    U:  dx(Sx) + dy(Txy) = 0  
    V:  dx(Txy) + dy(Sy) = 0  
  
boundaries  
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    region 1  
      start (0,-hW)  
  
      load(U)=0         { free boundary on bottom, no normal stress }  
      load(V)=0  
        line to (L,-hW)  
  
      value(U) = Uexact { clamp the right end }  
      mesh_spacing=hW/10  
        line to (L,0) point value(V) = 0  
        line to (L,hW)  
  
      load(U)=0         { free boundary on top, no normal stress }  
      load(V)=0  
      mesh_spacing=10  
        line to (0,hW)  
  
      load(U) = 0  
      load(V) = dist    { apply distributed load to Y-displacement equation }  
        line to close  
  
plots  
    grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  
    elevation(V,Vexact) from(0,0) to (L,0) as "Center Y-Displacement(M)"  
    elevation(V,Vexact) from(0,hW) to (L,hW) as "Top Y-Displacement(M)"  
    elevation(U,Uexact) from(0,hW) to (L,hW) as "Top X-Displacement(M)"  
    elevation(Sx,Sxexact) from(0,hW) to (L,hW) as "Top X-Stress"  
    elevation(Txy,Txyexact) from(0,0) to (L,0) as "Center Shear Stress"  
  
end  
  

5.1.11.5 bentbar_m oving

{ BENTBAR_MOVING.PDE
      
  This problem is a moving mesh variant of BENTBAR.PDE
}

title "Timoshenko's Bar with end load"

variables
    U(1e-6)           { X-displacement }
    V (1e-6)          { Y-displacement }
    Xm = move(x)
    Ym = move(y)

definitions
    L = 1               { Bar length }
    hL = L/2
    W = 0.1             { Bar thickness }
    hW = W/2
    eps = 0.01*L
    I = 2*hW^3/3        { Moment of inertia }

    nu = 0.3            { Poisson's Ratio }
    E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }
                        { plane stress coefficients }
    G  = E/(1-nu^2)
    C11 = G
    C12 = G*nu
    C22 = G
    C33 = G*(1-nu)/2

    amplitude=GLOBALMAX(abs(v)) { for grid-plot scaling }
    mag=1/(amplitude+1e-6)

    force = -250         { total loading force in Newtons (~10 pound force) }
    dist = 0.5*force*(hW^2-y^2)/I       { Distributed load }

    Sx = (C11*dx(U) + C12*dy(V))        { Stresses }
    Sy = (C12*dx(U) + C22*dy(V))
    Txy = C33*(dy(U) + dx(V))
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    { Timoshenko's analytic solution:  }
    Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)
    Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)
    Sxexact = -force*x*y/I
    Txyexact = -0.5*force*(hW^2-y^2)/I

initial values
    U = 0
    V = 0

equations             { the displacement equations }
  ! force the displacements to evolve in pseudo-time, to allow a smooth deformation of
the mesh.
  ! the time scale of these equations is arbitrary
    U:  dx(Sx) + dy(Txy) = dt(U)
    V:  dx(Txy) + dy(Sy) = dt(v)
  ! the mesh surrogate variables.  They move at the same rate as the material deformation
    Xm: dt(Xm) = dt(U)
    Ym: dt(Ym) = dt(V)

boundaries
    region 1
      start (0,-hW)

      load(U)=0         { free boundary on bottom, no normal stress }
      load(V)=0
        line to (L,-hW)

      value(U) = Uexact { clamp the right end }
      mesh_spacing=hW/10
        line to (L,0) point value(V) = 0
        line to (L,hW)

      load(U)=0         { free boundary on top, no normal stress }
      load(V)=0
      mesh_spacing=10
        line to (0,hW)

      load(U) = 0
      load(V) = dist    { apply distributed load to Y-displacement equation }
        line to close

time 0 to 1e-8 !by 1e-10

plots
for cycle=1
    ! x and y have already been moved by u and v, but this is small compared to mag*u,
etc.
    grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }
    elevation(V,Vexact) from(0,0) to (L,0) as "Center Y-Displacement(M)"
    elevation(V,Vexact) from(0,hW) to (L,hW) as "Top Y-Displacement(M)"
    elevation(U,Uexact) from(0,hW) to (L,hW) as "Top X-Displacement(M)"
    elevation(Sx,Sxexact) from(0,hW) to (L,hW) as "Top X-Stress"
    elevation(Txy,Txyexact) from(0,0) to (L,0) as "Center Shear Stress"

end "JqARWPEgsA1HmFOIXNmCNfb+qWfQGus/TmzjXhVHKZ2Q6NnpPJOCREi6wK8g8g
+Pnvy7DriMhUjFAl1qcBgg5yF+MkmYxGJoetheissilVHa1rvSKiA1A0QLkuYpmTaJG2+/v5g68e
+flbisgxXY2m4KBHCsFJGbJsy2FFnplf6"

5.1.11.6 elasticity

 { ELASTICITY.PDE  
 
   This example shows the application of FlexPDE to a complex problem in 
   thermo-elasticity.  The equations of thermal diffusion and 
   plane strain are solved simultaneously to give the thermally-induced 
   stress and deformation in a laser application. 
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   A rod amplifier of square cross-section is imbedded in a large copper 
   heat-sink. The rod is surrounded by a thin layer of compliant metal. 
   Pump light is focussed on the exposed side of the rod. 
 
   We wish to calculate the effect of the thermal load on the laser rod. 
 
 
   The equations of Stress/Strain arise from the balance of forces in a 
   material medium, expressed as 
        dx(Sx) + dy(Txy) + Fx = 0 
        dx(Txy) + dy(Sy) + Fy = 0 
 
   where Sx and Sy are the stresses in the x- and y- directions, 
   Txy is the shear stress, and Fx and Fy are the body forces in the 
   x- and y- directions. 
 
   The deformation of the material is described by the displacements, 
   U and V, from which the strains are defined as 
        ex = dx(U) 
        ey = dy(V) 
        gxy = dy(U) + dx(V). 
 
   The eight quantities U,V,ex,ey,gxy,Sx,Sy and Txy are related through the 
   constitutive relations of the material. In general, 
        Sx  =  C11*ex + C12*ey + C13*gxy - b*Temp 
        Sy  =  C12*ex + C22*ey + C23*gxy - b*Temp 
        Txy =  C13*ex + C23*ey + C33*gxy 
 
   In orthotropic solids, we may take C13 = C23 = 0. 
 
   Combining all these relations, we get the displacement equations: 
        dx[C11*dx(U)+C12*dy(V)] + dy[C33*(dy(U)+dx(V))] + Fx = dx(b*Temp) 
        dy[C12*dx(U)+C22*dy(V)] + dx[C33*(dy(U)+dx(V))] + Fy = dy(b*Temp) 
 
 
   The "Plane-Strain" approximation is appropriate for  the cross-section 
   of a cylinder which is long in the Z-direction, and in which there is no 
   Z-strain. The cylinder is loaded by surface tractions and body forces 
   applied along the length of cylinder, and which are independent of Z. 
 
   In this case, we may write 
        C11 = G*(1-nu)  C12 = G*nu                      b = G*alpha*(1+nu) 
                        C22 = G*(1-nu) 
                                        C33 = G*(1-2*nu)/2 
 
   where G = E/[(1+nu)*(1-2*nu)] 
         E is Young's Modulus 
         nu is Poisson's Ratio 
   and   alpha is the thermal expansion coefficient. 
 
   The displacement form of the stress equations (for uniform temperature 
   and no body forces) is then (dividing out G): 
 
        dx[(1-nu)*dx(U)+nu*dy(V)] + 0.5*(1-2*nu)*dy[dy(U)+dx(V)] 
                                                = alpha*(1+nu)*dx(Temp) 
 
        dy[nu*dx(U)+(1-nu)*dy(V)] + 0.5*(1-2*nu)*dx[dy(U)+dx(V)] 
                                                = alpha*(1+nu)*dy(Temp) 
 
   In order to quantify the "natural" (or "load") boundary condition mechanism, 
   consider the stress equations in their original form: 
        dx(Sx) + dy(Txy) = 0 
        dx(Txy) + dy(Sy) = 0 
 
   These can be written as 
        div(P) = 0 
        div(Q) = 0 
 
   where P = [Sx,Txy] 
   and   Q = [Txy,Sy] 
 
   The natural (or "load") boundary condition for the U-equation defines the 
   outward surface-normal component of P, while the natural boundary condition 
   for the V-equation defines the surface-normal component of Q. Thus, the 
   natural boundary conditions for the U- and V- equations together define 
   the surface load vector. 
 



FlexPDE 7 : Sample Problems449

   On a free boundary, both of these vectors are zero, so a free boundary 
   is simply specified by 
        load(U) = 0 
        load(V) = 0. 
 
   -- Submitted by Steve Sutton, Lawrence Livermore National Laboratory 
 
}  
  
title "Thermo-Elastic Stress"  
  
select errlim = 1.0e-4  
  
variables  
    Tp                  { declare the system variables to be Tp, Up and Vp }  
    Up  
    Vp  
  
definitions  
    k                   { declare thermal conductivity - values come later }  
    Q                   { declare thermal Source - values come later }  
    E                   { declare Young's Modulus - values come later }  
    nu                  { declare Poisson's Ratio - values come later }  
    alpha               { declare Expansion coefficient - values come later }  
  
                        { The heat deposition function: }  
    adep = 1.8          { define the absorption coefficient }  
    yo = 0.6            { define the pattern width }  
    I0  = 1             { define the input flux }  
    Qrodp = adep*I0*(exp(-adep*x))*(exp(-((y/yo)^2)))  
  
    Tb = 0.             { define the distant thermal sink temperature }  
  
                        { define the constitutive relations }  
    G = E/((1.+nu)*(1.-2.*nu))  
    C11 = G*(1-nu)  
    C12 = G*nu  
    C22 = G*(1-nu)  
    C33 = G*(1-2*nu)/2  
    b = G*alpha*(1+nu)  
  
                        { define some utility functions }  
    ex = dx(Up)  
    ey = dy(Vp)  
    gxy = dy(Up) + dx(Vp)         
    Sx  =  C11*ex + C12*ey - b*Tp  
    Sy  =  C12*ex + C22*ey - b*Tp  
    Txy =  C33*gxy  
  
boundary conditions
    'main' :
    value(Tp) = Tb      { fixed temperature }
    natural(Up) = 0.    { zero X-load }
    natural(Vp) = 0.    { zero Y-load }

    'left' :
    natural(Tp) = 0.    { no heat loss }
    natural(Up) = 0.    { zero X-load }
    natural(Vp) = 0.    { zero Y-load }
  
initial values  
    Tp = 5.             { give FlexPDE an estimate of variable range }  
    Up = 1.e-5  
    Vp = 1.e-5  
  
equations  
    { the heat equation }  
    Tp: dx(k*dx(Tp)) + dy(k*dy(Tp)) + Q = 0.  
  
    { the U-displacement equation }  
    Up: dx(C11*dx(Up)+C12*dy(Vp)-b*Tp) + dy(C33*(dy(Up)+dx(Vp))) = 0.  
  
    { the V-displacement equation }  
    Vp: dx(C33*(dy(Up)+dx(Vp))) + dy(C12*dx(Up)+C22*dy(Vp)-b*Tp) = 0.  
  
constraints                             { prevent rigid-body motion: }  
    integral(up) = 0                    { cancel X-motion }  
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    integral(vp) = 0                    { cancel Y-motion }  
    integral(dx(vp) - dy(up)) = 0       { cancel rotation }  
  
boundaries  
  
  region 1              { region one defines the problem domain as all copper 
                            and sets the boundary conditions for the problem }  
    k = 0.083  
    Q = 0.  
    E = 117.0e3  
    nu = 0.4  
    alpha = 10e-6  
  
    start(0,-5)  
  
    use bc 'main'
    line to (5,-5) to (5,5) to (0,5)  
  
    use bc 'left'
    line to close  
  
  region 2              { region two overlays an Indium potting layer }  
    k = 0.083  
    Q = 0.  
    E =  60.0e3  
    nu = 0.4  
    alpha = 16e-6  
    start (0,-0.6)  
    line to (0.6,-0.6) to (0.6,0.6) to (0,0.6) to (0,0.5) to (0,-0.5) to close  
  
  region 3              { region three overlays the laser rod }  
    k = 0.0098  
    Q = Qrodp  
    E = 282.0e3  
    nu = 0.28  
    alpha = 7e-6  
    start (0,-0.5)  
    line to (0.5,-0.5) to (0.5,0.5) to (0,0.5) to close  
  
monitors  
    contour(Tp) as "Temperature"  
    contour(Tp) as "Temperature" zoom(0,0,1,1)  
    contour(Q) as "Heat deposition" zoom(0,0,1,1)  
    contour(Up) as "X-displacement" zoom(0,0,1,1)  
    contour(Vp) as "Y-displacement" zoom(0,0,1,1)  
    grid(x+10000*Up,y+10000*Vp) as "deformation"  
  
plots  
    grid(x,y)  
    contour(Tp) as "Temperature"  
    contour(Tp) as "Temperature" zoom(0,0,1,1)  
    contour(Q) as "Heat deposition" zoom(0,0,1,1)  
    contour(Up) as "X-displacement" !zoom(0,0,1,1) 
    contour(Vp) as "Y-displacement" !zoom(0,0,1,1) 
    contour(Sx) as "X-Stress"   zoom(0,-0.75,1.5,1.5)  
    contour(Sy) as "Y-Stress"   zoom(0,-0.75,1.5,1.5)  
    contour(Txy) as "Shear Stress"   zoom(0,-0.75,1.5,1.5)  
    vector(Up,Vp) as "displacement"  
    vector(Up,Vp) as "displacement" zoom(0,0,1,1)  
    grid(x+10000*Up,y+10000*Vp) as "deformation"  
  
end  
   
  

5.1.11.7 fixed_plate

{ FIXED_PLATE.PDE  
 
  This example considers the bending of a thin rectangular plate under a 
  distributed transverse load. 
 
  For small displacements, the deflection U is described by the Biharmonic 
  equation of plate flexure 
        del2(del2(U)) + Q/D  =  0 
  where 
        Q is the load distribution, 
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        D = E*h^3/(12*(1-nu^2)) 
        E is Young's Modulus 
        nu is Poisson's ratio 
  and   h is the plate thickness. 
 
  The boundary conditions to be imposed depend on the way in which the 
  plate is mounted.  Here we consider the case of a clamped boundary, 
  for which 
        U = 0 
        dU/dn = 0 
 
  FlexPDE cannot directly solve the fourth order equation, but if we 
  define V = del2(U), then the deflection equation becomes 
        del2(U) = V 
        del2(V) + Q = 0 
  with the boundary conditions 
        dU/dn = 0 
        dV/dn = L*U 
  where L is a very large number. 
 
  In this system, dV/dn can only remain bounded if U -> 0, satisfying the 
  value condition on U. 
 
  The particular problem addressed here is a plate of 16-gauge steel, 
  8 x 11.2 inches, covering a vacuum chamber, with atmospheric pressure 
  loading the plate.  The edges are clamped.  Solutions to this problem 
  are readily available, for example in Roark's Formulas for Stress & Strain, 
  from which the maximum deflection is Umax =  0.219, in exact agreement 
  with the FlexPDE result. 
 
  (See FREE_PLATE.PDE  for the solution with a simply supported edge.) 
 
  Note: Care must be exercised when extending this formulation to more complex 
    problems.  In particular, in the equation del2(U) = V, V acts as a source 
    in the boundary-value equation for U.  Imposing a value boundary condition 
    on U does not enforce V = del2(U). 
 
}  
  
  
Title " Plate Bending - clamped boundary "  
  
Select  
    errlim = 0.005  
    cubic       { Use Cubic Basis }  

Variables  
     U(0.1)  
     V(0.1)  
  
Definitions  
    xslab = 11.2  
    yslab = 8  
    h = 0.0598  {16 ga}  
    L = 1.0e4  
    E = 29e6  
    Q = 14.7  
    nu = .3  
    D = E*h^3/(12*(1-nu^2))  
  
Initial Values  
    U =  0  
    V =  0  
  
Equations  
    U:  del2(U) = V  
    V:  del2(V) = Q/D  
  
Boundaries  
    Region 1  
      start (0,0)  
      natural(U) = 0  
      natural(V) = L*U  
      line to (xslab,0)  
           to (xslab,yslab)  
           to (0,yslab)  
           to close  

452



Sample Problems : Applications 452

  
Monitors  
    contour(U)  
  
Plots  
    contour (U)  as "Displacement"  
    elevation(U) from (0,yslab/2) to (xslab,yslab/2) as "Displacement"  
    surface(U) as "Displacement"  
  
End  
  

5.1.11.8 free_plate

{ FREE_PLATE.PDE  
 
  This example considers the bending of a thin rectangular plate under a 
  distributed transverse load. 
 
  For small displacements, the deflection U is described by the Biharmonic 
  equation of plate flexure 
        del2(del2(U)) + Q/D  =  0 
  where 
        Q is the load distribution, 
        D = E*h^3/(12*(1-nu^2)) 
        E is Young's Modulus 
        nu is Poisson's ratio 
  and   h is the plate thickness. 
 
  The boundary conditions to be imposed depend on the way in which the 
  plate is mounted.  Here we consider the case of a simply supported 
  boundary, for which the correct conditions are 
        U = 0 
        Mn = 0 
  where Mn is the tangential component of the bending moment, which in turn 
  is related to the curvature of the plate. An approximation to the second 
  boundary condition is then 
        del2(U) = 0. 
 
  FlexPDE cannot directly solve the fourth order equation, but if we 
  define V = del2(U), then the deflection equation becomes 
        del2(U) = V 
        del2(V) + Q = 0 
  with the boundary conditions 
        U = 0 
        V = 0. 
 
  The particular problem addressed here is a plate of 16-gauge steel, 
  8 x 11.2 inches, covering a vacuum chamber, with atmospheric pressure 
  loading the plate.  The edges are simply supported.  Solutions to this 
  problem are readily available, for example in Roark's Formulas for Stress 
  & Strain, from which the maximum deflection is Umax =  0.746, as compared 
  with the FlexPDE result of 0.750. 
 
  (See FIXED_PLATE.PDE  for the solution with a clamped edge.) 
 
  Note: Care must be exercised when extending this formulation to more complex 
    problems.  In particular, in the equation del2(U) = V, V acts as a source 
    in the boundary-value equation for U.  Imposing a value boundary condition 
    on U does not enforce V = del2(U). 
 
}  
  
Title " Plate Bending - simple support "  
  
Select  
    ngrid=10                    { increase initial gridding }  
    cubic           { Use Cubic Basis }  
  
Variables  
     U(0.1)  
     V(0.1)  
  
Definitions  
    xslab = 11.2  
    yslab = 8  
    h = 0.0598  {16 ga}  

450
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    L = 1.0e6  
    E = 29e6  
    Q = 14.7  
    nu = .3  
    D = E*h^3/(12*(1-nu^2))  
  
Initial Values  
    U =  0  
    V =  0  
  
Equations  
     U: del2(U) = V  
     V: del2(V) = Q/D  
  
Boundaries  
    Region 1  
      start (0,0)  
      value(U) = 0  
      value(V) = 0  
      line to (xslab,0)  
           to (xslab,yslab)  
           to (0,yslab)  
           to close  
  
Monitors  
    contour(U)  
  
Plots  
    contour (U)  as "Displacement"  
    elevation(U) from (0,yslab/2) to (xslab,yslab/2) as "Displacement"  
    surface(U) as "Displacement"  
  
End  
  

5.1.11.9 harm onic

{ HARMONIC.PDE  
 
  This example shows the use of FlexPDE in harmonic analysis of 
  transient Stress problems. 
 
  The equations of Stress/Strain in a material medium can be given as 
        dx(Sx) + dy(Txy) + Fx = 0 
        dx(Txy) + dy(Sy) + Fy = 0 
  where Sx and Sy are the stresses in the x- and y- directions, 
        Txy is the shear stress, and  
        Fx and Fy are the body forces in the x- and y- directions. 
 
  In a time-dependent problem, the material acceleration and viscous force 
  act as body forces, and are included in a new body force term 
        Fx1 = Fx0 - rho*dtt(U) + mu*del2(dt(U)) 
        Fy1 = Fy0 - rho*dtt(V) + mu*del2(dt(V)) 
  where rho is the material mass density, mu is the viscosity, and U and V 
  are the material displacements in the x and y directions. 
 
  If we assume that the displacement is harmonic in time (all transients 
  have died out), then we can assert 
        U(t) = U0*exp(-i*omega*t) 
        V(t) = V0*exp(-i*omega*t) 
  Here U0(x,y) and V0(x,y) are the complex amplitude distributions, and 
  omega is the angular velocity of the oscillation. 
 
  Substituting this assumption into the stress equations and dividing out 
  the common exponential factors, we get (implying U0 by U and V0 by V) 
        dx(Sx) + dy(Txy) + Fx0 + rho*omega^2*U - i*omega*mu*del2(U) = 0 
        dx(Txy) + dy(Sy) + Fy0 + rho*omega^2*V - i*omega*mu*del2(V) = 0 
 
  All the terms in this equation are now complex.  Separating into real 
  and imaginary parts gives 
        U = Ur + i*Ui 
        Sx = Srx + i*Six 
        Sy = Sry + i*Siy 
        etc... 
 
  Expressed in terms of the constitutive relations of the material, 
        Srx = [C11*dx(Ur) + C12*dy(Vr)] 
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        Sry = [C12*dx(Ur) + C22*dy(Vr)] 
        Trxy = C33*[dy(Ur) + dx(Vr)] 
        etc... 
 
  The final result is a set of four equations in Ur,Vr,Ui and Vi. 
 
  Notice that the stress-balance equation is the Velocity equation, and it 
  is to this equation that boundary loads must be applied. 
 
  In the problem considered here, we have an aluminum bar one meter long and 
  5 cm thick suspended on the left, and driven on the right by an oscillatory 
  load.  The load frequency is chosen to be near the resonant frequency of 
  the bar. 
 
  We run the problem in three stages, first with no viscosity, then with increasing 
  viscosities to show the mixing of real and imaginary components. 
 
}  
  
title "Harmonic Stress analysis"  
  
variables  { Recall that the declared variable range, if too large, will affect the  
             interpretation of error, and thus the timestep and solution accuracy }  
    { Displacements }  
    Ur     
    Ui  
    Vr  
    Vi  
  
definitions  
    L = 1               { the bar length, in Meters }  
    hL = L/2  
    W = 0.05            { the bar thickness, in Meters }  
    hW = W/2  
    eps = 0.01*L  
  
    nu = 0.3            { Poisson's Ratio }  
    E  = 6.7e+10        { Young's Modulus for Aluminum (N/M^2) }  
  
                        { plane strain coefficients }  
    E1  = E/((1+nu)*(1-2*nu))  
    C11 = E1*(1-nu)  
    C12 = E1*nu  
    C22 = E1*(1-nu)  
    C33 = E1*(1-2*nu)/2  
  
    rho = 2700          { Kg/M^3 }  
    mu = staged(0,1e3,1e4)    { Estimated viscosity Kg/M/sec }  
  
    cvel = sqrt(E/rho)  { sound velocity, M/sec }  
    tau  = L/cvel       { transit time }  
    tone = 0.25/tau     { approximate resonant frequency }  
    omega = 2*pi*tone   { driving angular velocity  }  
  
    amplitude=1e-8      { a guess for plot scaling }  
    mag=1/amplitude  
  
    force = 25          { loading force in Newtons (~1 pound force) }  
                        { distribute the force  uniformly over the driven end: }  
    fdist = force/W  
  
    Um = sqrt(Ur^2+Ui^2)        { X-displacement amplitude }  
    Vm = sqrt(Vr^2+Vi^2)        { X-displacement amplitude }  
  
    Srx = (C11*dx(Ur) + C12*dy(Vr))        { Real Stresses }  
    Sry = (C12*dx(Ur) + C22*dy(Vr))  
    Trxy = C33*(dy(Ur) + dx(Vr))  
    Six = (C11*dx(Ui) + C12*dy(Vi))        { Imaginary Stresses }  
    Siy = (C12*dx(Ui) + C22*dy(Vi))  
    Tixy = C33*(dy(Ui) + dx(Vi))  
  
    Sxm = sqrt(Srx^2+Six^2)  
    Sym = sqrt(Sry^2+Siy^2)  
    Txym = sqrt(Trxy^2+Tixy^2)  
  
equations             { define the displacement equations }  
    Ur: dx(Srx) + dy(Trxy) + rho*omega^2*Ur + omega*mu*del2(Ui) = 0  



FlexPDE 7 : Sample Problems455

    Ui: dx(Six) + dy(Tixy) + rho*omega^2*Ui - omega*mu*del2(Ur) = 0  
    Vr: dx(Trxy) + dy(Sry) + rho*omega^2*Vr + omega*mu*del2(Vi) = 0  
    Vi: dx(Tixy) + dy(Siy) + rho*omega^2*Vi - omega*mu*del2(Vr) = 0  
  
boundaries  
    region 1  
      start (0,-hW)  
  
      load(Ur)=0         { free boundary on bottom, no normal stress }  
      load(Ui)=0  
      load(Vr)=0  
      load(Vi)=0  
      line to (L,-hW)  
  
      load(Vr) = force   { Apply oscillatory vertical load on end. }  
      line to (L,hW)  
  
      load(Vr)=0         { free boundary on top, no normal stress }  
      line to (0,hW)  
  
      value(Ur) = 0      { clamp the left end  }  
      value(Ui) = 0  
      value(Vr) = 0  
      value(Vi) = 0  
      line to close  
  
monitors  
    elevation(Vr,Vi) from(0,0) to (L,0)  
      report(omega) report(mu)  
  
plots  
    grid(x+mag*Ur,y+mag*Vr)   as "Real displacement"   { show final deformed grid }  
      report(omega) report(mu)  
    grid(x+mag*Ui,y+mag*Vi)   as "Imag
displacement"  
      report(omega) report(mu)  
    elevation(Vr,Vi) from(0,0) to (L,0)  
      report(omega) report(mu)  
    contour(Ur) as "Real X-displacement(M)"  
      report(omega) report(mu)  
    contour(Vr) as "Real Y-displacement(M)"  
      report(omega) report(mu)  
    contour(Ui) as "Imag X-displacement(M)"  
      report(omega) report(mu)  
    contour(Vi) as "Imag Y-displacement(M)"  
      report(omega) report(mu)  
    contour(Sxm) as "X-Stress amplitude"  
      report(omega) report(mu)  
    contour(Sym) as "Y-Stress amplitude"  
      report(omega) report(mu)  
    contour(Txym) as "Shear Stress amplitude"  
      report(omega) report(mu)  
  
end  
  

5.1.11.10 prestube

{ PRESTUBE.PDE   
    
   This example models the stress in a tube with an internal pressure. 
         -  from "Fields of Physics on the PC"  by Gunnar Backstrom  
}  
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title  
   ' Tube With Internal Pressure'  
  
variables  
   u  
   v  
  
definitions  
   mm = 1e-3  
   r1 = 3*mm            
   r2 = 10*mm            
   q21= r2/r1  
   mu = 0.3  
   E = 200e9       {Steel}  
   c = E/(1-mu^2)       
   G = E/2/(1+mu)  
   dabs= sqrt(u^2+ v^2)  
   ex= dx(u)            
   ey= dy(v)               
   exy= dx(v)+ dy(u)  
   sx= c*(ex+ mu*ey)    
   sy= c*(mu*ex+ ey)       
   sxy= G*exy  
  
   p1= 1e8         { the internal pressure }  
  
   { Exact expressions }  
   rad= sqrt(x^2+ y^2)  
   sr_ex= -p1*((r2/rad)^2 - 1)/(q21^2 - 1)  
   st_ex=  p1*((r2/rad)^2 + 1)/(q21^2 - 1)  
   dabs_ex= abs( rad/E*(st_ex- mu*sr_ex))  
  
equations               { Constant temperature, no volume forces }  
   u:   dx( c*(dx(u) + mu*dy(v)) ) + dy( G*(dx(v)+ dy(u)) )= 0  
   v:   dx( G*( dx(v)+ dy(u)) )+  dy( c*(dy(v) + mu*dx(u)) )= 0  
  
constraints             { Since all boundaries are free, it is necessary 
                          to apply constraints to eliminate rigid-body motions }  
   integral(u) = 0  
   integral(v) = 0  
   integral(dx(v)-dy(u)) = 0  
  
boundaries  
   region 1  
   start (r2,0)  
   load(u)= 0           { Outer boundary is free }  
   load(v)= 0  
        arc to (0,r2) to (-r2,0) to (0,-r2) to close  
   start (r1,0)                 { Cut-out }  
   load(u)= p1*x/r1     { Normal component of x-stress }  
   load(v)= p1*y/r1     { Normal component of y-stress }  
        arc to (0,-r1) to (-r1,0) to (0,r1) to close  
  
monitors  
   contour(dabs)  
  
plots  
   grid(x+200*u, y+200*v)  
   elevation(sx, sr_ex) from (r1,0) to (r2,0)  
   elevation(sy, st_ex) from (r1,0) to (r2,0)  
   contour(dabs)        contour((dabs-dabs_ex)/dabs_ex)  
   contour(u)           contour(v)  
   vector(u,v)          vector(u/dabs, v/dabs)  
   contour(sx)          contour(sy)             contour(sxy)  
end  
  

5.1.11.11 tension

{ TENSION.PDE  
 
  This example shows the deformation of a tension bar with a hole. 
 
  The equations of Stress/Strain arise from the balance of forces in a 
  material medium, expressed as 
        dx(Sx) + dy(Txy) + Fx = 0 
        dx(Txy) + dy(Sy) + Fy = 0 
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  where Sx and Sy are the stresses in the x- and y- directions, 
        Txy is the shear stress, and  
        Fx and Fy are the body forces in the x- and y- directions. 
 
  The deformation of the material is described by the displacements, 
  U and V, from which the strains are defined as 
        ex = dx(U) 
        ey = dy(V) 
        gxy = dy(U) + dx(V). 
 
  The eight quantities U,V,ex,ey,gxy,Sx,Sy and Txy are related through the 
  constitutive relations of the material. In general, 
        Sx  =  C11*ex + C12*ey + C13*gxy - b*Temp 
        Sy  =  C12*ex + C22*ey + C23*gxy - b*Temp 
        Txy =  C13*ex + C23*ey + C33*gxy 
 
  In orthotropic solids, we may take C13 = C23 = 0. 
 
  Combining all these relations, we get the displacement equations: 
        dx[C11*dx(U)+C12*dy(V)] + dy[C33*(dy(U)+dx(V))] + Fx = dx(b*Temp) 
        dy[C12*dx(U)+C22*dy(V)] + dx[C33*(dy(U)+dx(V))] + Fy = dy(b*Temp) 
 
  In the "Plane-Stress" approximation, appropriate for a flat, thin plate 
  loaded by surface tractions and body forces IN THE PLANE of the plate, 
  we may write 
        C11 = G         C12 = G*nu 
                        C22 = G 
                                        C33 = G*(1-nu)/2 
  where G = E/(1-nu^2) 
        E is Young's Modulus 
  and   nu is Poisson's Ratio. 
 
  The displacement form of the stress equations (for uniform temperature 
  and no body forces) is then (dividing out G): 
        dx[dx(U)+nu*dy(V)] + 0.5*(1-nu)*dy[dy(U)+dx(V)] = 0 
        dy[nu*dx(U)+dy(V)] + 0.5*(1-nu)*dx[dy(U)+dx(V)] = 0 
 
  In order to quantify the load boundary condition mechanism, 
  consider the stress equations in their original form: 
        dx(Sx) + dy(Txy) = 0 
        dx(Txy) + dy(Sy) = 0 
 
  These can be written as 
        div(P) = 0 
        div(Q) = 0 
  where P = [Sx,Txy] 
  and   Q = [Txy,Sy] 
 
  The "load" (or "natural") boundary condition for the U-equation defines 
  the outward surface-normal component of P, while the load boundary condition 
  for the V-equation defines the surface-normal component of Q. Thus, the 
  load boundary conditions for the U- and V- equations together define 
  the surface load vector. 
 
  On a free boundary, both of these vectors are zero, so a free boundary 
  is simply specified by 
        load(U) = 0 
        load(V) = 0. 
 
  Here we consider a tension strip with a hole, subject to an X-load. 
 
}  
  
title 'Plane Stress tension strip with a hole'  
  
select  
    errlim = 1e-4       { increase accuracy to resolve stresses }  
    painted             { paint all contour plots }  
  
variables  
    U                   { declare U and V to be the system variables }  
    V  
  
definitions  
    nu = 0.3            { define Poisson's Ratio }  
    E  = 21             { Young's Modulus x 10^-11 }  



Sample Problems : Applications 458

   G  = E/(1-nu^2)  
    C11 = G  
    C12 = G*nu  
    C22 = G  
    C33 = G*(1-nu)/2  
    p1 = (1-nu)/2       
  
initial values  
    U = 1  
    V = 1  
 
equations               { define the Plane-Stress displacement equations }  
     U:  dx(dx(U) + nu*dy(V)) + p1*dy(dy(U) + dx(V))  = 0  
     V:  dy(dy(V) + nu*dx(U)) + p1*dx(dy(U) + dx(V))  = 0  
  
boundaries  
    region 1  
      start (0,0)  
      load(U)=0         { free boundary, no normal stress }  
      load(V)=0  
      line to (3,0)     { walk bottom }  
  
      load(U)=0.1       { define an X-stress of 0.1 unit on right edge}  
      load(V) = 0  
      line to (3,1)  
  
      load(U)=0         { free boundary top }  
      load(V)=0  
      line to (0,1)  
  
      value(U)=0        { fixed displacement on left edge }  
      value(V)=0  
      line to close  
  
                        { Cut out a hole }  
      load(U) = 0  
      load(V) = 0  
      start(1,0.25)  
      arc(center=1,0.5) angle=-360  
  
monitors  
    grid(x+U,y+V)     { show deformed grid as solution progresses }  
  
plots                 { hardcopy at to close: }  
    grid(x+U,y+V)      { show final deformed grid }  
    vector(U,V) as "Displacement"        { show displacement field }  
    contour(U) as "X-Displacement"  
    contour(V) as "Y-Displacement"  
    contour((C11*dx(U) + C12*dy(V))) as "X-Stress"  
    contour((C12*dx(U) + C22*dy(V))) as "Y-Stress"  
    surface((C11*dx(U) + C12*dy(V))) as "X-Stress"  
    surface((C12*dx(U) + C22*dy(V))) as "Y-Stress"  
  
end  
  

5.1.11.12 vibrate

{ VIBRATE.PDE  
   
  This example shows the use of FlexPDE in transient Stress problems. 
  
  The equations of Stress/Strain in a material medium can be given as  
        dx(Sx) + dy(Txy) + Fx = 0 
        dx(Txy) + dy(Sy) + Fy = 0 
  
  where Sx and Sy are the stresses in the x- and y- directions, 
        Txy is the shear stress, and  
        Fx and Fy are the body forces in the x- and y- directions. 
  
  In a time-dependent problem, the material acceleration and viscous force 
  act as body forces, and are included in a new body force term  
        Fx1 = Fx0 - rho*dtt(Ux) + mu*del2(dt(Ux)) 
        Fy1 = Fy0 - rho*dtt(Uy) + mu*del2(dt(Uy)) 
  
  where rho is the material mass density, mu is the viscosity, and Ux and Uy 
  are the material displacements. 
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  The second time derivative in the acceleration term cannot be modelled 
  directly in FlexPDE, but the problem can still be solved. 
  Define Vx and Vy as the velocities in the x and y directions; then  
        Vx = dt(Ux) 
    and Vy = dt(Uy) 
  
  The body forces are then  
        Fx1 = Fx0 - rho*dt(Vx) + mu*del2(Vx) 
        Fy1 = Fy0 - rho*dt(Vy) + mu*del2(Vy) 
  
  This results in a set of four equations in Ux,Uy,Vx and Vy. 
  
  Notice that the stress-balance equation is the Velocity equation, and it 
  is to this equation that boundary loads must be applied. 
  
  In the problem considered here, we have an aluminum bar one meter long and 
  5 cm thick suspended on the left, and driven on the right by an oscillatory 
  load.  The load frequency is chosen to be near the resonant frequency of 
  the bar. 
  
}  
   
title "Transient Stress analysis"  
   
select  
    deltat=1.0e-7       { Start out at careful timestep, it will grow. }  
    ngrid=21            { Grid a little more densely than default }  
   
    regrid = off        { Cell splitting causes instantaneous changes in the 
                          effective material properties. These changes act 
                          like small earthquakes in the material, and propagate 
                          high-frequency noise. To avoid these effects, we 
                          supress grid refinement. }  
   
variables               { Recall that the declared variable range, if too large, 
                          will affect the interpretation of error, and thus the 
                          timestep and solution accuracy }  
   
    Ux (threshold=1e-7)   { Displacements }  
    Uy (threshold=1e-7)  
    Vx (threshold=1e-5)   { Velocities }  
    Vy (threshold=1e-5)  
   
definitions  
    L = 1               { the bar length, in Meters }  
    hL = L/2  
    W = 0.05            { the bar thickness, in Meters }  
    hW = W/2  
    eps = 0.01*L  
   
    nu = 0.3            { Poisson's Ratio }  
    E  = 6.7e+10        { Young's Modulus for Aluminum (N/M^2) }  
   
                        { plane strain coefficients }  
    E1  = E/((1+nu)*(1-2*nu))  
    C11 = E1*(1-nu)  
    C12 = E1*nu  
    C22 = E1*(1-nu)  
    C33 = E1*(1-2*nu)/2  
   
    rho = 2700          { Kg/M^3 }  
    mu = 1e3            { Estimated viscosity Kg/M/sec }  
    smoother = 1        { artificial diffusion to smooth results  (M^2/sec) }  
   
    cvel = sqrt(E/rho)  { sound velocity, M/sec }  
    tau  = L/cvel       { transit time }  
    tone = 0.25/tau     { approximate resonant frequency }  
    freq = 1.1*tone       { driving frequency  }  
    period = 1/freq  
   
    amplitude=1e-8      { a guess for plot scaling }  
    mag=1/amplitude  
   
    force = 25          { loading force in Newtons (~1 pound force) }  
                        { distribute the force  uniformly over the driven end: }  
    fdist = force/W  
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                        { the driving force is sinusoidal in time: }  
    jiggle = force*sin(2*pi*freq*t)  
   
    Sx = (C11*dx(Ux) + C12*dy(Uy))        { Stresses }  
    Sy = (C12*dx(Ux) + C22*dy(Uy))  
    Txy = C33*(dy(Ux) + dx(Uy))  

boundary conditions
    'no load' : load(Vx)=0 load(Vy)=0
    'Y load'  : load(Vx)=0 load(Vy)=jiggle
    'freeze'  : value(Ux)=0 value(Uy)=0 value(Vx)=0 value(Vy)=0
   
initial values  
    Ux = 0              { start at rest }  
    Uy = 0  
    Vx = 0  
    Vy = 0  
   
equations             { define the displacement equations }  
    Ux:  Vx + smoother*div(grad(Ux)) = dt(Ux)  
    Uy:  Vy + smoother*div(grad(Uy)) = dt(Uy)  
    Vx:  dx(Sx) + dy(Txy) + mu*div(grad(Vx)) = rho*dt(Vx)  
    Vy:  dx(Txy) + dy(Sy) + mu*div(grad(Vy)) = rho*dt(Vy)  
   
boundaries  
    region 1  
      start (0,-hW)

      use bc 'no load'    { free boundary on bottom, no normal stress }
      line to (L,-hW)

      use bc 'Y load'     { Apply oscillatory vertical load on end.
                           Note that this driving force must be applied to the
                           equation which contains the stress divergence. }
      line to (L,hW)

      use bc 'no load'    { free boundary on top, no normal stress }
      line to (0,hW)

      use bc 'freeze'     { freeze left end (both displacement and velocity) }
      line to close
   
    feature             { a "Gridding Feature" to force grid refinement near the mount }
 
      start (hW/2,-hW) line to (hW/2,hW)  
      start (L-hW/2,-hW) line to (L-hW/2,hW)  
   
time 0 to 4*period  
   
monitors  
    for cycle=5  
      elevation(Uy) from(0,0) to (L,0) range=(-amplitude,amplitude)  
   
plots  
    for t= period/2 by period/2 to endtime  
      grid(x+mag*Ux,y+mag*Uy)   as "deformation"    { show final deformed grid }  
      vector(Ux,Uy) as "displacement"               { show displacement field }  
      vector(Vx,Vy) as "velocity"                   { show velocity field }  
      contour(Ux) as "X-displacement(M)"  
      contour(Uy) as "Y-displacement(M)"  
      contour(Vx) as "X-velocity(M/s)"  
      contour(Vy) as "Y-velocity(M/s)"  
      contour(Sx) as "X-Stress"  
      contour(Sy) as "Y-Stress"  
      contour(Txy) as "Shear Stress"  
   
histories  
    history(Ux) at (L,0) (0.8*L,0) (hL,0) as "Horizontal Displacement(M)"  
    history(Vx) at (L,0) (0.8*L,0) (hL,0) as "Horizontal Velocity(M/s)"  
    history(Sx) at (eps,hW-eps) (eps,-hW+eps) (L-eps,hW-eps) (L-eps,-hW+eps)  
                as "Horizontal Stress"  
    history(Uy) at (L,0) (0.8*L,0) (hL,0) as "Vertical Displacement(M)"  
    history(Vy) at (L,0) (0.8*L,0) (hL,0) as "Vertical Velocity(M/s)"  
    history(Sy) at (eps,hW-eps) (eps,-hW+eps) (L-eps,hW-eps) (L-eps,-hW+eps)  
                as "Vertical Stress"  
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    history(Txy) at (eps,hW-eps) (eps,-hW+eps) (L-eps,hW-eps) (L-eps,-hW+eps)  
                as "Shear Stress"  
   
end  
  

5.2 Usage

5.2.1 1D

5.2.1.1 1d_cy linder

{ 1D_CYLINDER.PDE 
 
  This problem tests the implementation of 1D cylindrical coordinates in FlexPDE. 
  A distributed source is applied to a heatflow equation.  The source is chosen as 
  the analytic derivative of an assumed Gaussian solution.  The numerical solution 
  is then compared to the analytical solution. 
 
}  
title '1D Cylinder Test -- Gaussian'  
   
coordinates  
    cylinder1   { default coordinate name is 'R' }  
   
variables  
    u  
   
definitions  
    k = 1  
    w=0.1  
    { assume a gaussian solution }  
    u0 = exp(-r^2/w^2)  
    { apply the correct analytic source for cylindrical geometry (we could use  
      div(k*grad(u0)) here, but that would not test the 1D Cylinder expansions) }  
    s = -(4/w^2)*(r^2/w^2-1)*u0  
   
    left=point(0)  
    right=point(1/10)  
   
equations  
    U: div(K*grad(u)) +s = 0  
   
boundaries  
    region 1  
        start   left   point value(u)=u0  
        line to right  point load(u)=(-2*k*r*u0/w^2)  
   
monitors  
    elevation(u) from left to right  
   
plots  
    elevation(u,u0) from left to right  
    elevation(u-u0) from left to right as "Error"  
    elevation(-div(grad(u)),s) from (0.01) to right  
    elevation(-grad(u),-grad(u0)) from (0.01) to right  
   
end  
  

5.2.1.2 1d_cy linder_transient

{ 1D_CYLINDER_TRANSIENT.PDE 
 
  This problem analyzes the diffusive loss of a solute from a solvent due to leakage 
  across an outer boundary using 1D cylindrical coordinates. 
 
}  
   
title '1D time dependent diffusion in a Cylinder'  
   
coordinates  
    cylinder1("R")  
   
variables  
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    C  
   
definitions  
    D = 1  
    source = 0  
    b = 1  
    a = 2  
    C0 = 10  
    diss = 0.01     ! dissolution coefficient 
    Cext = 0        ! external sink concentration 
    Flux = -D*dr(C)  
   
initial values  
    C = C0  
    
equations  
    C: div(D*grad(C)) + source = dt(C)  
   
boundaries  
    region 1  
        start (b)   point load(C)=0  
        line to (a) point load(C)=diss*(Cext-C)  !outer leakage rate 
   
time 0 to 10  
   
monitors  
    for cycle=1  
        elevation(C) from (b) to (a)  
   
plots  
    for cycle=10  
        elevation(C) from (b) to (a)  
        elevation(Flux) from (b) to (a)  range=(0,0.01) {minimum plot range}  
    history(C) at (b) ((b+a)/2) (a)  
    history(Flux) at (b) ((b+a)/2) (a)  
   
end  
  

5.2.1.3 1d_float_zone

{ 1D_FLOAT_ZONE.PDE   
 
  This is a version of the standard example "Float_Zone.pde"  in 1D cartesian geometry. 
 
}  
  
title  
  "Float Zone in 1D Cartesian geometry"  
  
coordinates  
  cartesian1  
  
variables  
  temp(threshold=100)  
  
definitions  
  k =10                 { thermal conductivity }  
  cp = 1                { heat capacity }  
  long = 18  
  H = 0.4               { free convection boundary coupling }  
  Ta = 25               { ambient temperature }  
  A = 4500              { amplitude }  
  
  source = A*exp(-((x-1*t)/.5)^2)*(200/(t+199))  
  
initial value  
  temp = Ta  
  
equations  
  Temp: div(k*grad(temp)) + source -H*(temp - Ta) = cp*dt(temp)  
  
boundaries  
  region 1  
    start(0) point value(temp) = Ta  
    line to (long) point value(temp) = Ta  
  

414
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time -0.5 to 19 by 0.01  
  
monitors  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0) to (long) range=(0,1800) as "Surface Temp"  
  
plots  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0) to (long) range=(0,1800) as "Axis Temp"  
  elevation(source) from(0) to (long)  
  elevation(-k*grad(temp)) from(0) to (long)  
  
histories  
  history(temp) at (0) (1) (2) (3) (4) (5) (6) (7) (8)  
                   (9) (10) (11) (12) (13) (14) (15) (16)  
                   (17) (18)  
  
end  
  

5.2.1.4 1d_slab

{ 1D_SLAB.PDE 
 
    This problem analyzes heat flow in a slab using 1D cartesian coordinates. 
}  
  
TITLE 'Heat flow through an Insulating layer in 1D'  
COORDINATES  
  Cartesian1  { default coordinate is 'X' }  
VARIABLES  
  Phi       { the temperature }  
DEFINITIONS  
  K = 1     { default conductivity }  
  R = 0.5       { insulator thickness }  
EQUATIONS  
  Phi: Div(-k*grad(phi)) = 0  
   
BOUNDARIES  
  REGION 1      { the total domain }  
    START(-1)   POINT VALUE(Phi)=0    
    LINE TO (1) POINT VALUE(Phi)=1    
    { note: no 'close'! }  
  REGION 2  'blob'  { the embedded layer }  
    k = 0.001  
    START (-R) LINE TO (R)  
PLOTS  
  ELEVATION(Phi) FROM (-1) to (1)  
END  
  

5.2.1.5 1d_sphere

{ 1D_SPHERE.PDE 
 
  This problem demonstrates the use of 1D spherical coordinates. 
 
}  
  
title '1D Sphere Test -- Gaussian'  
   
coordinates  
    sphere1 { default coordinate name is "R" }  
   
variables  
    u  
   
definitions  
    k = 1  
    w=0.1  
    { assume a gaussian solution }  
    u0 = exp(-r^2/w^2)  
    { apply the correct analytic source for spherical geometry 
       (we could use div(k*grad(u0)) here, but that would not test the 1D Sphere
expansions) }  
    s = -(2/w^2)*(2*r^2/w^2-3)*u0  
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    left=point(0)  
    right=point(1/10)  
   
equations  
    U:  div(K*grad(u)) +s = 0  
   
boundaries  
    region 1  
        start left      point value(u)=u0  
        line to right   point load(u)=(-2*k*r*u0/w^2)  
   
monitors  
    elevation(u) from left to right  
   
plots  
    elevation(u,u0) from left to right  
    elevation(u-u0) from left to right as "Error"  
    elevation(-div(grad(u)),s) from (0.01) to right  
   
end  
  

5.2.2 3D_domains

5.2.2.1 2d_sphere_in_cy linder

{ 2D_SPHERE_IN_CYLINDER.PDE 
 
  2D cylindrical (axi-symmetric) model of an empty sphere in a cylindrical box. 
 
}  
   
title '2D sphere in a can'  
   
coordinates  
    ycylinder("R","Z")  { vertical coordinate is cylinder axis }  
   
variables  
    u  
   
definitions  
    k = 1  
    R0 = 1  
    box = 2*R0  
   
equations     
    U: div(k*grad(u)) = 0  
   
boundaries  
    region 1  
        start(0,-box)  
        value(u)=0 line to (box,-box)  
        natural(u)=0 line to (box,box)  
        value(u)=1 line to (0,box)  
        natural(u)=0 line to (0,R0)     { cylindrical axis }  
            arc(center=0,0) angle=-180  { spherical cutout }  
            line to close               { cylindrical axis }  
   
monitors  
    grid(r,z)  
    contour(u)  
plots  
    grid(r,z)  
    contour(u)  
   
end  
  

5.2.2.2 3d_box_in_sphere

{ 3D_BOX_IN_SPHERE.PDE 
 
  This problem demonstrates the construction of a box inside a sphere. 
 
  We use two conical frustums to define an extrusion layer to contain the box. 
  The flat surfaces define top and bottom of the box and the cones fall 
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  to meet at the diameter of the sphere.   
 
  The box is then defined as a square section of the layer between the  
  flat surfaces of the frustums. 
 
  Click "Controls->Domain Review"  to watch the domain construction process. 
 
  We solve a heat equation for demonstration purposes. 
    
}  
title '3D Box in a Sphere'  
   
coordinates  
    cartesian3  
   
Select 
    regrid = off       { for quicker completion }  
    ngrid = 16

variables  
    u  
   
definitions  
    R0 = 1          { sphere radius }  
    hbox = R0/4     { box half-size }  
    { Make the box-bounding circle slightly bigger than box, or corner  
      intersections will confuse the mesh generator. }  
    Rbox = 1.1*sqrt(2)*hbox   
   
    rho = sqrt(x^2+y^2)             { 2d radius - don't use 'R', it's 3D radius! }  
   
    zsphere = SPHERE ((0,0,0),R0)   {  hemisphere shape }  
    zbottom = -zsphere              { bottom of sphere }  
    ztop = zsphere                  { top of sphere }  
   
    zboxbottom = -hbox  { default box-bounding surfaces - patched later in outer sphere }
 
    zboxtop = hbox  
    zcone = hbox*(R0-rho)/(R0-Rbox) { cone shape for bringing box top to sphere
diameter }  
   
    K = 1               { Define all parameter defaults for non-box volume}  
    source = 0  
   
equations  
    U: div(K*grad(u)) + source   = 0  
   
extrusion  
    surface z = zbottom         { the bottom hemisphere and plane }  
    surface z = zboxbottom  
    surface z = zboxtop  
    surface z = ztop            { the top hemisphere and plane }  
   
boundaries  
     surface 1 value(u)=0       { for demonstration purposes }  
     surface 4 value(u)=0  
   
     region 1       { The sphere }  
        zboxbottom = -zcone  
        zboxtop = zcone  
        start  (R0,0)  
            arc(center=0,0) angle=360 to close  
   
     limited region 2       { smaller circle overlays sphere }  
        layer 2             { ... and exists only in layer 2 }  
        start(Rbox,0)  
            arc(center=0,0) angle=360 to close  
   
     limited region 3       { the box outline }  
        layer 2             { box exists only in layer 2 }  
        source = 1  
        K = 0.1  
        start(-hbox,-hbox) line to (hbox,-hbox) to (hbox,hbox) to (-hbox,hbox) to close  
   
plots  
    grid(x,y,z) as "outer sphere"   
    grid(x,z) on y=0  nolines as "cross-section showing box"  

10
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    grid(x,z) on y=0 paintregions nolines  as "region and layer structure"  
    grid(x,y) on z=0 paintregions nolines  as "region and layer structure"  
    contour(u) on y=0  as "temperature"  
   
end  
  

5.2.2.3 3d_cocktail

{ 3D_COCKTAIL.PDE 
 
  This problem constructs a cocktail glass. 
  It is the geometric construction only, there are no variables or equations. 
  LIMITED  regions are used to remove parts of the extruded shape. 
     
  Click "Controls->Domain Review"  to watch the mesh construction process. 
}  
   
TITLE 'Cocktail Glass'  

COORDINATES cartesian3  
   
DEFINITIONS  
  rad=sqrt( x^2+ y^2)  
  router = 0.3      { outer radius of glass }  
  zglass = 0.5      { glass height }  
  rbase = 0.2       { radius of the base }  
  zbase = 0.02      { thickness of the base and cone}  
  rstem = 0.02      { radius of the stem }  
  zstem = 0.3       { height of the stem }  
  zslope = (zglass-zstem)/(router-rstem){ slope of conic surface }  
  glassangle = arctan(zslope)           { slope of conic surface }  
  zcone = max(0,(rad-rstem)*zslope)     { conic surface of the glass }  
   
EXTRUSION  
  surface 'bottom' z=0  
    layer 'base layer'  
  surface 'stem1'  z=zbase  
    layer 'stem layer'  
  surface 'lower'  z = zstem + zcone  
    layer 'cone layer'  
  surface 'upper'  z = zbase*cos(glassangle) + min(zglass, zstem + zcone)  
   
BOUNDARIES  
  
limited region 'outer'  
    layer 'cone layer'      { outer region exists only in cone  }  
    start (router,0) arc( center=0,0) angle=360  
   
limited region 'base'  
    layer 'base layer'      { base region exists only in base }  
    start(rbase,0) arc(center=0,0) angle=360  
   
limited region 'stem'  
    layer 'stem layer'  { stem region exists in the stem and the bottom of the cone }  
    layer 'cone layer'  
    start(rstem,0) arc(center=0,0) angle=360  
   
PLOTS   
    grid(x,y,z) paintregions    as "final mesh"  
    grid(y,z) on x=0 nolines paintregions as "Region Map"  
   
END  
  

5.2.2.4 3d_cy lspec

{  3D_CYLSPEC.PDE
    This problem considers the construction of a cylindrical domain in 3D.
}

title '3D Cylinder Generator'

coordinates

232
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    cartesian3

variables
    u

definitions
    K = 0.1                     { thermal conductivity }
    R0 = 1                      { radius of the cylinder }
    Heat = 1                    { total heat generation }
    theta = 45                  { axis direction in degrees }
    c = cos(theta degrees)      { direction cosines of the axis direction }
    s = sin(theta degrees)      
    axis = vector(c,s)          { the axis direction vector }
    len = 3                     { cylinder length }
    x0 = -(len/2)*c             { beginning point of the cylinder axis }
    y0 = -(len/2)*s
    zoff = 10                   { a z-direction offset for the entire figure }

    { the cylinder function constructs the top surface of a cylinder with azis 
      along z=0.5. The positive and negative values of this surface will be 
      separated by a distance of one unit at the diameter. }
    zs = cylinder((x0,y0,0.5), (x0+len*c,y0+len*s, 0.5), R0)      

    flux = -k*grad(u)       { heat flux vector }

equations
    U: div(K*grad(u)) + heat   = 0

extrusion
    surface z = zoff-zs         { the bottom half-surface }
    surface z = zoff+zs         { the top half-surface }

boundaries
     surface 1 value(u) = 0     { fixed value on cylinder surfaces }
     surface 2 value(u) = 0
     region 1
        start  (x0,y0)  
        value(u)=0              { fixed value on sides and end planes }
        line to (x0+R0*c,y0-R0*s) 
             to (x0+len*c+R0*c,y0+len*s-R0*s)
             to (x0+len*c-R0*c,y0+len*s+R0*s)
             to (x0-R0*c,y0+R0*s)
             to close

definitions
    s2 = sqrt(2)

plots
     grid(x,y,z) 
     grid(y*s2,z) on x+y=s2
     contour(u) on x=0 as "U on X=0"
     contour(u) on x-y=0 as "U on vertical plane through cylinder axis"
     contour(u) on x+y=s2 as "U on plane normal to axis"
     vector(flux-DOT(flux,axis)*flux) on x=0  as "Flux in X=0 plane"
     contour(DOT(flux,axis)) on x+y=s2 as "Flux normal to cross-axis plane"
     contour(DOT(flux,axis)) on x+y=s2  zoom(0.6,11,0.3,0.3) as "Flux normal to cross-
axis plane"
     contour(magnitude(flux)) on x+y=s2 as "Total flux in cross-axis plane"
     contour(magnitude(flux)) on y=0 as "Total flux in Y=0 plane"

end

5.2.2.5 3d_ellipsoid

{ 3D_ELLIPSOID.PDE  
 
  This problem constructs an ellipsoid. 
  It is the geometric construction only, there are no variables or equations. 
 
}   
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title '3D Ellipsoid'  
   
coordinates cartesian3  
   
definitions  
  a=3  b=2  c=1   { x,y,z radii }  
  xc=1 yc=1 zc=1  { coordinates of ellipsoid center }  
  
  { top half of ellipsoid surface : 
    the MAX function is used to ensure the surface is defined throughout all 
    x,y space - essentially placing an x=0 'skirt' on the ellipsoid surface }  
  
  ellipsoid = c*sqrt( max(0,1-(x-xc)^2/a^2-(y-yc)^2/b^2) )  
    
extrusion  
    surface 'bottom' z = zc - ellipsoid  
    surface 'top'    z = zc + ellipsoid  
   
boundaries  
    region 'ellipse'  
        start(xc+a,yc)  
        arc(center=xc,yc) to (xc,yc+b) to (xc-a,yc) to (xc,yc-b) to close  
   
plots  
    grid(x,y,z)  
    grid(x,y) on z=zc  
    grid(y,z) on x=xc  
    grid(x,z) on y=yc  
   
end  

5.2.2.6 3d_ellipsoid_shell

{ 3D_ELLIPSOID_SHELL.PDE  
 
  This problem constructs an elliptical shell. 
  It is the geometric construction only, there are no variables or equations. 
 
}  
  
  
title '3D Ellipsoid Shell'  
   
coordinates cartesian3  
   
definitions  
  ao=3.2  bo=2.2  co=1.2   { x,y,z radii - outer ellipse }  
  ai=3.0  bi=2.0  ci=1.0   { x,y,z radii - inner ellipse }  
  xc=1 yc=1 zc=1  { coordinates of ellipsoid center }  
  
  { top half of ellipsoid surface : 
    the MAX function is used to ensure the surface is defined throughout all 
    x,y space - essentially placing a 'skirt' on the top ellipsoid surface }  
  
  outer_ellipsoid = co*sqrt( max(0,1-(x-xc)^2/ao^2-(y-yc)^2/bo^2) )  
  inner_ellipsoid = ci*sqrt( max(0,1-(x-xc)^2/ai^2-(y-yc)^2/bi^2) )  
    
extrusion  
    surface 'outer bottom' z = zc - outer_ellipsoid  
    surface 'inner bottom' z = zc - inner_ellipsoid  
    surface 'inner top'    z = zc + inner_ellipsoid  
    surface 'outer top'    z = zc + outer_ellipsoid  
   
boundaries  
    region 'outer ellipse'  
        start(xc+ao,yc)  
        arc(center=xc,yc) to (xc,yc+bo) to (xc-ao,yc) to (xc,yc-bo) to close  
  
    limited region 'inner ellipse'  
      layer 2 void  
        start(xc+ai,yc)  
        arc(center=xc,yc) to (xc,yc+bi) to (xc-ai,yc) to (xc,yc-bi) to close  
   
plots  
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    grid(x,y,z)  
    grid(x,y) on z=zc paintregions  
    grid(y,z) on x=xc paintregions  
    grid(x,z) on y=yc paintregions  
   
end

5.2.2.7 3d_extrusion_spec

{ 3D_EXTRUSION_SPEC.PDE 
 
  This descriptor is a demonstration of the grammar of 3D extrusions. 
  It is a completion of the 3D specification example shown in 
  "Help | Technical Notes | Extrusions in 3D" . 
  It describes a strip capacitor fabricated as a sandwich of 
  air | metal | glass | metal | air. 
  
  Click "Controls->Domain Review"  to watch the domain construction process. 
 
  See the sample problem "3D_Capacitor"  for a somewhat more complicated 
  and interesting version. 
}  
  
 
TITLE '3D Extrusion Spec'  
  
SELECT regrid=off { for quicker solution }  
   
COORDINATES CARTESIAN3  
   
DEFINITIONS  
  Kdiel= 6  
  Kmetal=1e6  
  Kair=1  
  K = Kair      { default to Kair }  
  V0 = 0  
  V1 = 1  
   
VARIABLES V  
   
EQUATIONS  
  V:  DIV(K*GRAD(V)) = 0  

EXTRUSION  
  SURFACE       "Bottom"                        Z=0  
    LAYER       "Bottom Air"  
  SURFACE       "Bottom Air - Metal"            Z=0.9  
    LAYER       "Bottom Metal"  
  SURFACE       "Bottom Metal - Dielectric"     Z=1  
    LAYER       "Dielectric"  
  SURFACE       "Top Metal - Dielectric"        Z=2  
    LAYER       "Top Metal"  
  SURFACE       "Top Metal - Air"               Z=2.1  
    LAYER       "Top Air"  
  SURFACE       "Top"                           Z=3  
   
BOUNDARIES  
  SURFACE "Bottom" VALUE(V)=0  
  SURFACE "Top" VALUE(V)=1  
  REGION 1                          { this is the outer boundary of the system }  
      LAYER "Dielectric" K = Kdiel  { all other layers default to Kair }  
      START(0,0)  
      LINE TO (5,0)  TO (5,5)  TO(0,5)  to close  
  LIMITED REGION 2     { this region exists only in the "bottom metal" layer,  
                         and describes the larger plate }  
      LAYER "Bottom Metal" K = Kmetal  
      START(1,0)  
      LAYER "Bottom Metal" VALUE(V)=V0  
      LINE TO (4,0)  
      LAYER "Bottom Metal" NATURAL(V)=0  
      LINE TO (4,5) TO (1,5) to close  
  LIMITED REGION 3     { this region exists only in layer "Top Metal",  
                         and describes the smaller plate }  
      LAYER "Top Metal" K = Kmetal  
      START(2,0)  

279
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      LINE TO (3,0) TO (3,5)  
      LAYER "Top Metal" VALUE(V)=V1  
      LINE TO (2,5)  
      LAYER "Top Metal" NATURAL(V)=0  
      LINE to close  
   
SELECT painted  
PLOTS  
  CONTOUR(V) ON X=2.5 as "V on X-cut"  
  CONTOUR(V) ON Y=2.5 as "V on Y-cut"  
  CONTOUR(V) ON Z=1.5 as "V on Z-cut"  
  GRID(x,z) ON Y=2.5 paintregions nolines as "Region Map"  
  GRID(x,z) ON Y=2.5 paintmaterials nolines as "Material Map"  
  GRID(x,y,z) ON LAYER 2 ON REGION 2 as "Bottom Plate"  
  GRID(x,y,z) ON "Top Metal" ON REGION 3 as "Top Plate"  
   
END  
  

5.2.2.8 3d_fillet

{ 3D_FILLET.PDE   
  
  This problem demonstrates the use of the FILLET  and BEVEL  commands. 
  Both controls act in the 2D layout, and are extruded into the z dimension. 
}  
  
title 'fillet test'  
  
coordinates
    cartesian3  
  
variables
    u  
  
definitions  
    k = 1  
    u0 = 1-x^2-y^2  
    s = 2*3/4+5*2/4  
  
equations  
    U: div(K*grad(u)) +s = 0  
  
extrusion z=0,1  
  
boundaries  
    region 1  
        start(-1,-1)  
        value(u)=u0 line to (1,-1)      FILLET(0.1)  
                    to (-0.25,-0.25)    FILLET(0.1)  
                    to (-1,1)           BEVEL(0.1)  
                    to close  
  
monitors  
    grid(x,y,z)  
    contour(u) on z=0.5  
  
plots  
    grid(x,y) on z=0.005  
    grid(x,y) on z=0.5  
    contour(u) on z=0.5  
    contour(u)  on z=0.5 zoom(0.6,-1, 0.2,0.2)  
    contour(u)  on z=0.5 zoom(-0.3,-0.3, 0.1,0.1)  
end  
  

5.2.2.9 3d_guitar

{ 3D_GUITAR.PDE
  This example only constructs a domain. There are no variables or equations.
  It does demonstrate the use of the MATERIALS section.
}
TITLE "3D Guitar Body"
 
COORDINATES cartesian3

235 235
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MATERIALS
  "Default" : d = 1.0  k = 1.0
  "Air" :     d = 100  k = 0.07
  "Maple" :   d = 0.9  k = 7
  "Spruce" :  d = 0.7  k = 13
  "Plastic" : d = 10   k = 0.22
  "Composite" : d = 3  k = 1.3
 
DEFINITIONS
  {------------- SIZE POSITION PARAMETERS -------------}
  dface = 0.3,  dback = 0.5,    dbody = 10            ! some basic depths
  dside = 0.7,  dsaddle = 0.4,  dnut = 0.8           ! some basic depths
  slen = 11,  swid = 3,  spos = 19                               ! saddle size and
positions
  fpos = 50,  fwid = 10, flen = 5                               ! fretboard size and
positions
  orad = 6, opos = 36                                          ! sound hole radius and
position
  hrad = 0.7                               ! string radius
  h6 = 5, h5 = 3, h4 = 1, h1 = -h6, h2 = -h5, h3 = -h4  ! saddle hole radius and
positions
 
  {------------- SPLINE POINTS -------------}
  x0 = 0,   x1 = 0,   x2 = 18,    x3 = 30,    x4 = 40,    x5 = 46,   x6 = 60,    x7 = 60
  y0 = 0,   y1 = 1,   y2 = 19,    y3 = 15,    y4 = 12,    y5 = 14,   y6 = 2,     y7 = 0
 
  {------------- LAYER DEPTHS -------------}
  origin  = 0
  inback  = origin  + dback
  inface  = inback  + dbody
  outface = inface  + dface
  outtool = outface + dsaddle

EXTRUSION
  surface 'OUTSIDE BOTTOM'   z = origin
    layer 'BOTTOM'
  surface 'INSIDE BOTTOM'    z = inback
    layer 'BODY'
  surface 'INSIDE TOP'       z = inface
    layer 'TOP'
  surface 'OUTSIDE TOP'      z = outface
    layer 'TOOL'
  surface 'OUTSIDE TOOL'     z = outtool
 
BOUNDARIES
{------------- OUTTER BODY -------------}
limited region 'OUTER BODY'
  layer 'TOOL' VOID
  layer 'BOTTOM' use material "Maple"
  layer 'BODY' use material "Composite"
  layer 'TOP' use material "Spruce"
  start (x1,y0)
  spline  to (x1, y1) to (x2, y2) ! NW arc
          to (x3, y3) to (x4, y4) !N arc
          to (x5, y5) to (x6, y6) ! NE arc
 
          !to (x6, y6) to (x6+flen, y6) !top of fretboard
          to (x6, y7) ! top of neck
          !to (x6+flen,-y6) to (x6,-y6) !bott of fretboard
 
          to (x6, -y6) to (x5, -y5) ! SE arc
          to (x4, -y4) to (x3, -y3) ! S arc
          to (x2, -y2) to (x1, -y1) ! SW arc
          to close 
 
 
{------------- INNER BODY -------------}
limited region "INNER BODY"
  layer 'BODY' VOID
  !use material "Air"
  start (x1+dside,y0)
  spline  to (x1+dside, y1) to (x2, y2-dside) ! NW
          to (x3, y3-dside) to (x4, y4-dside) !N
          to (x5, y5-dside) to (x6-dside, y6) ! NE
          to (x6-dside, y7) ! top of neck
          to (x6-dside, -y6) to (x5, dside-y5) ! SE
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          to (x4, dside-y4) to (x3, dside-y3) ! S
          to (x2, dside-y2) to (x1+dside, -y1) ! SW
          to close 
 
{------------- SOUND HOLE -------------}
limited region "SOUND HOLE"
  layer 'TOP' VOID
  !use material "Air"
  start (opos, orad)
  arc (center = opos, 0) angle=360
 
{------------- SADDLE BASE-------------}
limited region "Saddle Base"
  layer 'TOOL'
  use material "Plastic"
  start (spos+swid/2, slen/2)
  arc (center = spos, slen/2) angle=180
  line to (spos-swid/2, -slen/2)
  arc (center = spos, -slen/2) angle=180
  line to close 
 
{------------- SADDLE HOLES-------------}
limited region "Saddle Holes"
  layer 'TOOL' VOID
  layer 'TOP'
  start (spos, h1-hrad) arc (center = spos, h1) angle=360
  start (spos, h2-hrad) arc (center = spos, h2) angle=360
  start (spos, h3-hrad) arc (center = spos, h3) angle=360
  start (spos, h4-hrad) arc (center = spos, h4) angle=360
  start (spos, h5-hrad) arc (center = spos, h5) angle=360
  start (spos, h6-hrad) arc (center = spos, h6) angle=360 
 
{------------- FRETBOARD -------------}
limited region "Fret Board"
  layer 'TOOL'
  start (fpos, fwid/2)
  line to (fpos, -fwid/2) fillet 1
  line to (fpos+8, -fwid/2) fillet 1
  line to (fpos+8, fwid/2) fillet 1
  line to close  fillet 1
 
PLOTS
  grid(x,y,z) paintmaterials
 
END

5.2.2.10 3d_helix_lay ered

{ 3D_HELIX_LAYERED.PDE 
 
  This problem demonstrates the construction of a helix by layered half-turns. 
   
  Each half-turn of the helix is represented by two layers: a layer for the coil and 
  a separating layer for the gap.   
 
  The top and bottom surfaces of the helix are formed as spiral ribbons : z=twist*angle
+offset. 
  The turns of the helix are divided into half-turn layers by spiral ribbons of opposite
twist : 
  z=offset-cuttwist*angle.  
 
  The top surface of the lower half turn meets the bottom surface of the upper half turn 
  in the region where the cut ribbon crosses the helix.  Since these two surfaces must  
  be separated by a "layer", there must be an empty layer between each pair of half-
turns 
  of the helix.  This layer exists only in the region of contact between the two half
turns,  
  and in this region, the layer has zero thickness. 
 
  In this sample problem, we solve a heat conduction problem in the helix simply 
  for demonstration purposes. 
 
  See "3d_helix_wrapped.pde"  for a different approach to constructing a helix. 
  See "Usage/CAD_Import/helix_OBJimport.pde"  for how to import a helix from an OBJ
file. 

475
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}  
  
title '3D layered helix'  
  
coordinates
    cartesian3  
  
variables
    Tp  
  
definitions  
    xwide = 1   { width of coil band }  
    zhigh = 1   { height of coil band }  
    zhaf = zhigh/2  
    pitch = 2*zhigh { z rise per turn }  
    x0 = 3      { center radius }  
    xin = x0-xwide/2        { inner radius }  
    xout = x0+xwide/2   { outer radius }  
  
    { cut layers with reverse-helix. choose a steep cutpitch to avoid overlapping cut
regions: }  
    cutpitch = 4*pitch          { z fall per turn of layer-cutting ribbon }  
    { Compute the half-angle of the baseplane projection of the intersection between the 

helix ribbon and the cut ribbon.  This determines the size of the Regions
necessary 
       to describe the intersections. }  
    thetai = 2*pi*zhaf/(pitch+cutpitch)   
    ci = cos(thetai)  
    si = sin(thetai)  
  
    twist = pitch/(2*pi)    { z-offset per radian }  
    cuttwist = cutpitch/(2*pi)    {  "  }  

    { measure angles from positive x-axis for right arcs and from negative x-axis for
      left arcs, to avoid jumps in the atan2 function. NOTE: these definitions were
      changed between v6 and v7 due to changes in the atan2 function itself. }
    alphar = atan2(y,x)    ! angular position (-pi,pi) relative to positive x-axis 
    alphal = atan2(-y,-x)  ! angular position (-pi,pi) relative to negative x-axis

    { calculate layer-cut surfaces for left and right arcs (relative to the arc center) }
 
    rlo = -(1/4)*pitch - cuttwist*(alphar+pi/2)     ! floor value for right arc 
    rhi = (1/4)*pitch - cuttwist*(alphar-pi/2)      ! ceiling value for right arc 
    llo = -(1/4)*pitch - cuttwist*(alphal+pi/2)     ! floor value for left arc 
    lhi = (1/4)*pitch - cuttwist*(alphal-pi/2)      ! ceiling value for left arc 
  
    {Define functions to generate the  z position of turn n offset by h*zhaf : }  
    zr(n,h) = max(rlo, min(rhi, twist*alphar + h*zhaf)) + n*pitch  
    zl(n,h) = max(llo, min(lhi, twist*alphal + h*zhaf)) + n*pitch  
  
    { Thermal source }  
    Q =   10*exp(-x^2-(y-x0)^2-(z-pitch/4)^2)  
    { Thermal conductivity }  
    K = 1  
  
initial values  
    Tp = 0.  
  
equations  
    Tp:   div(k*grad(Tp)) + Q = 0  
  
extrusion  
    surface z=zr(-2,-1)     { right arc bottom, turn -2 }  
    surface z=zr(-2,1)      { right arc top, turn -2 }  
    surface  z=zl(-3/2,-1)  { left arc bottom, turn -2 }  
    surface  z=zl(-3/2,1)   {left arc top, turn -2 }  
    surface z=zr(-1,-1)     { right arc bottom, turn -1 }  
    surface z=zr(-1,1)      { right arc top, turn -1 }  
    surface  z=zl(-1/2,-1)  { left arc bottom, turn -1 }  
    surface  z=zl(-1/2,1)   { left arc top, turn -1 }  
    surface z=zr(0,-1)      { right arc bottom, turn 0 }  
    surface z=zr(0,1)       { right arc top, turn 0 }  
    surface  z=zl(1/2,-1)   { left arc bottom, turn 0 }  
    surface  z=zl(1/2,1)    { left arc top, turn 0 }  
    surface  z=zr(1,-1)     { right arc bottom, turn 1 }  
    surface z=zr(1,1)       { right arc top, turn 1 }  
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    surface  z=zl(3/2,-1)   { left arc bottom, turn 1 }  
    surface  z=zl(3/2,1)    { left arc top, turn 1 }  
    surface  z=zr(2,-1)     { right arc bottom, turn 2 }  
    surface z=zr(2,1)       { right arc top, turn 2 }  
    surface  z=zl(5/2,-1)   { left arc bottom, turn 2 }  
    surface  z=zl(5/2,1)    { left arc top, turn 2 }  
  
boundaries  
    surface 1 value(Tp)=0  
    surface 20  value(Tp)=0  
  
    Limited Region 1    "lower cut "  
      layer 1                     {skip layer 2}  
      layer 3  layer 4 layer 5    {skip layer 6}  
      layer 7 layer 8 layer 9     {skip layer 10}  
      layer 11 layer 12 layer 13  {skip layer 14}  
      layer 15 layer 16 layer 17  {skip layer 18}  
      layer 19  
      start(-xout*si,-xout*ci)  
        arc(center=0,0) to(xout*si,-xout*ci)  
        line to (xin*si,-xin*ci)  
        arc(center=0,0) to(-xin*si,-xin*ci)  
        line to close  

    Limited Region 2     " right arc "  
      layer 1         {skip layers 2,3,4}  
      layer 5         {skip layers 6,7,8}  
      layer 9         {skip layers 10,11,12}  
      layer 13        {skip layers 14,15,16}  
      layer 17  
      start(xout*si,-xout*ci)  
        arc(center=0,0) to(xout*si,xout*ci)  
        line to (xin*si,xin*ci)  
        arc(center=0,0) to(xin*si,-xin*ci)  
        line to close  

    Limited Region 3     "upper cut "  
      layer 1 layer 2 layer 3     {skip layer 4}  
      layer 5  layer 6  layer 7   {skip layer 8}  
      layer 9  layer 10  layer 11 {skip layer 12}  
      layer 13  layer 14  layer 15{skip layer 16}  
      layer 17  layer 18  layer 19  
      start(xout*si,xout*ci)  
        arc(center=0,0) to(-xout*si,xout*ci)  
        line to (-xin*si,xin*ci)  
        arc(center=0,0) to(xin*si,xin*ci)  
        line to close  

    Limited Region 4     "left arc "  
      layer 3         {skip layers 4,5,6}  
      layer 7         {skip layers 8,9,10}  
      layer 11        {skip layers 12,13,14}  
      layer 15        {skip layers 16,17,18}  
      layer 19  
      start(-xout*si,xout*ci)  
        arc(center=0,0) to(-xout*si,-xout*ci)  
        line to (-xin*si,-xin*ci)  
        arc(center=0,0) to(-xin*si,xin*ci)  
        line to close  
  
monitors  
      grid(x,y,z)              
  
plots  
      grid(x,y,z) paintregions         
      grid(x,y,z) on regions 1,2,3 on layer 1   paintregions   as "first right arc"      
      grid(x,y,z) on regions 3,4,1 on layer 3   paintregions   as "first left arc"      
      grid(x,y,z) on regions 1,2,3,4 on layers 1,3 paintregions as "first full arc"      
  
      grid(x,z) on y=0  
      contour(Tp) on x=0  as "ZY Temp" painted  
      contour(Tp) on z=pitch/4  as "XY Temp" painted  
  
end  
  



FlexPDE 7 : Sample Problems475

5.2.2.11 3d_helix_wrapped

{ 3D_HELIX_WRAPPED.PDE 
      
  This problem shows the use of the function definition facility of FlexPDE to  
  create a helix of square cross-section in 3D. 
 
  The mesh generation facility of FlexPDE extrudes a 2D figure along a straight  
  path in Z, so that it is not possible to directly define a helical shape. 
 
  However, by defining a coordinate transformation, we can build a straight rod  
  in 3D and interpret the coordinates in a rotating frame. 
 
  Define the twisting coordinates by the transformation 
    xt = x*cos(y/R); 
    yt = x*sin(y/R); 
    zt = z 
 
  In this transformation, x and y are the coordinates FlexPDE believes it is working  
  with, and they are the coordinates that move with the twisting. 
  xt and yt are the "lab coordinates" of the twisted figure. 
 
  The chain rule gives 
    dF/d(xt) = (dx/dxt)*(dF/dx)  + (dy/dxt)*(dF/dy) + (dz/dxt)*(dF/dz) 
  with similar rules for yt and zt. 
  Some tedious algebra gives 
    dx/dxt = cos(y/R)   dy/dxt = -(R/x)*sin(y/R)    dz/dxt = 0 
    dx/dyt = sin(y/R)   dy/dyt =  (R/x)*cos(y/R)    dz/dyt = 0 
    dx/dzt = dy/dzt = 0    dz/dzt = 1 
 
  These relations are defined in the definitions section, and used in the equations  
  section, perhaps nested as in the heat equation shown here. 
 
  Notice that this formulation produces the upward motion by tilting the bar in  
  the un-twisted space and wrapping the resulting figure around a cylinder. 
 
  We have added a cylindrical mounting pad at each end of the helix. 
 
  See "3d_helix_layered.pde"  for a different approach to constructing a helix.
  See "Usage/CAD_Import/helix_OBJimport.pde"  for how to import a helix from an OBJ
file.
}  
  
title '3D Helix - transformation with no shear'  
  
coordinates  
    cartesian3  
  
select  
  ngrid=160    { generate enough mesh cells to resolve the twist }  
  
variables  
    Tp  
  
definitions  
    zlong = 60  
    turns =   4  
    pitch = zlong/turns        { z rise per turn }  
  
    xwide = 4.5  
    zhigh = 4.5  
    Rc = 22 - xwide/2                { center radius }  
    alpha = y/Rc  
    zstub = 5*zhigh     { rod pieces at each end }  
    sturn = Rc*2*pi     { arc length per turn }  
    yolap = pi*Rc*zhigh/pitch  
  
    slong = turns*sturn { arc length of spring }  
    stot = slong + 2*sturn  { add one turn at each end for rod }  
  
    xin = Rc-xwide/2  
    xout = Rc+xwide/2  
    xbore = Rc/2  
  
    { transformations }  
    rise = pitch/(2*pi)    { z-rise per radian }  
    c = cos(alpha)  
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    s = sin(alpha)  
    xt = x*c  
    yt = x*s  
    zt = z-zlong/2  
  
    { functional definition of derivatives }  
    dxt(f) = c*dx(f) - s*(Rc/x)*dy(f)  
    dyt(f) = s*dx(f) + c*(Rc/x)*dy(f)  
    dzt(f) = dz(f)  
  
    { Thermal source }  
    Q = 10*exp(-(xt-Rc)^2-yt^2-zt^2)  
  
    z1 = -zstub  
    z2 = max( 0, min(zlong, pitch*y/sturn - zhigh/2))  
    z3 = max(0, min(zlong, pitch*y/sturn + zhigh/2))  
    z4 = zlong + zstub  
  
initial values  
    Tp = 0.  
  
equations  
    { the heat equation using transformed derivative operators }  
    Tp:    dxt(dxt(Tp)) + dyt(dyt(Tp)) + dzt(dzt(Tp)) + Q = 0  
  
extrusion z = z1, z2, z3, z4  
  
boundaries  
  
    Limited Region 1        { the spring }  
       layer 2  
       start(xin,yolap)  
        line to (xout,yolap)  
        line to (xout, slong-yolap)  
        line to (xin,slong-yolap)  
        line to close  
  
    Limited Region 2                { top rod overlap with coil }  
        surface 4     value(Tp)=0   {cold at the end of the rod }  
        layer 2  layer 3  
        start(xbore,slong-yolap)   
        line to (xout,slong-yolap) to (xout,slong+yolap) to (xbore,slong+yolap) to close
 
  
    Limited Region 3                { top rod free of coil }  
        surface 4     value(Tp)=0   {cold at the end of the rod }  
        layer 2  layer 3  
        start(xbore,slong+yolap)   
        line to (xout,slong+yolap) to (xout,slong+sturn-yolap) to (xbore,slong+sturn-
yolap)   
             to close  
  
    Limited Region 4                { bottom rod overlap with coil }  
        surface 1     value(Tp)=0   {cold at the end of the rod }  
        layer 1  layer 2  
        start(xbore,-yolap)   
        line to (xout,-yolap) to (xout,yolap) to (xbore,yolap) to close  
  
    Limited Region 5                { bottom rod free of coil }  
        surface 1     value(Tp)=0   {cold at the end of the rod }  
        layer 1  layer 2  
        start(xbore,-sturn+yolap)   
        line to (xout,-sturn+yolap) to (xout,-yolap) to (xbore,-yolap) to close  
  
monitors  
    grid(xt,yt,zt) paintregions     { the twisted shape }  
  
plots  
    grid(xt,yt,zt) paintregions     { the twisted shape again }  
  
    { In the following, recall that x is really radius, and y is really azimuthal
distance. 
        It is not possible at present to construct a cut in the "lab" coordinates. }  
    grid(x,z) on y=0  
    contour(Tp) on y=0  as "ZX Temp"  
    contour(Tp) on z=0  as "XY Temp"  
    elevation(Tp) from(Rc,0,0) to (Rc,slong,zlong)  { centerline of coil }  
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end  
  

5.2.2.12 3d_lenses

{ 3D_LENSES.PDE 
 
  This problem considers the flow of heat in a lens-shaped body 
  of square outline.  It demonstrates the use of FlexPDE in problems 
  with non-planar extrusion surfaces. 
  
  Layer 1 consists of a flat bottom with a paraboloidal top. 
  Layer 2 is a paraboloidal sheet of uniform thickness. 
  
  Plots on various cut planes show the ability of FlexPDE to 
  detect intersection surfaces. 

}  
   
  title '3D Test - Lenses'  
   
  coordinates  
     cartesian3  
   
  Variables  
     u  
   
  definitions  
     k = 0.1  
     heat = 4  
   
  equations  
    U: div(K*grad(u)) + heat   = 0  
   
  extrusion  
    surface z = 0  
    surface z = 0.8-0.3*(x^2+y^2)  
    surface z = 1.0-0.3*(x^2+y^2)  
   
 
 boundaries  
     { implicit natural(u) = 0 on top and bottom faces }  
     Region 1  
        layer 2 k = 1    { layer specializations must follow regional defaults }  
        start(-1,-1)  
        value(u) = 0     { Fixed value on sides }  
        line to (1,-1) to (1,1) to (-1,1) to close  
   
 select painted   
 plots  
     contour(u) on x=0.51       as "YZ plane"  
     contour(u) on y=0.51       as "XZ plane"  
     contour(u) on z=0.51       as "XY plane cuts both layers and part of outline"  
     contour(u) on z=0.75       as "XY plane cuts both layers, but not the outline"  
     contour(u) on z=0.8        as "XY plane cuts only layer 2"  
     contour(u) on z=0.95       as "XY plane cuts small patch of layer 2"  
     contour(u) on z=0.95 zoom  as "small cut patch, zoomed to fill frame"  
     contour(u) on surface 1    as "on bottom surface"  
     contour(u) on surface 2    as "on paraboloidal layer interface"  
     contour(u) on x=y          as "oblique plot plane"  
     contour(u) on x+y=0        as "another oblique plot plane"  
  
 end  
  

5.2.2.13 3d_lim ited_region

{ 3D_LIMITED_REGION.PDE   
   
  This example shows the use of LIMITED REGIONS  in 3D applications. 
  
  The LIMITED qualifier applied to a REGION section tells FlexPDE to construct 
  the region only in those layers or surfaces specifically referenced in the region 
  definition. 
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  In this problem, we have a heat equation with a small cubical heated box in the middle
layer. 
  
}  
  
title '3D LIMITED REGION TEST'  
   
coordinates
    cartesian3  
   
select
    ngrid=1  { exaggerate cell size disparity }  
   
variables
    u  
   
definitions  
    K = 0.1  
    h=0  
    Lx=3    Ly=3  Lz=3  
    w = 0.15        { box size }  
    x0=Lx/2-w  y0=Ly/2-w  z0=Lz/2-w { box coords }  
    x1=Lx/2+w  y1=Ly/2+w  z1=Lz/2+w  
   
materials 'insert' : K=9 h=1
 
equations  
    U:  div(K*grad(u)) + h = 0  
   
extrusion z=0, z0, z1, Lz  
 
boundaries  
    Region 1  
      start(0,y0)  
      value(u)=0              
      line to (Lx,y0) to (Lx,Ly) to (0,Ly) to close  
   
    limited region 2        { insert exists only on layer 2 }  
      layer 2 use material 'insert'  
      start(x0,y0)  
      line to (x1,y0) to (x1,y1) to (x0,y1) to close  
   
monitors  
    grid(x,z) on y=Ly/2  
    contour(u) on z=Lz/2  
   
plots  
    grid(x,z) on y=Ly/2  
    contour(u) on z=Lz/2  painted  
    contour(u) on y=Ly/2  painted  
   
end  
  

5.2.2.14 3d_pinchout

{ 3D_PINCHOUT.PDE 
 
  This problem demonstrates the merging 
  of extrusion surfaces and the 
  'Pinch-Out' of a layer. 
}  
   
   
title '3D Layer Pinch-out Test'  
   
coordinates
    cartesian3  
   
variables
    Tp  
   
select
    ngrid=5 { reduce mesh size for example }

definitions  
    long = 1  



FlexPDE 7 : Sample Problems479

    wide = 1      
    K = 1     { thermal conductivity default -- other values supplied later: }
    Q = 10*exp(-x^2-y^2-z^2) { thermal source }  
    z1 = 0  
    z2        { surface will be defined later in each region: }        
    z3 = 1  
   
initial values  
    Tp = 0.  
   
equations  
    Tp:  div(k*grad(Tp)) + Q = 0        { the heat equation }  
   
extrusion z = z1,z2,z3      { divide Z into two layers }  
   
boundaries  
    surface 1 value(Tp)=0       { fix bottom surface temp }  
    surface 3 value(Tp)=0       { fix top surface temp }  
   
    Region 1            { define full domain boundary in base plane }  
       z2 = 1       { surface 2 merges with surface 3 in this region }  
       start(-wide,-wide)  
         value(Tp) = 0          { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2            { Overlay a second region in left half.  
            This region delimits the area in which surfaces 2 and 3 differ. 
            Surfaces meet at the region boundary.  }  
       z2 = 1 + x/2   
       layer 2 k=0.1    { redefine conductivity in layer 2 of region 2 }  
       start(-wide,-wide)  
         line to (0,-wide)              { walk left half boundary in base plane }  
           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors  
    grid(x,z) on y=0  
   
plots  
    grid(x,z) on y=0  
    contour(Tp) on y=0  as "ZX Temp"  
   
end  
  

5.2.2.15 3d_planespec

{ 3D_PLANESPEC.PDE   
 
  This problem demonstrates the use of the PLANE  generating function in 
  3D domain specifications. 
 
  We construct a hexahedron using two PLANE  statements. One from explicit
  points and another from named points in the definitions section.
}  
   
title 'PLANE surface generation'  
   
coordinates
    cartesian3  
   
variables
    Tp  

select
    ngrid=5 { reduce mesh size for example }
   
definitions  
    long = 1  
    wide = 1  
    K  = 1  
    Q = 10*exp(-x^2-y^2-z^2)  
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    { define three points in the plane surface }  
    bll = point(-1,-1,0)  
    blr = point(1,-1,0.2)  
    bul = point(-1,1,0.3)  
    
initial values  
    Tp = 0.  
   
equations  
    Tp:  div(k*grad(Tp)) + Q = 0  
   
extrusion   
    { bottom surface using named points }  
    surface 'bottom'  z = PLANE(bll,blr,bul)  
    { top surface using explicit points }  
    surface 'top'     z = PLANE((-1,-1,1), (1,-1,1.2), (1,1,2))  
   
boundaries  
    surface 1 value(Tp)=0  
    surface 2 value(Tp)=0  
   
    Region 1  
       start(-wide,-wide)  
         value(Tp) = 0  
         line to (wide,-wide)  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
  
monitors  
    grid(x,z) on y=0  
   
plots  
    grid(x,y,z)   viewpoint(-7,-9,10)  
    grid(x,z) on y=0  
    contour(Tp) on y=0  as "ZX Temp"  
    contour(Tp) on x=0  as "YZ Temp"  
   
end  
  

5.2.2.16 3d_py ram id

{ 3D_PYRAMID.PDE 
 
  This problem considers the flow of heat in a pyramid-shaped body. 
  It demonstrates the use of FlexPDE in 3D problems with non-planar 
  extrusion surfaces. 
  
  Note that FEATURE  paths are used to delineate discontinuities in the 
  extrusion surfaces. 
 
  The outer edge is used as a heat source, so it is clipped to form an edge wall.  
 

}  
   
title '3D Test - Pyramid'  
   
coordinates
    cartesian3  
   
select  
    regrid=off  
    ngrid=5 { reduce mesh size for example }
   
variables
    u  
   
definitions  
    k = 0.1  
    heat = 4  
   
equations  
    U: div(K*grad(u)) + heat   = 0  
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extrusion  
    surface z = 0  
    surface z = min(1.1- abs(x),1.1-abs(y))  
   
 
boundaries  
     { implicit natural(u) = 0 on top and bottom faces }  
    Region 1  
        start(-1,-1)  
        value(u) = 0            { Fixed value on short vertical sides }  
            line to (1,-1) to (1,1) to (-1,1) to close  
   
    { Features delineate hidden discontinuities in surface slope. 
      This forces gridding nodes along break lines. }  
    feature start(-1,-1) line to (1,1)  
    feature start(-1,1) line to (1,-1)  
   
plots  
    contour(u) on x=0          as "YZ plane intersects peak"  
    contour(u) on y=0          as "XZ plane intersects peak"  
    contour(u) on z=0.1        as "XY plane intersects full outline"  
    contour(u) on x=0.51       as "YZ plane near midpoint of side slope"  
    contour(u) on x+y=0.51     as "Oblique plane cuts corner"  
    contour(u) on z=0.8        as "XY plane near tip"  
    contour(u) on z=0.8  zoom  as "XY plane near tip - zoomed"  
   
 end  
  

5.2.2.17 3d_shell

{ 3D_SHELL.PDE 
 
  This problem considers heatflow in a 
  spherical shell. 
  
  We solve a heatflow equation with 
  fixed temperatures on inner and outer 
  shell surfaces. 
}  
   
title '3D Test - Shell'  
   
coordinates  
    cartesian3  
   
variables  
    u  

definitions  
    k = 10                     { conductivity }  
    heat =6*k                  { internal heat source }  
    rad=sqrt(x^2+y^2)  
    R1 = 1  
    thick = staged(0.1,0.03,0.01)  
    R2 = R1-thick  
   
equations  
    U: div(K*grad(u)) + heat   = 0  
   
extrusion  
    surface z =  -SPHERE ((0,0,0),R1)      { the bottom hemisphere }  
    surface z =  -SPHERE ((0,0,0),R2)  
    surface z =  SPHERE ((0,0,0),R2)  
    surface z =  SPHERE ((0,0,0),R1)       { the top hemisphere }  
   
boundaries  
   
    surface 1 value(u) = 0      { fixed values on outer sphere surfaces }  
    surface 4 value(u) = 0  
   
    Region 1   { The outer boundary in the base projection }  
        layer 1 k=0.1  mesh_spacing=10*thick { force resolution of shell curve }  
        layer 2 k=0.1  
        layer 3 k=0.1  mesh_spacing=10*thick  
        start(R1,0)  
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        value(u) = 0            { Fixed value on outer vertical sides }  
            arc(center=0,0) angle=180  
        natural(u)=0 line to close  
   
     Limited Region 2   { The inner cylinder shell boundary in the base projection }  
       surface 2 value(u) = 1   { fixed values on inner sphere surfaces }  
       surface 3 value(u) = 1  
        layer 2 void            { empty center }  
        start(R2,0)  
        arc(center=0,0) angle=180  
        nobc(u) line to close  
   
monitors  
     grid(x,y,z)  
     grid(x,z) on y=0  
     grid(rad,z) on x=y  
     contour(u) on x=0          { YZ plane through diameter }  
     contour(u) on y=0          { XZ plane through diameter }  
     contour(u) on z=0          { XY plane through diameter }  
     contour(u) on x=0.5        { YZ plane off center }  
     contour(u) on y=0.5        { XZ plane off center }  
   
definitions
     yp = 0.5
     R0 = (R1+R2)/2
     Rin = sqrt((R0-0.1)^2-yp^2)
     Rout = sqrt((R0+0.1)^2-yp^2)
     xin = Rin/sqrt(2)
     xout = Rout/sqrt(2)

plots
     grid(x,y,z)
     grid(x,z) on y=0
     grid(x,z) on y=yp
     contour(u) on x=0          as "Temp on YZ plane through diameter"
     contour(u) on y=0          as "Temp on XZ plane through diameter"
     contour(u) on z=0          as "Temp on XY plane through diameter"
     contour(u) on z=0.001         as "Temp on XY plane through diameter"
     contour(u) on x=0.5        as "Temp on YZ plane off center"
     contour(u) on y=0.5        as "Temp on XZ plane off center"
report(Rin,Rout,xin,xout)
     contour(magnitude(grad(u))) on y=yp
                                zoom(xin,xin, xout-xin,xout-xin)
                                as "Flux on XZ plane off center"
                                report(yp)
   
 end  
  

5.2.2.18 3d_shells

{ 3D_SHELLS.PDE 
 
  This problem demonstrates the construction
  of multiple nested spherical shells. 
  
  We solve a heatflow equation with fixed 
  temperatures on inner and outer 
  shell surfaces. 
}  
   
title 'Nested 3D Shells'  
   
coordinates  
    cartesian3  
   
variables  
    u  
   
definitions  
    k = 10             
    heat =6*k          
    rad=sqrt(x^2+y^2)  
    R1 = 1  
    thick = 0.1    
    R2 = R1-thick  
    R3 = R2-thick  
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    R4 = R3-thick  
    R5 = R4-thick  
   
equations  
    U: div(K*grad(u)) + heat   = 0  
   

extrusion  
    surface 'SB1' z =  -SPHERE ((0,0,0),R1)      { the bottom hemisphere }  
  layer 'LB1'  
    surface 'SB2' z =  -SPHERE ((0,0,0),R2)  
  layer 'LB2'  
    surface 'SB3' z =  -SPHERE ((0,0,0),R3)  
  layer 'LB3'  
    surface 'SB4' z =  -SPHERE ((0,0,0),R4)  
  layer 'LB4'  
    surface 'SB5' z =  -SPHERE ((0,0,0),R5)  
  layer 'LB5'  
    surface 'ST5' z =  SPHERE ((0,0,0),R5)  
  layer 'LT4'  
    surface 'ST4' z =  SPHERE ((0,0,0),R4)  
  layer 'LT3'  
    surface 'ST3' z =  SPHERE ((0,0,0),R3)  
  layer 'LT2'  
    surface 'ST2' z =  SPHERE ((0,0,0),R2)  
  layer 'LT1'  
    surface 'ST1' z =  SPHERE ((0,0,0),R1)       { the top hemisphere }  
   
boundaries  
   
    surface 'SB1' value(u) = 0      { fixed values on outer sphere surfaces }  
    surface 'ST1' value(u) = 0  
   
    Region 1     
        layer 'LB1' k=1  
        layer 'LT1' k=1  
   start(R1,0)  
        value(u) = 0              
            arc(center=0,0) angle=180  
        natural(u)=0 line to close  
   
     Limited Region 2     
        layer 'LB2' k=2  
        layer 'LT2'  k=2  
   ! include the region in all layers that must merge out: 
   layer 'LB3'  layer 'LB4' layer 'LB5' layer 'LT4' layer 'LT3'  
        start(R2,0)  
        arc(center=0,0) angle=180  
        nobc(u) line to close  
   
     Limited Region 3     
        layer 'LB3'  k=3  
        layer 'LT3'  k=3  
   ! include the region in all layers that must merge out: 
   layer 'LB4' layer 'LB5' layer 'LT4'  
        start(R3,0)  
        arc(center=0,0) angle=180  
        nobc(u) line to close  
   
     Limited Region 4     
        layer 'LB4'  k=4  
        layer 'LT4'  k=4  
   ! include the region in all layers that must merge out: 
   layer 'LB5'   
        start(R4,0)  
        arc(center=0,0) angle=180  
        nobc(u) line to close  
   
     Limited Region 5     
        surface 'SB5' value(u) = 1   { fixed values on inner sphere surfaces }  
        surface 'ST5' value(u) = 1  
        layer 'LB5' void            { empty center }  
        start(R5,0)  
        arc(center=0,0) angle=180  
        nobc(u) line to close  
   
monitors  
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     grid(x,y,z)  
     grid(x,z) on y=0  
     grid(rad,z) on x=y  
     contour(u) on x=0          { YZ plane through diameter }  
     contour(u) on y=0          { XZ plane through diameter }  
     contour(u) on z=0          { XY plane through diameter }  
     contour(u) on x=0.5        { YZ plane off center }  
     contour(u) on y=0.5        { XZ plane off center }  
   
definitions  
     yp = 0.5  
     rp = sqrt(R2^2-yp^2)  
     xp = rp/sqrt(2+thick)  
plots  
     grid(x,y,z)  
     grid(x,z) on y=0  
     contour(u) on x=0          as "Temp on YZ plane through diameter"  
     contour(u) on y=0          as "Temp on XZ plane through diameter"  
     contour(u) on z=0          as "Temp on XY plane through diameter"  
     contour(u) on z=0.001      as "Temp on XY plane through diameter"  
     contour(u) on x=0.5        as "Temp on YZ plane off center"  
     contour(u) on y=0.5        as "Temp on XZ plane off center"  
     contour(magnitude(grad(u))) on y=0.5 as "Flux on XZ plane off center"
     contour(magnitude(grad(u))) on y=yp    
                                zoom(xp,xp, thick*sqrt(2+thick),thick*sqrt(2+thick))    
   
                                as "Flux on XZ plane off center"  
   
 end   
  

5.2.2.19 3d_sphere

{ 3D_SPHERE.PDE 
 
  This problem considers the construction of a spherical domain in 3D. 
  
  The heat equation is  Div(-K*grad(U)) = h, wth U the temperature and 
  h the volume heat source. 
  
  A sphere with uniform heat source h will generate a total amount of heat 
    H = (4/3)*Pi*R^3*h, from which  h = 3*H/(4*Pi*R^3). 
  
  The normal flux at the surface will be Fnormal = -K*grad(U) <dot> Normal, 
  where Normal is the surface-normal unit vector.  On the sphere, the unit 
  normal is [x/R,y/R,z/R]. 
  At the surface, the flux will be uniform, so the surface integral of flux is 
    TOTAL = 4*pi*R^2*normal(-K*grad(U)) = H 
  or  normal(-K*grad(u)) = H/(4*pi*R^2)  =  R*h/3. 
 
  In the following, we set R=1 and H = 1, from which 
    h = 3/(4*pi) 
    normal(-k*grad(u)) = 1/(4*pi) 
}  
   
title '3D Sphere'  
   
coordinates  
    cartesian3  
   
variables  
    u  
   
definitions  
    K = 0.1   { conductivity }  
    R0 = 1    { radius }  
    H0 = 1    { total heat }  
    { volume heat source }
    heat =3*H0/(4*pi*R0^3)                   
   
equations  
    U: div(K*grad(u)) + heat   = 0  
 
extrusion  
    surface z = -SPHERE ((0,0,0),R0)       { the bottom hemisphere }  
    surface z = SPHERE ((0,0,0),R0)        { the top hemisphere }  
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boundaries  
    surface 1 value(u) = 0     { fixed value on sphere surfaces }  
    surface 2 value(u) = 0  
    Region 1  
        start(R0,0)  
        arc(center=0,0) angle=360  
   
plots  
    grid(x,y,z)  
    grid(x,z) on y=0  
    contour(u) on x=0  
    contour(4*pi*magnitude(k*grad(u))) on x=0  
    contour(4*pi*magnitude(k*grad(u))) on y=0  
    contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on x=0  as "normal flux"
 
    contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on y=0  as "normal flux"
 
    vector(-grad(u)) on x=0  
    vector(-grad(u)) on y=0  
   
    contour(4*pi*normal(-k*grad(u))) on surface 1  as "4*pi*Normal Flux=1"  { bottom
surface }  
    contour(4*pi*normal(-k*grad(u))) on surface 2  as "4*pi*Normal Flux=1"  { top surface
}  
    surface(4*pi*normal(-k*grad(u))) on surface 1  as "4*pi*Normal Flux=1"  { bottom
surface }  
    surface(4*pi*normal(-k*grad(u))) on surface 2  as "4*pi*Normal Flux=1"  { top surface
}  
   
    summary  
      report(sintegral(normal(-k*grad(u)),1)) as "Bottom current :: 0.5 "  
      report(sintegral(normal(-k*grad(u)),2)) as "Top current :: 0.5 "  
      report(vintegral(heat)) as "Total heat :: 1"  
      report(sintegral(normal(-k*grad(u)))) as "Total Flux :: 1"  
   
 end  
  

5.2.2.20 3d_spherebox

{ 3D_SPHEREBOX.PDE 
 
  An empty 3D sphere inside a box. 
}  
   
title 'Empty 3D Sphere in a box'  
   
coordinates  
    cartesian3  
   
variables  
    u  
   
definitions  
    K = 0.1                     { conductivity }  
    R0 = 1                      { radius }  
    box = 2*R0  
   
    zsphere = SPHERE ((0,0,0),R0)   {  hemisphere shape }  
   
equations  
    U: div(K*grad(u))    = 0  
   
extrusion  
    surface z=-box  
    surface z = -zsphere        { the bottom hemisphere and plane }  
    surface z = zsphere         { the top hemisphere and plane }  
    surface z=box  
   
boundaries  
    surface 1 value(u) = 0      { fixed value on box surfaces }  
    surface 4 value(u) = 1  
   
    Region 1        { the bounding box - defaults to insulating sidewalls }  
        start(-box,-box)   
        line to (box,-box) to (box,box) to (-box,box) to close  
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    Limited Region 2            { sphere exists only in region 2 }  
        layer 2 void            { ... and layer 2 }  
        start  (R0,0)  
            arc(center=0,0) angle=360  
   
plots  
    grid(x,y,z)  
    grid(x,z) on y=0  
    contour(u) on x=0  
   
end  
  

5.2.2.21 3d_spherespec

{ 3D_SPHERESPEC 
 
  This problem demonstrates the use of the SPHERE  function for construction 
  of a spherical domain in 3D.  It is a modification of the example problem 3D_SPHERE.PDE

. 
 
}  
   
title '3D Sphere'  
   
coordinates  
    cartesian3  
   
variables  
    u  
   
definitions  
    K = 0.1                 { conductivity }  
    R0 = 1                  { radius }  
    H0 = 1                  { total heat input }  
   
    heat =3*H0/(4*pi*R0^3)  { volume heat source }  
    zs = sphere((0,0,0),R0) { the top hemisphere }  
  
equations  
    U: div(K*grad(u)) + heat   = 0  
   
extrusion  
    surface z = -zs         { the bottom hemisphere }  
    surface z = zs          { the top hemisphere }  
   
boundaries  
    surface 1 value(u) = 0  { fixed value on sphere surfaces }  
    surface 2 value(u) = 0  
    Region 1  
        start  (R0,0)  
        arc(center=0,0) angle=360  
   
plots  
    grid(x,y,z)  
    grid(x,z) on y=0  
    contour(u) on x=0  
    contour(4*pi*magnitude(k*grad(u))) on x=0  
    contour(4*pi*magnitude(k*grad(u))) on y=0  
    contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on x=0  as "normal flux"
 
    contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on y=0  as "normal flux"
 
    vector(-grad(u)) on x=0  
    vector(-grad(u)) on y=0  
   
    contour(4*pi*normal(-k*grad(u))) on surface 1 as "4*pi*Normal Flux=1" { bottom
surface }  
    contour(4*pi*normal(-k*grad(u))) on surface 2 as "4*pi*Normal Flux=1" { top surface }
 
    surface(4*pi*normal(-k*grad(u))) on surface 1 as "4*pi*Normal Flux=1" { bottom
surface }  
    surface(4*pi*normal(-k*grad(u))) on surface 2 as "4*pi*Normal Flux=1" { top surface }
 
   
    summary  
      report(sintegral(normal(-k*grad(u)),1)) as "Bottom current :: 0.5 "  

224
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      report(sintegral(normal(-k*grad(u)),2)) as "Top current :: 0.5 "  
      report(vintegral(heat)) as "Total heat :: 1"  
      report(sintegral(normal(-k*grad(u)))) as "Total Flux :: 1"  
   
 end  
  

5.2.2.22 3d_spool

{ 3D_SPOOL.PDE 
 
  This example shows the use of LIMITED REGIONS  to construct a spool in a box in 3D. 
  The core of the spool has a section of low conductivity at the center. 
  The LAYER  structure is as follows: 
    Layers 1 and 7 are the sections of the box above and below the spool 
    Layers 2 and 6 are the flanges of the spool and the box area surrounding the
flanges. 
    Layers 3 and 5 are the high-conductivity portions of the core and the surrounding box
area. 
    Layer 4 is the low-conductivity portion of the core and the surrounding box area. 
  
  Click "Controls|Domain Review"  or the "Domain Review"  tool to watch the mesh
construction. 
  
}  
title '3D LIMITED REGION EXAMPLE'  
  
coordinates  
    cartesian3  
   
Variables  
    U     
   
definitions  
    K  
    K1 = 1  
    K2 = 10  
    K3 = 0.01  
    Lx = 1   Ly = 1 Lz = 1  
    {extrusion values}  
    t  = 0.25  
    m = 0.05  
    h = 0.25  
    z0 = t/2  
    z1 = t/2 + m  
    z2 = t/2 + m + h  
    z3 = t/2 + m + h + 2*m  
    z4 = t/2 + m + h + 2*m + h  
    z5 = t/2 + m + h + 2*m + h + m    
    {radii}  
    rad = 0.5 - h/2  
    rad1 = 0.5 - h/1  
     
    {boundary values}  
    U0 = 0  
    U1 = 1  
   
equations  
    U:  DIV(K*GRAD(U)) = 0  
   
extrusion  
    surface "bottom of box" z=0  
        layer "bottom gap"  
    surface "spool bottom" z=z0  
        layer "bottom flange"  
    surface "top of bottom flange" z=z1  
        layer "bottom core section"  
    surface "bottom of core insert" z=z2  
        layer "core insert"  
    surface "top of core insert" z=z3  
        layer "top core section"  
    surface "bottom of top flange" z=z4  
        layer "top flange"  
    surface "top of spool" z=z5  
        layer "top gap"  
    surface "top of box" z=1  
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boundaries  
    Surface 1 Value(U)=U0  
    Surface 8 Value(U)=U1  
   
    Region 1 "Box"  
        K = K1  
        start(0,0)  
        line to (1,0) to (1,1) to (0,1) to close  
   
    limited region 2  "Flanges"  
        layer 2         K =K2  
        layer 6         K =K2  
   
        START (1/2,rad1)  
        ARC(CENTER=1/2,1/2) ANGLE=360  
        TO CLOSE  
   
    limited Region 3    "Core"  
        layer 3         K =K2  
        layer 4         K =K3  
        layer 5         K =K2  
   
        START (1/2,rad)  
        ARC(CENTER=1/2,1/2) ANGLE=360  
        TO CLOSE  
   
MONITORS  
    plots  
    grid(x,z) on y=0.5 paintregions  
    contour(U) on y=0.5  
    contour(U) on z=0.5  
    contour(K) on x=0.5 painted  
     
end  
  

5.2.2.23 3d_therm ocouple

{  3D_THERMOCOUPLE.PDE

   This problem constructs a thermocouple inside a box.
   It is the geometric construction only, there are no variables or equations.

   Thermocouple rods are inserted exactly half way into the sphere. Rod tops are rounded.
   Partial insertion is more difficult to generate the appropriate surfaces.

}

Title 'Thermocouple'

Coordinates Cartesian3

Definitions

  len = 10   ! length of rods
  rr = 1     ! radius of rods
  rs = 3     ! radius of sphere
  b = 1      ! box offset
  d = 0.5    ! distance between rods

  h = sqrt(rr^2 - (2*rs)^2)  ! additional height from top of rod to center of sphere
  c = len + h                ! z value for center of sphere
  xr = rr+d/2                ! x center for rods

  zsphere = sphere((0,0,0),rs)       ! top sphere surface at origin (untranslated)
  rsphere1 = sphere((-xr,0,0),rr)    ! rod1 sphere surface at z=0 (untranslated)
  rsphere2 = sphere((xr,0,0),rr)     ! rod2 sphere surface at z=0 (untranslated)

  zrods = c  ! regionally defined surface with default value of C
  k = 1      ! regionally defined material property with default value of 1

Extrusion

  Surface 'box bottom' z = -b
  Surface 'rod bottom' z = 0
  Surface 'sphere bottom' z = c - zsphere
  Surface 'rod top' z = zrods
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  Surface 'sphere top' z = c + zsphere
  Surface 'box top' z = c + rs + b

Boundaries

  Region 'box'
    start(b+rs,b+rs)
    line to (-b-rs,b+rs) to (-b-rs,-b-rs) to (b+rs,-b-rs) to close

  Limited Region 'sphere'
    layer 3    k = 2
    layer 4    k = 2
    start(rs,0)
    arc(center=0,0) angle = 360

  Limited Region 'rod1'
    zrods = c + rsphere1
    layer 2    k = 3
    layer 3    k = 3
    start(-xr,rr)
    arc(center=-xr,0) angle = 360

  Limited Region 'rod2'
    zrods = c + rsphere2
    layer 2    k = 4
    layer 3    k = 4
    start(xr,rr)
    arc(center=xr,0) angle = 360

Plots
  grid(x,y,z) on region 'rod1' on region 'rod2'
  grid(x,y,z) on region 'sphere' on region 'rod1' on region 'rod2'
  grid(x,y,z)
  grid(x,z) on y=0

End

5.2.2.24 3d_toggle

{ 3D_TOGGLE.PDE   
   
  This problem shows the use of curved extrusion surfaces and VOID  layers 
  to construct a transverse cylindrical hole in an upright cylinder. 
 
  The domain consists of three layers: 
    1) the cylinder below the hole 
    2) the hole 
    3) the cylinder above the hole. 
  Layer 2 has zero thickness outside the 
  hole region, and is VOID  (excluded 
  from the mesh) inside the hole. 
 
  Click "Controls->Domain Review"  to watch 
  the domain construction process. 
  
}  
   
title '3D CYLINDRICAL VOID LAYER TEST'  
   
coordinates  
    cartesian3  
   
select  
    errlim = 0.005  
   
variables  
    u  
   
definitions  
    k = 0.1  
    h = 1  
    L = 1  
    Ro = 1          { the cylinder radius }  
    Ri = Ro/2       { the hole radius }  
    { the base-plane Y-coordinate of the intersection of the hole projection with the  

232
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    cylinder projection: }  
    Yc = sqrt(Ro^2-Ri^2)     
    Z4 = L          { Z-height of the cylinder top }  
    { the Z-shape function for the hole top (zero beyond +-Ri): }  
    Z3 = CYLINDER ((0,1,0), (0,-1,0), Ri)    
    { the Z-shape function for the hole bottom (zero beyond +-Ri): }  
    Z2 = -Z3                      
    Z1 = -L         { Z-height of the cylinder bottom }  
   
equations  
    U: div(K*grad(u)) + h = 0       { a heat equation for demonstration purposes }  
   
extrusion z=Z1,Z2,Z3,Z4     { short-form specification of the extrusion surfaces }  
   
boundaries  
  
    Region 1        { this region is the projection of the outer cylinder shape }  
      start(Ro,0)  
      value(u)=0                { Force U=0 on perimeter }  
      arc(center=0,0) angle=360  to close  
   
    limited region 2        { this region is the projection of the transverse hole }  
      layer 2 void          { the region exists only in layer 2.  Its bounding surfaces 
                                merge beyond the edges of the hole  }  
      start(Ri,Yc) arc(center=0,0) to (-Ri,Yc)  
      line to (-Ri,-Yc)  
      arc(center=0,0) to (Ri,-Yc)  
      line to close  
   
monitors  
    grid(x,y,z)  
    elevation(u) from (-Ro,0,0) to (Ro,0,0)  
    contour(u) on z=0  
    contour(u) on y=0  
   
plots  
    grid(x,y,z)  
    elevation(u) from (-Ro,0,0) to (Ro,0,0)  
    contour(u) on z=0  
    contour(u) on y=0  
   
end  
  

5.2.2.25 3d_torus

{ 3D_TORUS.PDE 
 
   This problem constructs a torus. 
   The top surface and bottom surface meet along the diameter of the torus. 
}  
   
title '3D Torus'  
   
coordinates  
    cartesian3  
   
select  
    errlim = 0.005  
    ngrid = 20    { get better mesh resolution of curved surfaces }  
    painted  
   
variables  
    u  
   
definitions  
    Raxis = 4           { the radius of the toroid axis }  
    Rtube = 1           { the radius of the toroid tube }  
    Rad = sqrt(x^2+y^2) { cylindrical radius of point (x,y) }  
    { the torus surface is the locus of points where (Rad-Raxis)^2+Z^2 = Rtube^2 }  
    ZTorus = sqrt(Rtube^2-(Rad-Raxis)^2)  
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equations  
    U:  del2(u) + 1 = 0  
   
extrusion  
    Surface "Bottom" z = -ZTorus  
    Surface "Top" z = ZTorus  
   
boundaries  
    surface 1 value(u)=0  
    surface 2 value(u) = 0  
   
region 1  
    start(Raxis+Rtube, 0)  
      value(u) = 0  
      arc(center=0,0) angle=360    { the outer boundary }  
    start(Raxis-Rtube, 0)  
      value(u) = 0  
      arc(center=0,0) angle=360    { the inner boundary }  
   
monitors  
    grid(x,y,z)  
    contour(u) on surface z=0  
    contour(u) on surface y=0  
   
plots  
    grid(x,y,z)  
    contour(u) on surface z=0  
    contour(u) on surface y=0  
   
end  
  

5.2.2.26 3d_torus_tube

{ 3D_TORUS_TUBE.PDE 
 
  This problem constructs a "U" of pipe by connecting two cylindrical stubs to the 
  ends of a 180-degree arc of a torus. 
 
  There are three layers: 
        1) the bottom half of the outer pipe 
        2) the inner fluid 
        3) the top half of the outer pipe. 
  Layers 1 and 3 wrap around layer 3 and meet on the center plane. 
 
  There are six regions, the inside and outside parts of the torus and the two stubs. 
 
}  
  
title '3D Torus Tube'  
  
coordinates  
    cartesian3  
  
select  
    errlim = 0.005  
    painted  
  
variables  
    u  
  
definitions  
    Ra = 4              { the radius of the toroid axis }  
    Rt = 1              { the radius of the outer toroid }  
    Ri = 0.6                  { the radius of the inner toroid }  
    Len = 3                   { the length of the side tubes }  
  
    { Surface Definitions - Toroids and Tubes}  
    Rad = sqrt(x^2+y^2)  
    ZTorus1 = sqrt(Rt^2-(Rad-Ra)^2) ! outside toroid 
    ZTorus2 = sqrt(Ri^2-(Rad-Ra)^2) ! inside toroid 
  
    ZTube1a = CYLINDER ((Ra,0,0), (Ra,1,0), Rt)         ! outside tube A 
    ZTube1b = CYLINDER ((-Ra,0,0), (-Ra,1,0), Rt)         ! outside tube B 
  
    ZTube2a = CYLINDER ((Ra,0,0), (Ra,1,0), Ri)         ! inside tube A 
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    ZTube2b = CYLINDER ((-Ra,0,0), (-Ra,1,0), Ri)         ! inside tube B 
  
    { Surface Definitions - default values for region 1 }  
    z1 = -ZTorus1  
    z2 = 0  
    z3 = 0  
    z4 = ZTorus1  
  
    { heat source and conductivity }  
    s = 1  
    k = 1  
  
equations  
    u: div(k*grad(u)) + s = 0  
  
extrusion  
    Surface "Bottom1" z = z1  
    Surface "Bottom2" z = z2  
    Surface "Top2" z = z3  
    Surface "Top1" z = z4  
  
boundaries  
    surface "Bottom1" value(u)=0  
    surface "Top1" value(u) = 0  
  
    region 1 "Outside Toroid"  
      mesh_spacing = Rt/2  
      layer 1 s = 1 k = 10  
      layer 3 s = 1 k = 10  
      start(Ra+Rt, 0)  
        value(u) = 0  
        arc(center=0,0) angle=180            { the outer boundary }  
        natural(u) = 0  
        line to (-Ra+Rt, 0)  
        value(u) = 0  
        arc(center=0,0) angle=-180    { the inner boundary }  
        natural(u) = 0  
        line to close  
  
    limited region 2  "Inside Toroid"  
      z2 = -ZTorus2  
      z3 = ZTorus2  
      mesh_spacing = Ri/2  
      layer 2 s = 100 k = 1  
      start(Ra+Ri, 0)  
        arc(center=0,0) angle=180            { the outer boundary }  
        line to (-Ra+Ri, 0)  
        arc(center=0,0) angle=-180    { the inner boundary }  
        line to close  
  
    region 3 "Outside TubeA"  
      z1 = -ZTube1a  
      z4 = ZTube1a  
      mesh_spacing = Rt/2  
      layer 1 s = 1 k = 10  
      layer 3 s = 1 k = 10  
      start (Ra+Rt,0)  
        line to (Ra+Rt,-Len)  
        line to (Ra-Rt,-Len)  
        line to (Ra-Rt,0)  
        line to close  
  
    limited region 4 "Inside TubeA"  
      z1 = -ZTube1a  
      z2 = -ZTube2a  
      z3 = ZTube2a  
      z4 = ZTube1a  
      mesh_spacing = Ri/2  
      layer 2 s = 100 k = 1  
      start (Ra+Ri,0)  
        line to (Ra+Ri,-Len)  
        line to (Ra-Ri,-Len)  
        line to (Ra-Ri,0)  
        line to close  
  
    region 5 "Outside TubeB"  
      z1 = -ZTube1b  
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      z4 = ZTube1b  
      mesh_spacing = Rt/2  
      layer 1 s = 1 k = 10  
      layer 3 s = 1 k = 10  
      start (-Ra-Rt,0)  
        line to (-Ra-Rt,-Len)  
        line to (-Ra+Rt,-Len)  
        line to (-Ra+Rt,0)  
        line to close  
  
    limited region 6 "Inside TubeB"  
      z2 = -ZTube2b  
      z3 = ZTube2b  
      mesh_spacing = Ri/2  
      layer 2 s = 100 k = 1  
      start (-Ra-Ri,0)  
        line to (-Ra-Ri,-Len)  
        line to (-Ra+Ri,-Len)  
        line to (-Ra+Ri,0)  
        line to close  
  
monitors  
    grid(x,y,z)  
    contour(u) on surface z=0  
    contour(u) on surface y=0  
  
plots  
    grid(x,y,z)  
    contour(u) on surface z=0  
    contour(u) on surface y=0  
  
end  
  

5.2.2.27 3d_twist

{ 3D_TWIST.PDE 
      
  This problem shows the use of the function definition facility of FlexPDE to create a  
  twisted shaft in 3D. 
  
  The mesh generation facility of FlexPDE extrudes a 2D figure along a straight path in
Z,  
  so that it is not possible to directly define a screw-thread shape. 
  
  However, by defining a coordinate transformation, we can build a straight rod in 3D and
 
  interpret the coordinates in a rotating frame. 
  
  Define the twisting coordinates by the transformation 
    xt = x*cos(a) - y*sin(a);    x = xt*cos(a) + yt*sin(a) 
    yt = x*sin(a) + y*cos(a);    y = yt*cos(a) - xt*sin(a) 
    zt = z 
      with 
    a = 2*pi*z/Length = twist*z    (for a total twist of 2*pi radians over the length ) 
  
  In this transformation, x and y are the coordinates FlexPDE believes it is working
with, 
  and they are the coordinates that move with the twisting, so that the cross section is 
  constant in x,y.  xt and yt are the "lab coordinates" of the twisted figure. 
  
  The chain rule then gives 
    dF/d(xt) = (dx/dxt)*(dF/dx)  + (dy/dxt)*(dF/dy) + (dz/dxt)*(dF/dz)  
    (with similar rules for yt and zt). 
  and dx/dzt = twist*[-xt*sin(a) + yt*cos(a)] = y*twist, etc. 
  
  In FlexPDE notation, this becomes 
    dxt(F) = cos(a)*dx(F) - sin(a)*dy(F) 
    dyt(F) = sin(a)*dx(F) + cos(a)*dy(F) 
    dzt(F) = twist*[y*dx(F) - x*dy(F)] + dz(F) 
  
  These relations are defined in the definitions section, and used in the equations 
  section, perhaps nested as in the heat equation shown here. 
  
}  
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title '3D Twisted Rod'  
   
coordinates  
    cartesian3  
   
select  
    ngrid=25    { use enough mesh cells to resolve the twist }  
   
variables  
    Tp  
   
definitions  
    long = 20  
    wide = 1  
    z1 = -long/2  
    z2 = long/2  
   
    { transformations }  
    twist = 2*pi/long    { radians per unit length }  
    c = cos(twist*z)  
    s = sin(twist*z)  
    xt = c*x-s*y  
    yt = s*x+c*y  
   
    { functional definition of derivatives }  
    dxt(f) = c*dx(f) - s*dy(f)  
    dyt(f) = s*dx(f) + c*dy(f)  
    dzt(f) = twist*(y*dx(f) - x*dy(f)) + dz(f)  
   
    { Thermal source }  
    Q = 10*exp(-(xt+wide)^2-(yt+wide)^2-z^2)  
   
initial values  
    Tp = 0.  
   
equations      
    { the heat equation using transformed derivative operators }  
    Tp:  dxt(dxt(Tp)) + dyt(dyt(Tp)) + dzt(dzt(Tp)) + Q = 0  
   
extrusion z = z1,z2  
   
boundaries  
    surface 1 value(Tp)=0           { fix bottom surface temp }  
    surface 2 value(Tp)=0           { fix top surface temp }  
   
    Region 1  
         start(-wide,-wide)         { default to insulating sides }  
         line to (wide,-wide)  
           to (wide,wide)  
           to (-wide,wide)  
           to close   
monitors  
    grid(xt,yt,z)                   { the twisted shape }  
   
plots  
    grid(xt,yt,z)                   { the twisted shape again }  
   
    { In the following, recall that x and y are the coordinates which 
        follow the twist.  It is not possible at present to construct a 
        cut in the "lab" coordinates. }  
    grid(x,z) on y=0  
    contour(Tp) on y=0  as "ZX Temp"  
    contour(Tp) on z=0  as "XY Temp"  
   
end  
  

5.2.2.28 3d_void

{ 3D_VOID.PDE   
   
  This example shows the use of empty layers in 3D applications. 
  
  The VOID  statement appears inside a REGION  section, in the position of a 
  layer parameter definition. 
  

232 229



FlexPDE 7 : Sample Problems495

  The syntax is: 
        LAYER number VOID 
  
  This statement causes the stated layer to be excluded from the problem domain 
  in the current REGION. (Remember that a REGION refers to a partition of the 
  2D projection plane.) 
  
  Boundary conditions on the surface of the void are specified by the standard 
  boundary condition facilities. 
  
  In this problem, we have a heat equation with an off-center void in an irregular 
  figure.  The Y faces held at zero, the Z-faces are insulated, and the sides 
  of the void are held at 1. 
  
}  
   
title '3D VOID LAYER TEST'  
   
coordinates  
    cartesian3  
   
select  
    errlim = 0.005  
   
variables  
    u  
   
definitions  
    k = 0.1  
    h=0  
    x0=0.2  y0=-0.3  
    x1=1  y1 = 0.3  
   
equations  
    U: div(K*grad(u)) + h = 0  
   
extrusion z=0, 0.3, 0.7, 1  
   

boundaries  
    region 1  
      start(-1,-1)  
      value(u)=0            { Force U=0 on perimeter }  
      line to (1,-1)  
      arc(center=-1,0) to (1,1)  
      line to (-1,1)  
      arc(center= -3,0)  to close  
   
    limited region 2        { void exists only on layer 2 }  
      layer 2 VOID  
      start(x0,y0)  
      layer 2  value(u)=1  
      line to (x1,y0) to (x1,y1) to (x0,y1) to close  
   
monitors  
    elevation(u) from (-0.8,0,0.5) to (1.25,0,0.5)  
    elevation(u) from (-0.8,0,0.8) to (1.25,0,0.8)  
    contour(u) on z=0  
    contour(u) on z=0.5  
    contour(u) on z=1  
    contour(u) on y=0  
   
plots  
    elevation(u) from (-0.8,0,0.5) to (1.25,0,0.5)  
    elevation(u) from (-0.8,0,0.8) to (1.25,0,0.8)  
    contour(u) on z=0       painted  
    contour(u) on z=0.5     painted  
    contour(u) on z=0.499   painted  
    contour(u) on z=1       painted  
    contour(u) on y=0       painted  
   
end  
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5.2.2.29 regional_surfaces

{ REGIONAL_SURFACES.PDE 
 
  This problem demonstrates the use of regional definition of   3D extrusion surfaces. 
 
  There are three "REGIONS"  defined, the cubical body of the domain, and two circular 
  patches. The circular patches each exist only on a single surface, and in no volumes. 
  The patch regions are used to define alternate extrusion surface shapes, and 
  insert two parabolic depressions in the top and bottom faces of the cube. 
  
  Click "Domain Review"  to watch the gridding
process. 
  
}  
   
title 'Regional surface definition'  
   
coordinates  
    cartesian3  
   
variables  
    Tp  
   
definitions  
    long = 1        { domain size }  
    wide = 1  
    z1 = -1         { bottom surface default shape }
 
    z2 = 1          { top surface default shape }  
    xc = wide/3     {some locating coordinates }  
    yc = wide/3  
    rc = wide/2  
    h = 0.8  
   
    K  = 1          { heat equation parameters }  
    Q = exp(-(x^2+y^2+z^2))  
   
initial values  
    Tp = 0.  
   
equations  
    Tp:  div(k*grad(Tp)) + Q = 0  
   
extrusion z = z1,z2  
   
boundaries  
    surface 1 value(Tp)=0  
    surface 2 value(Tp)=0  
   
    { define full domain boundary in base plane }  
    Region 1           
       start(-wide,-wide)  
         value(Tp) = 0  
         line to (wide,-wide)  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Limited region 2  
      { redefine bottom surface shape in region 2 } 
      { note that this shape must meet the default shape at the edge of the region }  
      z1 = -1+h*(1-((x+xc)^2+(y+yc)^2)/rc^2)  { a parabolic dent }  
      surface 1    { region exists only on surface 1 }  
      start(-xc,-yc-rc) arc(center=-xc,-yc) angle=360  
   
    Limited region 3  
      { redefine top surface shape in region 3 }  
      { note that this shape must meet the default shape at the edge of the region }  
      z2 = 1-h*(1-((x-xc)^2+(y-yc)^2)/rc^2)  
      surface 2   { region exists only on surface 2 }  
      start(xc,yc-rc) arc(center=xc,yc) angle=360  
   
plots  
    grid(x,y,z)   
    contour(Tp) on x=y  
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end  
  

5.2.2.30 tabular_surfaces

{ TABULAR_SURFACES.PDE   
 
  This problem demonstrates the use of tabular input and regional definition 
  for 3D extrusion surfaces. 
 
  The bottom surface of a brick is read from a table. 
  Note:  Tables by default use bilinear interpolation.  Mesh cell boundaries do NOT  
    automatically follow table boundaries, and sharp slope breaks in table data 
    can result in ragged surfaces.  You should always make surface tables dense 
    enough to avoid sharp breaks, or put domain boundaries or features along 
    breaks in the table slope.  You should also specify mesh density controls 
    sufficiently dense to resolve table features. 
 
  The top surface is defined by different functions in two regions. 
  Note: the regional surface definitions must coincide at the region boundaries 
    where they meet.  Surfaces must be continuous and contain no jumps. 
 
}  
   
title 'tabular surface definition'  
   
coordinates  
    cartesian3  
   
variables  
    Tp  
   
definitions  
    long = 1  
    wide = 1  
    K  = 1  
    Q = 10*exp(-x^2-y^2-z^2)  
   
    { read the table file for surface 1 definition: }  
    z1 = table('surf.tbl')   
    { use regional parameters for surface 2
definition: }  
    z2             
   
initial values  
    Tp = 0.  
   
equations  
    Tp:  div(k*grad(Tp)) + Q = 0  
   

extrusion z = z1,z2     { define two surfaces from previously declared parameters }  
   
boundaries  
    surface 1 value(Tp)=0  
    surface 2 value(Tp)=0  
   
    Region 1  
       z2 = 1           { default surface 2 over total domain }  
       start(-wide,-wide)  
         value(Tp) = 0  
         line to (wide,-wide)  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2  
       z2 = 1 + x/2     { override surface 2 definition in region 2 }     
       start(-wide,-wide)  
         line to (0,-wide)  
           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors  
    grid(x,z) on y=0  
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plots  
    grid(x,z) on y=0  
    contour(Tp) on y=0  as "ZX Temp"  
    contour(Tp) on x=0  as "YZ Temp"  
   
end  
  

5.2.2.31 two_spheres

{ TWO_SPHERES.PDE 
 
  This problem constructs two spheres inside a box.  The centers of the spheres lie  
  on a single z-plane, which simplifies the domain construction. 
 
  The domain consists of three layers. 
    layer 1 is the space below the spheres 
    layer 2 contains the sphere bodies, and is of zero thickness outside the spheres 
    layer 3 is the space above the spheres 
  The sphere interiors are Void, and are thus excluded from analysis. They could just as 
  well be filled with material if one wanted to model the insides. 
  The bounding surfaces of layer 2 are specified as a default, over-ridden by regional 
  expressions within the (X,Y) extent of each sphere. 
 
  See TWOZ_PLANAR.PDE , TWOZ_DIRECT.PDE , TWOZ_EXPORT.PDE  and TWOZ_IMPORT.PDE  
  for methods of treating spheres with centers on differing Z coordinates. 
 
}  
  
title 'Two Spheres in 3D'  
  
coordinates  
    cartesian3  
  
variables  
    u  
  
definitions  
    K = 1           { dielectric constant of box filler (vacuum?) }  
    box = 1         { bounding box size }  
  
    R1 = 0.25       { sphere 1 radius, center and voltage}  
    x1 = -0.5  
    y1 = -0.5  
    V1 = -1  
  
    R2 = 0.4        { sphere 2 radius, center and voltage}  
    x2 = 0.2  
    y2 = 0.2  
    V2 = 2    
  
    { sphere shape functions }  
    sphere1_shape = SPHERE ((x1,y1,0),R1)  
    sphere2_shape = SPHERE ((x2,y2,0),R2)  
  
    { default position of layer 2 surfaces }  
    zbottom = 0  
    ztop = 0  
  
equations  
    U: div(K*grad(u))  = 0  
  
extrusion  
    surface "box_bottom"  z=-box  
    surface "sphere_bottoms"  z = zbottom  
    surface "sphere_tops"  z = ztop  
    surface "box_top" z=box  
  
boundaries  
     surface "box_bottom" natural(u) = 0    {insulating boundaries top and bottom }  
     surface "box_top" natural(u) = 0  
  
     Region 1   { The bounding box }  
    start(-box,-box) line to (box,-box) to (box,box) to (-box,box) to close  
  
    limited region 2    { sphere 1 }  
        mesh_spacing = R1/5         { force a dense mesh on the sphere }  
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        zbottom = -sphere1_shape    { shape of surface 2 in sphere 1}  
        ztop = sphere1_shape        { shape of surface 3 in sphere 1}  
        layer 2 void  
        surface 2 value(u)=V1       { specify sphere1 voltage on top and bottom }  
        surface 3 value(u)=V1  
        start  (x1+R1,y1)  
            arc(center=x1,y1) angle=360  
  
    limited region 3    { sphere 2 }  
        mesh_spacing = R2/5         { force a dense mesh on the sphere }  
        zbottom = -sphere2_shape    { shape of surface 2 in sphere 2}  
        ztop = sphere2_shape        { shape of surface 3 in sphere 2}  
        layer 2 void  
        surface 2 value(u)=V2       { specify sphere2 voltage on top and bottom }  
        surface 3 value(u)=V2  
        start  (x2+R2,y2)  
            arc(center=x2,y2) angle=360  
  
plots  
    grid(x,y,z)  
    grid(x,z) on y=y1   as "Grid on Y-cut at sphere 1 center"  
    contour(u) on y=y1  as "Solution on Y-cut at sphere 1 center"  
    grid(x,z) on y=y2   as "Grid on Y-cut at sphere 2 center"  
    contour(u) on y=y2  as "Solution on Y-cut at sphere 2 center"  
    { sqrt(2) is needed to plot true distance along diagonal: }  
    grid(x*sqrt(2),z) on x-y=0  as "Grid on x=y diagonal"     
    contour(u) on x-y=0  as "Solution on x=y diagonal"  
  
end  
  

5.2.2.32 twoz_direct

{ TWOZ_DIRECT.PDE 
 
  This problem constructs two non-coplanar spheres inside a box by constructing  
  a single dividing surface  to delimit both spheres. 
  
  The domain consists of three layers. 
    layer 1 is the space below the spheres 
    layer 2 contains the sphere bodies, and is of zero thickness outside the spheres 
    layer 3 is the space above the spheres 
  The sphere interiors are Void, and are thus excluded from analysis. You could  
  just as well fill them with material if you wanted to model the insides. 
     
  The bounding surfaces of layer 2 are specified as a slope perpendicular to the  
  centerline of the spheres and over-ridden by regional expressions within   
  the (X,Y) extent of each sphere. 
 
  Click "Controls->Domain Review"  to watch the mesh construction process. 
 
  See TWOZ_PLANAR.PDE , TWOZ_EXPORT.PDE  and TWOZ_IMPORT.PDE  for other methods of  
  treating spheres with centers on differing Z coordinates. 
  
  }  
   
  title 'Two Spheres in 3D - direct surface matching'  
   
  coordinates  
     cartesian3  
   
  Variables  
     u  
   
  definitions  
     K = 1               { dielectric constant of box filler (vacuum?) }  
     box = 1  { bounding box size }  
   
     { read sphere specs from file, to guarantee that they are the same as those in
surfgen }  
     #include "sphere_spec.inc"  
   
     { sphere shape functions }  
     sphere1_shape = SPHERE ((x1,y1,0),R1)  
     sphere2_shape = SPHERE ((x2,y2,0),R2)  
  
     { construct an extrusion surface running through both sphere diameters 

10
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           by building an embankment between the spheres }  
     Rc = sqrt((x2-x1)^2+(y2-y1)^2)-R1-R2  
     Rx = Rc*(x2-x1)/Rc/4  
     Ry = Rc*(y2-y1)/Rc/4  
     xm = (x1+x2)/2  
     ym = (y1+y2)/2  
     xa = xm - Rx  
     ya = ym - Ry  
     xb = xm + Rx  
     yb = ym + Ry  
     xc = xm + Ry  
     yc = ym - Rx  
     slope = PLANE((xa,ya,z1), (xb,yb,z2), (xc,yc,0))  
     zbottom = min(z2,max(z1,slope))  
     ztop = zbottom  
       
   
  equations  
    U: div(K*grad(u))  = 0  
   
  extrusion  
    surface "box_bottom"  z=-box  
    surface "sphere_bottoms"  z = zbottom  
    surface "sphere_tops"  z = ztop  
    surface "box_top" z=box  
   
 boundaries  
     surface "box_bottom" natural(u) = 0  {insulating boundaries top and bottom }  
     surface "box_top" natural(u) = 0  
   
     Region 1  { The bounding box }  
  start(-box,-box) line to (box,-box) to (box,box) to (-box,box) to close  
   
    limited region 2  { sphere 1 }  
        mesh_spacing = R1/5    { force a dense mesh on the sphere }  
        zbottom = Z1-sphere1_shape  { shape of surface 2 in sphere 1}  
        ztop = Z1+sphere1_shape    { shape of surface 3 in sphere 1}  
        layer 2 void  
        surface 2 value(u)=V1    { specify sphere1 voltage on top and bottom }  
        surface 3 value(u)=V1  
        start  (x1+R1,y1)  
    arc(center=x1,y1) angle=360  
   
    limited region 3  { sphere 2 }  
        mesh_spacing = R2/5    { force a dense mesh on the sphere }  
        zbottom = Z2-sphere2_shape  { shape of surface 2 in sphere 2}  
        ztop = Z2+sphere2_shape    { shape of surface 3 in sphere 2}  
        layer 2 void  
        surface 2 value(u)=V2    { specify sphere2 voltage on top and bottom }  
        surface 3 value(u)=V2  
        start  (x2+R2,y2)  
    arc(center=x2,y2) angle=360  
   
 plots  
     grid(x,y,z)  
     grid(x,z) on y=y1  paintregions as "Y-cut through lower sphere"  
     contour(u) on y=y1  as "Solution on Y-cut through lower sphere"  
     grid(x,z) on y=y2  paintregions as "Y-cut through upper sphere"  
     contour(u) on y=y2  as "Solution on Y-cut through upper sphere"  
     grid(x*sqrt(2),z) on x-y=0  paintregions  as "Diagonal cut through both spheres"  
     contour(u) on x-y=0  as "Solution on Diagonal cut through both spheres"  
   
 end  
  

5.2.2.33 twoz_im port

{ TWOZ_IMPORT.PDE 
 
  This problem constructs two non-coplanar spheres inside a box using an extrusion  
  surface generated by TWOZ_EXPORT.PDE , which must be run before this problem. 
  
  The domain consists of three layers. 
    layer 1 is the space below the spheres 
    layer 2 contains the sphere bodies, and is of zero thickness outside the spheres 
    layer 3 is the space above the spheres 
  The sphere interiors are Void, and are thus excluded from analysis. You could just as 
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  well fill them with material if you wanted to model the insides. 
  The bounding surfaces of layer 2 are specified as a default surface read from a  
  TRANSFER , over-ridden by regional expressions within  the (X,Y) extent of each
sphere. 
  
  Click "Controls->Domain Review"  to watch the mesh construction process. 
  
  See  TWOZ_DIRECT.PDE  and TWOZ_PLANAR.PDE  for other methods of treating spheres  
  with centers on differing Z coordinates. 
  
}  
   
title 'Two Spheres in 3D'  
   
coordinates  
    cartesian3  
   
variables  
    u  
   
definitions  
    { dielectric constant of box filler (vacuum?) } 
    K = 1     
    box = 1 { bounding box size }  
   
    { read sphere specs from file, to guarantee
      that they are the same as those in surfgen }  
    #include "sphere_spec.inc"  
   
    { sphere shape functions }  
    sphere1_shape = SPHERE ((x1,y1,0),R1)  
    sphere2_shape = SPHERE ((x2,y2,0),R2)  
  
    { read dividing surface generated by surfgen
script }  
    TRANSFER("twoz_export_output/
two_sphere.xfr",zbottom)  
    ztop = zbottom  
   
equations  
    U: div(K*grad(u))  = 0  
   
extrusion  
    surface "box_bottom"  z=-box  
    surface "sphere_bottoms"  z = zbottom  
    surface "sphere_tops"  z = ztop  
    surface "box_top" z=box  
 
boundaries  
    {insulating boundaries top and bottom }      
    surface "box_bottom" natural(u) = 0  
    surface "box_top" natural(u) = 0    

    Region 1  { The bounding box }  
        start(-box,-box) line to (box,-box) to (box,box) to (-box,box) to close  
   
    limited region 2  { sphere 1 }  
        mesh_spacing = R1/5         { force a dense mesh on the sphere }  
        zbottom = Z1-sphere1_shape  { shape of surface 2 in sphere 1}  
        ztop = Z1+sphere1_shape     { shape of surface 3 in sphere 1}  
        layer 2 void  
        surface 2 value(u)=V1       { specify sphere1 voltage on top and bottom }  
        surface 3 value(u)=V1  
        start  (x1+R1,y1)  
            arc(center=x1,y1) angle=360  
   
    limited region 3  { sphere 2 }  
        mesh_spacing = R2/5         { force a dense mesh on the sphere }  
        zbottom = Z2-sphere2_shape  { shape of surface 2 in sphere 2}  
        ztop = Z2+sphere2_shape     { shape of surface 3 in sphere 2}  
        layer 2 void  
        surface 2 value(u)=V2       { specify sphere2 voltage on top and bottom }  
        surface 3 value(u)=V2  
        start  (x2+R2,y2)  
            arc(center=x2,y2) angle=360  
   
plots  
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    grid(x,y,z)  
    grid(x,z) on y=y1  paintregions as "Y-cut through lower sphere"  
    contour(u) on y=y1  as "Solution on Y-cut through lower sphere"  
    grid(x,z) on y=y2  paintregions as "Y-cut through upper sphere"  
    contour(u) on y=y2  as "Solution on Y-cut through upper sphere"  
    grid(x*sqrt(2),z) on x-y=0  paintregions  as "Diagonal cut through both spheres"  
    contour(u) on x-y=0  as "Solution on Diagonal cut through both spheres"  
   
end  
  

5.2.2.34 twoz_export

{ TWOZ_EXPORT.PDE 
 
  This script uses plate-bending equations to generate a surface that 
  passes through the waist of two spheres of differing Z-coordinates. 
  The surface is exported with TRANSFER  and read into 3D problem 
  TWOZ_IMPORT.PDE  as the layer-dividing surface. 
  (See "Samples | Applications | Stress | Fixed_Plate.pde"  for notes on 
  plate-bending equations.) 
 
}  
title 'Generating extrusion surfaces'  
  
variables  
    U,V  
  
definitions  
    box = 1  { bounding box size }  
  
    { read sphere specs from file, to guarantee 
      the same values as later including script }  
    #include "sphere_spec.inc"  
  
    ! penalty factor to force boundary compliance 
    big = 1e6   
    ztable = U  
  
equations  
    U:  del2(U) = V  
    V:  del2(V) = 0  
  
boundaries  
   Region 1  { The bounding box }  
     start(-box,-box)  
     line to (box,-box) to (box,box) to (-box,box) to close  
  
   Region 2    { sphere 1 }  
     ztable = Z1            { force a clean table value inside sphere }  
     start  (x1+1.01*R1,y1)  
     mesh_spacing = R1/5    { force a dense mesh on the sphere }  
     load(U) = 0  load(V) = big*(U-Z1)  
     arc(center=x1,y1) angle=360  
  
   Region 3     { sphere 2 }  
     ztable = Z2  
     start  (x2+1.01*R2,y2)  
     mesh_spacing = R2/5    { force a dense mesh on the sphere }  
     load(U) = 0  load(V)= big*(U-Z2)  
     arc(center=x2,y2) angle=360  
  
plots  
    elevation(U) from(-box,-box) to (box,box)  
    elevation(ztable) from(-box,-box) to (box,box)  
    contour(U)  
    surface(U)  
    contour(ztable) zoom(x1-1.3*R1, y1-1.3*R1, 2.6*R1,2.6*R1)  
    contour(ztable) zoom(x2-1.3*R2, y2-1.3*R2, 2.6*R2,2.6*R2)  
  
    transfer(ztable) file = "two_sphere.xfr"  
  
end  
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5.2.2.35 twoz_planar

{ TWOZ_PLANAR.PDE 
 
  This problem constructs two spheres inside a box by constructing multiple planar 
  extrusion layers. 
  It presents an alternate method for comparison to that of TWOZ_EXPORT.PDE  and
TWOZ_IMPORT.PDE . 
   
  The domain consists of five layers. 
    layer 1 is the space below the lower sphere 
    layer 2 contains the lower sphere body, and is of zero thickness outside the sphere 
    layer 3 is the space between the spheres 
    layer 4 contains the upper sphere body, and is of zero thickness outside the sphere 
    layer 5 is the space above the upper sphere 
  The sphere interiors are Void, and are thus excluded from analysis. You could just as 
  well fill them with material if you wanted to model the insides. 
     
  The bounding surfaces of layers 2 and 4 are specified as planes at the level of the
sphere 
  center, over-ridden by regional expressions within  the (X,Y) extent of each sphere. 
  
  Click "Controls->Domain Review"  to watch the mesh construction process. 
  
}  
   
title 'Two Spheres in 3D - planar formulation'  
   
coordinates  
    cartesian3  
   
variables  
    u  
   
definitions  
    K = 1       { dielectric constant of box filler (vacuum?) }  
    box = 1     { bounding box size }  
   
    { read sphere specs from file, to guarantee that they are the same as those in
surfgen }  
    #include "sphere_spec.inc"  
   
    { sphere shape functions }  
    sphere1_shape = SPHERE ((x1,y1,0),R1)  
    sphere2_shape = SPHERE ((x2,y2,0),R2)  
  
    zbottom1 = z1  
    ztop1 = z1  
    zbottom2 = z2  
    ztop2 = z2  
       
equations  
    U: div(K*grad(u))  = 0  
   
extrusion  
    surface "box_bottom"        z = -box  
    surface "sphere1_bottom"    z = zbottom1  
    surface "sphere1_top"       z = ztop1  
    surface "sphere2_bottom"    z = zbottom2  
    surface "sphere2_top"       z = ztop2  
    surface "box_top"           z = box  
   
boundaries  
    surface "box_bottom" natural(u) = 0  {insulating boundaries top and bottom }  
    surface "box_top" natural(u) = 0  
   
    Region 1  { The bounding box }  
        start(-box,-box) line to (box,-box) to (box,box) to (-box,box) to close  
   
    limited region 2  { sphere 1 }  
        mesh_spacing = R1/5         { force a dense mesh on the sphere }  
        zbottom1 = Z1-sphere1_shape { shape of surface 2 in sphere 1}  
        ztop1 = Z1+sphere1_shape    { shape of surface 3 in sphere 1}  
        layer 2 void  
        surface 2 value(u)=V1       { specify sphere1 voltage on top and bottom }  
        surface 3 value(u)=V1  
        start  (x1+R1,y1)  
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            arc(center=x1,y1) angle=360  
   
    limited region 3  { sphere 2 }  
        mesh_spacing = R2/5         { force a dense mesh on the sphere }  
        zbottom2 = Z2-sphere2_shape { shape of surface 2 in sphere 2}  
        ztop2 = Z2+sphere2_shape    { shape of surface 3 in sphere 2}  
        layer 4 void  
        surface 4 value(u)=V2       { specify sphere2 voltage on top and bottom }  
        surface 5 value(u)=V2  
        start  (x2+R2,y2)  
            arc(center=x2,y2) angle=360  
   
plots  
    grid(x,y,z)  
    grid(x,z) on y=y1  paintregions as "Y-cut through lower sphere"  
    contour(u) on y=y1  as "Solution on Y-cut through lower sphere"  
    grid(x,z) on y=y2  paintregions as "Y-cut through upper sphere"  
    contour(u) on y=y2  as "Solution on Y-cut through upper sphere"  
    grid(x*sqrt(2),z) on x-y=0  paintregions  as "Diagonal cut through both spheres"  
    contour(u) on x-y=0  as "Solution on Diagonal cut through both spheres"  
   
end  
  

5.2.3 Accuracy

5.2.3.1 forever

{  FOREVER.PDE   
 
   This problem displays the behaviour of FlexPDE in time dependent problems. 
   We posit a field with paraboloidal shape and with amplitude sinusoidal 
   in time.  We then derive the source function necessary to achieve this 
   solution, and follow the integration for ten cycles, comparing the solution 
   to the known analytic solution.  
 
}  
   
title 'A forever test'  
   
variables  
    Temp (threshold=0.1)  
   
definitions  
    K = 1  
    eps = 0  
    shape = (1-x^2-y^2)  
    Texact = shape*sin(t)  
    source = shape*cos(t) - div(K*grad(shape))*sin(t)  
   
initial values  
    Temp = Texact  
   
equations  
    Temp : div(K*grad(Temp)) + source = dt(Temp)  
   
boundaries  
    Region 1  
        start(-1,-1)  
        value(Temp)=Texact  
        line to (1,-1) to (1,1) to (-1,1) to close  
   
time 0 to 20*pi by 0.01  
   
monitors  
    for cycle=5  
        contour(Temp)         { show the Temperature during solution }  
   
plots                         { write these plots to the .PGX file }  
    for t = pi/2 by pi to endtime  
        contour(Temp)  
        surface(Temp)  
        contour(Temp-Texact) as "Error"  
        vector(-dx(Temp),-dy(Temp)) as "Heat Flow"  
   
histories  
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    history(Temp) at (0,0) (0.5,0.5) integrate  
    history(Temp-Texact) at (0,0) (0.5,0.5)  
   
end  
  

5.2.3.2 gaus1d

{ GAUS1D.PDE 
 
  This test solves a 1D heat equation with a Gaussian solution and compares 
  actual deviations from the exact solution with the error estimates made by 
  FlexPDE. 
  The problem runs a set of ERRLIM  levels and plots the history of the comparison. 
 
}  
title '1D Accuracy Test - Gaussian'

select
    ngrid=10
    errlim = staged(1e-2, 1e-3, 1e-4, 1e-5, 1e-6)

coordinates
    cartesian1

Variables
    u

definitions
    k = 1
    w=0.25
    u0 = exp(-x^2/w^2)
    s = -dxx(u0)
    RMS_error = sqrt(integral((u-u0)^2)/sqrt(integral(u0^2)))

    left=point(-1)
    right=point(1)

equations
    U: div(K*grad(u)) +s = 0

boundaries
    Region 1
        start left  point value(u)=u0
        line to right  point value(u)=u0

monitors
    elevation(u) from left to right

plots
    elevation(u,u0) from left to right report(errlim)
    elevation(u-u0) from left to right as "absolute error"  report(errlim)
    elevation(-div(grad(u)),s) from left to right report(errlim)

histories
    history(RMS_error, errlim) log

end  
  

5.2.3.3 gaus2d

{  GAUS2D.PDE  
 
  This test solves a 2D heat equation with a Gaussian solution and compares 
  actual deviations from the exact solution with the error estimates made by  
  FlexPDE. 
  The problem runs a set of ERRLIM  levels and plots the history of the comparison. 
}  
   
title '2D Accuracy Test - Gaussian'
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variables
    u
 
select
    ngrid=5
    errlim = staged(1e-2, 1e-3, 1e-4, 1e-5)
 
definitions
    k = 1
    h = 0.1
    w = 0.2    ! gaussian width
    u0 = exp(-(x^2+y^2)/w^2)
    source = -(dxx(u0)+dyy(u0))
    uxx_exact = dxx(u0)
    RMS_error = sqrt(integral((u-u0)^2)/sqrt(integral(u0^2)))
    fx = -2*x*u0/w^2
    fy = -2*y*u0/w^2
equations
    U: div(K*grad(u)) + source = 0
 
boundaries
    Region 1
        start(-1,-1)  natural(u)=-fy line to (1,-1)
        value(u)=u0 line to (1,1)
        natural(u)=fy  line to (-1,1)
        value(u) = u0 line to close
 
monitors
    grid(x,y)
    contour(u)
 
plots
    grid(x,y)
    contour(u)
    elevation(u,u0) from(-1,0) to (1,0)
    elevation(u-u0) from(-1,0) to (1,0)
    elevation(dxx(u),uxx_exact) from(-1,0) to (1,0)
    elevation(dxx(u)+dyy(u),-source) from(-1,0) to (1,0)
    contour(dxx(u)) contour(dxy(u)) contour(dyy(u))
    contour(space_error(u))
    contour(u-u0)
 
histories
    history(RMS_error, errlim) LOG
   
end  
  

5.2.3.4 gaus3d

{ GAUS3D.PDE  
 
  This test solves a 3D heat equation with a known Gaussian solution and compares 
  actual deviations from the exact solution with the error estimates made by  
  FlexPDE. 
  The problem runs a set of ERRLIM  levels and plots the history of the comparison. 
 
  The equation is solved in two forms, letting FlexPDE compute the correct source, 
  and imposing analytic derivatives for the source. 
}  
   
title '3D Accuracy Test - Gaussian'
 
coordinates
    cartesian3
 
select
    ngrid = 5
    errlim = staged(1e-2, 1e-3, 1e-4, 1e-5)
 
variables
    u
 
definitions
    long = 1
    wide = 1
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    z1 = -1
    z2 = 1
    w = 0.25  ! gaussian width
    uexact = exp(-(x^2+y^2+z^2)/w^2)
    source = -(dxx(uexact)+dyy(uexact)+dzz(uexact))  ! let FlexPDE do the differentials
    flux = -grad(u)
    RMS_error = sqrt(integral((u-uexact)^2)/sqrt(integral(uexact^2)))

initial values
    u = 0.
 
equations
    U:    div(flux) = source 
 
extrusion z = z1,z2
 
boundaries
    surface 1 value(u)=uexact      { fix bottom surface temp }
    surface 2 value(u)=uexact      { fix top surface temp }
 
    Region 1                    { define full domain boundary in base plane }
       start(-wide,-wide)
         value(u) = uexact       { fix all side temps }
         line to (wide,-wide)   { walk outer boundary in base plane }
           to (wide,wide)
           to (-wide,wide)
           to close
 
monitors
    grid(x,z) on y=0
    contour(uexact) on y=0
    contour(u) on y=0
    contour(u-uexact) on y=0
 
plots
    grid(x,z) on y=0 as "Grid on X-Z cut"
    contour(uexact) on y=0 as "Exact Solution Uexact"
    contour(u) on y=0 as "Numerical Solution U"
    contour(u-uexact) on y=0 as "Actual error U-Uexact"
    elevation(u,uexact) from(-wide,0,0) to (wide,0,0)
    elevation(dx(u),dx(uexact)) from(-wide,0,0) to (wide,0,0)
    elevation(div(flux),source) from(-wide,0,0) to (wide,0,0)

summary
   report(errlim)
   report(RMS_error)
 
histories
   history(RMS_error, errlim) log
   
end  
  

5.2.3.5 sine1d

{ SINE1D.PDE 
 
  This problem compares the solution accuracy for four different levels of ERRLIM .  
 
}  
  
title '1D Accuracy test - Sine'

select
    ngrid=10
    errlim = staged(1e-2, 1e-3, 1e-4, 1e-5)

coordinates
    cartesian1

variables
    u

definitions
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    k = 1
    h = 0.1
    w=0.1
    rs = abs(x)/w
    u0 = sin(rs)/max(rs,1e-18)
    s = -dxx(u0)
    RMS_error = sqrt(integral((u-u0)^2)/sqrt(integral(u0^2)))

equations
    U: div(K*grad(u)) +s = 0

boundaries
    Region 1
        start(-1)  point value(u)=u0
        line to (1)  point value(u)=u0

monitors
    elevation(u) from (-1) to (1)

plots
    elevation(u,u0) from (-1) to (1)
    elevation(u-u0) from (-1) to (1)
    elevation(dx(u),dx(u0)) from (-1) to (1)
    elevation(-div(grad(u)),s) from (-1) to (1)

histories
    history(RMS_error,errlim) LOG

  
end  
  

5.2.3.6 sine2d

{ SINE2D.PDE 
 
  This problem compares the solution accuracy for four different levels of ERRLIM .  
 
}  
   
title '2D Accuracy Test - Sine'
 
select
    ngrid = 5
    errlim = staged(1e-2, 1e-3, 1e-4, 1e-5)
 
variables
    u
 
definitions
    k = 1
    h = 0.1
    w=0.1
    rs = r/w
    u0 = sin(rs)/rs
    s = -dxx(u0)-dyy(u0)
    RMS_error = sqrt(integral((u-u0)^2)/sqrt(integral(u0^2)))
  
equations
    U: div(K*grad(u)) +s = 0
 
boundaries
    Region 1
        start(-1,-1)  value(u)=u0
        line to (1,-1) to (1,1) to (-1,1) to close
 
monitors
    grid(x,y)
    contour(u)
 
plots
    grid(x,y)
    contour(u)
    elevation(u,u0) from(-1,0) to (1,0)
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    elevation(u-u0) from(-1,0) to (1,0)
    elevation(dx(u),dx(u0)) from(-1,0) to (1,0)
    elevation(dxx(u),dxx(u0)) from(-1,0) to (1,0)
    elevation(dxx(u)+dyy(u),-s) from(-1,0) to (1,0)
    contour(dxx(u)) contour(dxy(u)) contour(dyy(u))
 
histories
    history(RMS_error, errlim) LOG
   
end  
  

5.2.3.7 sine3d

{ SINE3D.PDE 
    
  This problem compares the solution accuracy for three different levels of ERRLIM .  
 
}  
   
title '3D Accuracy Test - Sine'
 
coordinates
    cartesian3
 
select
    ngrid = 5
    errlim = staged(1e-2, 3e-3, 1e-3, 3e-4, 1e-4)
 
variables
    u
 
definitions
    long = 1
    wide = 1
    z1 = -1
    z2 = 1
    w=0.1
    rs = r/w
    uex = sin(rs)/rs
    s = -(dxx(uex)+dyy(uex)+dzz(uex))
    RMS_error = sqrt(integral((u-uex)^2)/sqrt(integral(uex^2)))
 
equations
    U:    div(grad(u)) + s = 0
 
extrusion z = z1,z2
 
boundaries
    surface 1 value(u)=uex      { fix bottom surface temp }
    surface 2 value(u)=uex      { fix top surface temp }
 
    Region 1                { define full domain boundary in base plane }
       start(-wide,-wide)
         value(u) = uex         { fix all side temps }
         line to (wide,-wide)   { walk outer boundary in base plane }
           to (wide,wide)
           to (-wide,wide)
           to close
 
monitors
    grid(x,z) on y=0 as "Grid on X-Z cut"
    contour(uex) on y=0 as "Exact Solution Uex"
    contour(u) on y=0 as "Numerical Solution U"
    contour(u-uex) on y=0 as "Actual error U-Uex"
 
plots
    grid(x,z) on y=0 as "Grid on X-Z cut"
    contour(uex) on y=0 as "Exact Solution Uex"
    contour(u) on y=0 as "Numerical Solution U"
    contour(u-uex) on y=0 as "Actual error U-Uex"
    summary
        report(errlim) as "Requested error"
        report(RMS_error) 

histories
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    history(RMS_error, errlim) LOG 

   
end  
  

5.2.4 Arrays+Matrices

5.2.4.1 array s

{ ARRAYS.PDE   
 
  This example demonstrates a few uses of data ARRAYS . 
   
}  
  
title 'ARRAY test'  
  
Variables  
     u  
  
definitions  
     a = 1  
  
     ! literal data specification 
     v = array(0,1,2,3,4,5,6,7,8,9,10)  
     ! literal data specification with incrementation 
     w = array(0 by 0.1 to 10)  
     ! functional definition 
     alpha =array for x(0 by 0.1 to 10)  : sin(x)+1.1  
     ! construction of a new array by arithmetic operations 
     beta = sin(w)+1.1  { this results in the same data as alpha }  
     gamma = sin(v)+0.1 { this array is sparsely defined }  
  
     rad = 0.1  
     s = 0  
  
equations  
     u:  div(a*grad(u)) + s  = 0           { a heat equation }  
  
boundaries  
     region 1  
        start(0,0)  
            value(u)=0  
        line to (2,0) to (2,2) to (0,2) to close  
  
plots  
    elevation(alpha)  
    elevation(alpha,beta) vs w   
    elevation(gamma) vs v   
summary  
    report(sizeof(w))  
    
end  
  

5.2.4.2 array _boundary

{ ARRAY_BOUNDARY.PDE   
 
  This problem demonstrates the use of data ARRAYS  in boundary definition. 
  Coordinate arrays are constructed by functional array definition 
  and joined in a spline fit to form the system boundary. 
}  
  
title 'ARRAY_BOUNDARY test'  
  
variables  
     u  
  
definitions  
     a = 1  
     rad = 1  
     ! construct x and y coordinates on a semicircle 
     xb =array for ang(-pi/2 by pi/10 to pi/2)  : rad*cos(ang)  
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     yb =array for ang(-pi/2 by pi/10 to pi/2)  : rad*sin(ang)  
     ! multiplying an array by a constant 
     xba = 10*xb  
     yba = 10*yb  
     ! adding a constant to an array 
     xbb = xba+11  
  
     s = 1  
  
equations  
     u:  div(a*grad(u)) + s  = 0;           { a heatflow equation }  
  
boundaries  
    region 1        { a half-circle built of line segments }  
        start(0,-10*rad)  
        value(u)=0  
          line list (xba, yba)  
        natural(u)=0  
          line to close  
    region 2        { a half-circle built of spline segments }  
        start(11,-10*rad)  
        value(u)=0  
          spline list (xbb, yba)  
        natural(u)=0  
          line to close  
  
plots  
    grid(x,y)  
    contour(u) painted  
    surface(u)  
  
end  
  
  
  

5.2.4.3 m atrices

{ MATRICES.PDE 
 
  This example demonstrates a few uses of data MATRICES  
}  
  
title 'MATRIX test'  
  
definitions  
  
    { -- literal matrix definition -- }  
    m1 = matrix((1,2,3),(4,5,6),(7,8,9))  
  
    { -- functional matrix definition -- }  
    { a 79x79 diagonal matrix of amplitude 10: }  
    m2 = matrix for x(0.1 by 0.1 to 5*pi/2)      
                for y(0.1 by 0.1 to 5*pi/2)       
                :   if(x=y) then 10 else 0  
    { a 79x79 matrix of sin products: }  
    m3 = matrix for x(0.1 by 0.1 to 5*pi/2)       
                for y(0.1 by 0.1 to 5*pi/2)      
                :    sin(x)*sin(y) +1  
  
    { -- literal array definition -- }  
    { a 101-element array of constants: }  
    v = array [79] (0.1 by 0.1 to 5*pi/2)     
  
    ! multiply V by matrix M3 
    p = m3**v  
  
    ! multiply V by matrix M3, scale by 1e5 and take the sine of each entry 
    q = sin((m3**v)/100000)  
  
    rad = 0.1  
    s = 0  
  
    ! solve m3*B = P 
    b = p // m3  
  
{ no variables }  
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{ no equations }  
  
boundaries  
    region 1  
        start(0,0)  
          line to (2,0) to (2,2) to (0,2) to close  
  
{ no monitors }  
  
plots  
  
    elevation(q) vs v as "array vs array"  
    elevation(q)  as "array vs index"  
    contour(m3) vs v vs v  as "matrix vs two arrays"  
    contour(m3) vs v as "matrix vs array and index"  
  
    contour(m2) as "matrix vs indexes"  
    surface(m3*m2) as "element product"  
    surface(m3+m2) as "element sum"  
    surface(m3-m2) as "element difference"  
    surface(m3**m2) as "matrix product"  
    elevation(b,v) as "matrix inverse times array"  
    elevation(m3**b,p)  as "matrix times array and array"  
  
    summary ("selected values")  
    report m3[1,1]  
    report m3[3,4]  
    report v[1]  
    report q[1]  
  
end  
  
  
  

5.2.4.4 m atrix_boundary

{ MATRIX_BOUNDARY.PDE 
 
  This example demonstrates the use of a data MATRIX  in boundary definition. 
  Coordinates are constructed by functional matrix definition, 
  rotated by multiplication by a rotation matrix 
  and joined in a spline fit to form the system boundary. 
}  
  
title 'MATRIX_BOUNDARY test'  
  
Variables  
    u  
  
definitions  
    a = 1  
    rad = 1  
    ! build a 2 x 21 matrix of x and y coordinates 
    mb =matrix for i(1,2)   
               for ang(-pi/2 by pi/20 to pi/2)    
               : if(i=1) then rad*cos(ang) else rad*sin(ang)  
    ! build a 2 x 2 rotation matrix 
    rota=45  
    rot = matrix[2,2] ((cos(rota degrees), -sin(rota degrees)),  
                        (sin(rota degrees), cos(rota degrees)))  
    ! rotate the coordinate list 
    mbr = rot**mb  
  
    s = 1  
  
equations  
    u:  div(a*grad(u)) + s  = 0;           { the heatflow equation }  
  
boundaries  
    region 1  
      ! start curve at first point of rotated coordinates 
      start(mbr[1,1], mbr[2,1])  
          value(u)=0  
          ! spline fit the 21-point table 
          spline list (mbr)  
          natural(u)=0  
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          line to close  
  
plots  
    contour(u) painted  
    surface(u)  
  
end  
  
  
  

5.2.4.5 wave_boundary

{ WAVE_BOUNDARY.PDE

  This problem demonstrates the use of data ARRAYS in boundary definition.
  Coordinate arrays are constructed by functional array definition
  and joined in a spline fit to form the system boundary.
}

title 'wave boundary'

definitions
  base=2
  ysine = array for p(0 by 0.1 to 10): sin(2*p)+base
  xsine = array for p(0 by 0.1 to 10): p

boundaries
  Region 1
    start(0,0)
    line to (0,base)
    spline list(xsine,ysine)
    line to (10,0) to close

plots
  grid(x,y)

end

5.2.5 CAD_Import

5.2.5.1 arrow_OBJim port

{ ARROW_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS section to tie the name stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'arrow' that will be bound to a material property set.
}
title 'Import OBJ Arrow'

coordinates cartesian3

materials 'arrow' : k=1

boundaries import OBJ 'arrow.obj'

plots grid(x,y,z)

end
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5.2.5.2 boxinbox_OBJim port

{ BOXINBOX_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'boxinbox' that will be bound to a material property set.
    two groups named 'inner' and 'outer' that will be bound to BC sets.
}

title 'Import OBJ box-in-box'

coordinates cartesian3

variables u

select regrid=off

materials
  'boxinbox' : k=1

boundary conditions
  'inner' : value(u)=1
  'outer': value(u)=10

equations u: div(k*grad(u))=0

boundaries import OBJ 'boxinbox.obj'

plots
  grid(x,y,z)
  grid(y,z) on x=0
  contour(u) on x=0

end

5.2.5.3 canincan_OBJim port

{ CANINCAN_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'canincan' that will be bound to a material property set.
    two groups named 'inside' and 'outside' that will be bound to BC sets.
}

title 'Import OBJ can-in-can'

coordinates cartesian3

variables u

select regrid=off
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materials
  'canincan' : k=1

boundary conditions
  'inside' : value(u)=1
  'outside': value(u)=10

equations u: div(k*grad(u))=0

boundaries import OBJ 'canincan.obj'

plots
  grid(x,y,z)
  grid(x,z) on y=0
  contour(u) on y=0

end

5.2.5.4 cube_OBJim port

{ CUBE_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'cube' that will be bound to a material property set.
    two groups named 'left' and 'right' that will be bound to BC sets.
}
title 'Import OBJ Cube'

coordinates cartesian3

variables u

materials 'cube' : k=1

boundary conditions
  'left'  : value(u)=1
  'right' : value(u)=10

equations u: div(k*grad(u))=0

boundaries import OBJ 'cube.obj'

plots
  grid(x,y,z)
  grid(x,y) on z = 0.5
  contour(u) on z = 0.5
  elevation(u) from (0,0.5,0.5) to (1,0.5,0.5)

end 

5.2.5.5 cube2_OBJim port

{ CUBE2_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.
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  The OBJ file contains :
    two objects named 'cube1' and 'cube2' that will be bound to material sets.
    three groups named 'left', 'middle', and 'right' that will be bound to BC sets.
}
title 'Import OBJ Cube2'

coordinates cartesian3

variables u

materials
  'cube1' : k = 1
  'cube2' : k = 5

boundary conditions
  'left'   : value(u) = 1
  'middle' : natural(u) = 0
  'right'  : value(u) = 10

equations u: div(k*grad(u))=0

boundaries import OBJ 'cube2.obj'

plots
  grid(x,y,z)
  grid(x,y) on z = 0.5
  contour(u) on z = 0.5
  elevation(u) from (0,0.5,0.5) to (2,0.5,0.5)

end

5.2.5.6 cube2_validate

{ CUBE2_VALIDATE.PDE

  This sample validates the OBJ import script IMPORT_OBJ_CUBE2.PDE
  by showing that the same answer is obtained when constructing the
  domain within FlexPDE instead of importing the OBJ mesh.
}
title 'Validate Import OBJ Cube2'

coordinates cartesian3

variables u

select ngrid = 2

materials
  'cube1' : k = 1
  'cube2' : k = 5

boundary conditions
  'left' : value(u) = 1
  'right': value(u) = 10

equations u: div(k*grad(u))=0

extrusion z = 0,1

boundaries

region 1
  use material 'cube1'
  start(0,0)
  line to (1,0) to (1,1) to (0,1) use bc 'left'



FlexPDE 7 : Sample Problems517

  line to close

region 2
  use material 'cube2'
  start(2,1)
  line to (1,1) to (1,0) to (2,0) use bc 'right'
  line to close

plots
  grid(x,y,z)
  grid(x,y) on z = 0.5
  contour(u) on z = 0.5
  elevation(u) from (0,0.5,0.5) to (2,0.5,0.5)

end 

5.2.5.7 cubes_bigsm all_OBJim port

{ CUBES_BIGSMAll_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    two objects named 'big' and 'small' that will be bound to material sets.
    three groups named 'left', 'middle', and 'right' that will be bound to BC sets.
}
title 'Import OBJ Cubes Bigsmall'

coordinates cartesian3

variables u

select
regrid=off
refineobj=off ! do not refine the initial OBJ mesh

materials
  'small': k=1
  'big'  : k=2

boundary conditions
  'bottom'  : value(u)=1
  'middle': contact(u)=jump(u)/0.5
  'top' : value(u)=10

equations u: div(k*grad(u))=0

boundaries import OBJ 'cubes_bigsmall.obj'

plots
  grid(x,y,z)
  grid(y,z) on x=4
  grid(x,z) on y=3
  contour(u) on x=4
  contour(u) on y=3
end 

5.2.5.8 cubes_bigsm all_validate

{ CUBES_BIGSMALL_VALIDATE.PDE
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  This sample validates the OBJ import script IMPORT_OBJ_CUBES_BIGSMALL.PDE
  by showing that the same answer is obtained when constructing the
  domain within FlexPDE instead of importing the OBJ mesh.

  Note : the figure was turned on end only to make the construction easier.
}
title 'Validate Import OBJ Cubes Bigsmall'

coordinates cartesian3

variables u

select regrid=off ngrid=2

materials
  'small': k=1
  'big'  : k=2

boundary conditions
  'left'  : value(u)=1
  'middle': contact(u)=jump(u)/0.5
  'right' : value(u)=10

equations u: div(k*grad(u))=0

extrusion z=0,5,7

boundaries

limited region 1
  surface 1 use bc 'left'
  layer 1 use material 'big'
  start(0,0)
  line to (5,0) to (5,5) to (0,5) to close

limited region 2
  surface 2 use bc 'middle'
  surface 3 use bc 'right'
  layer 2 use material 'small'
  start(3,2)
  line to (5,2) to (5,4) to (3,4) to close

plots
  grid(x,y,z)
  grid(y,z) on x=4
  grid(x,z) on y=3
  contour(u) on x=4
  contour(u) on y=3
end 

5.2.5.9 gourd_OBJim port

{ GOURD_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.

  The OBJ file contains :
    mesh vertices and faces with no named objects or groups.
}
title 'Import OBJ Gourd'

coordinates cartesian3

boundaries import OBJ 'gourd.obj'

plots grid(x,y,z)
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end 

5.2.5.10 helix_OBJim port

{ HELIX_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'helix' that will be bound to a material property set.
    two groups named 'top', and 'bottom' that will be bound to BC sets.
}
title 'Import OBJ Helix'

coordinates cartesian3

select order=2

variables U V W

definitions
    E           { Young's Modulus }
    nu = 0.3    { Poisson's Ratio }

    { define the constitutive relations }
    G = E/((1+nu)*(1-2*nu))
    C11 = G*(1-nu)
    C12 = G*nu
    C13 = G*nu
    C22 = G*(1-nu)
    C23 = G*nu
    C33 = G*(1-nu)
    C44 = G*(1-2*nu)/2

    { Strains }
    ex = dx(U)
    ey = dy(V)
    ez = dz(W)
    gxy = dy(U) + dx(V)
    gyz = dz(V) + dy(W)
    gzx = dx(W) + dz(U)

    { Stresses }
    Sx  =  C11*ex + C12*ey + C13*ez
    Sy  =  C12*ex + C22*ey + C23*ez
    Sz  =  C13*ex + C23*ey + C33*ez
    Txy =  C44*gxy
    Tyz =  C44*gyz
    Tzx =  C44*gzx

    { find mean translation and rotation }
    Vol = Integral(1)
    Tx = integral(U)/Vol                    { X-motion }
    Ty = integral(V)/Vol                    { Y-motion }
    Tz = integral(W)/Vol                    { Z-motion }
    Rz = 0.5*integral(dx(V) - dy(U))/Vol    { Z-rotation }
    Rx = 0.5*integral(dy(W) - dz(V))/Vol    { X-rotation }
    Ry = 0.5*integral(dz(U) - dx(W))/Vol    { Y-rotation }

    { displacements with translation and rotation removed }
    { This is necessary only if all boundaries are free }
    Up = U - Tx + Rz*y - Ry*z
    Vp = V - Ty + Rx*z - Rz*x
    Wp = W - Tz + Ry*x - Rx*y
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    { scaling factors for displacement plots }
    Mx = 0.1*globalmax(magnitude(y,z))/globalmax(magnitude(Vp,Wp))
    My = 0.1*globalmax(magnitude(x,z))/globalmax(magnitude(Up,Wp))
    Mz = 0.1*globalmax(magnitude(x,y))/globalmax(magnitude(Up,Vp))
    Mt = 0.2*globalmax(magnitude(x,y,z))/globalmax(magnitude(Up,Vp,Wp))

equations
    U:  dx(Sx) + dy(Txy) + dz(Tzx) = 0   { the U-displacement equation }
    V:  dx(Txy) + dy(Sy) + dz(Tyz) = 0   { the V-displacement equation }
    W:  dx(Tzx) + dy(Tyz) + dz(Sz) = 0   { the W-displacement equation }

materials 'helix' : E  = 2.0e11  { Young's Modulus for Steel (N/M^2) }

boundary conditions
    'top'    : natural(w) = -1e-3
    'bottom' : natural(w) = 1e-3

boundaries import OBJ 'helix.obj'

plots
    contour(Up) on y=0 as "X-displacement"
    contour(Vp) on x=0 as "Y-displacement"
    contour(Wp) on y=0 as "Z-displacement"
    grid(x+Mt*Up,y+Mt*Vp,z+Mt*Wp)  as "Shape"
    grid(x+My*Up,z+My*Wp) on y=0 as "XZ Shape"
    grid(y+Mx*Vp,z+Mx*Wp) on x=0 as "YZ Shape"
    contour(Sx) on y=0 as "X-stress"
    contour(Sy) on y=0 as "Y-stress"
    contour(Sz) on y=0 as "Z-stress"
    contour(Txy) on y=0 as "XY Shear stress"
    contour(Tyz) on y=0 as "YZ Shear stress"
    contour(Tzx) on y=0 as "ZX Shear stress"

end 

5.2.5.11 horn_OBJim port

{ HORN_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'horn' that will be bound to a material property set.
    four groups named 'tip1', 'tip2', 'tip3', and 'base' that will be bound to BC sets.
}
title 'Import OBJ Horn'

coordinates cartesian3

variables u

materials 'horn' : k = 10

boundary conditions
  'tip1' : value(u) = 1
  'tip2' : value(u) = 10
  'tip3' : value(u) = 100
  'base' : natural(u) = -10

equations u: div(k*grad(u))=0

boundaries import OBJ 'horn.obj'

plots
  grid(x,y,z)
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  grid(x,z) on y=0
  contour(u) on y=0

end 

5.2.5.12 torus_OBJim port

{ TORUS_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'torus' that will be bound to a material property set.
    two groups named 'patch1' and 'patch2' that will be bound to BC sets.
}
title 'Import OBJ Torus'

coordinates cartesian3

select regrid=off

variables u

boundary conditions
  'patch1' : value(u) = 1
  'patch2' : value(u) = 10

materials 'torus' : k=1

equations u: div(k*grad(u))=0

boundaries import OBJ 'torus.obj'

plots
  grid(x,y,z)
  grid(x,z) on y = 0
  contour(u) on x = -y
  contour(u) on z = 0

end 

5.2.5.13 tubefaces_OBJim port

{ TUBEFACES_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'tube' that will be bound to a material property set.
    two groups named 'top' and 'bottom' that will be bound to BC sets.

  This mesh has some square cells on the sides that FlexPDE will
  automatically split into triangular cells during the mesh import.
}
title 'Import OBJ Tubefaces'

coordinates cartesian3
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variables u

boundary conditions
  'bottom' : value(u) = 1
  'top'    : value(u) = 10

materials 'tube' : k=1

equations u: div(k*grad(u))=0

boundaries import OBJ 'tube_faces.obj'

plots
  grid(x,y,z)
  grid(x,z) on y=0
  contour(u) on y=0

end 

5.2.5.14 wineglass_OBJim port

{ WINEGLASS_OBJIMPORT.PDE

  This sample demonstrates the import of a bounding mesh in OBJ file format.
  It uses the MATERIALS and BOUNDARY CONDITIONS sections to tie names stated
  in the OBJ file to FlexPDE properties.

  The OBJ file contains :
    one object named 'glass' that will be bound to a material property set.
    two groups named 'inside' and 'bottom' that will be bound to BC sets.
}
title 'Import OBJ Wineglass'

coordinates cartesian3

variables u

select

  order=2      ! select quadratic variable interpolation.
  refineobj=off

materials 'glass' : k=1

boundary conditions
  'inside' : value(u) = 1
  'bottom' : value(u) = 10

initial values
  u = 1

equations u: div(k*grad(u))=0

boundaries import OBJ 'wineglass.obj'

monitors
  grid(x,y,z)
  grid(x,z) on y=0
  contour(u) on y=0
plots
  grid(x,y,z)
  grid(x,z) on y=0
  contour(u) on y=0

end 
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5.2.6 Constraints

5.2.6.1 3d_constraint

{ 3D_CONSTRAINT.PDE 
 
 This problem demonstrates the specification of region-specific CONSTRAINTS  in 3D. 
 This is a modification of problem  3D_BRICKS.PDE . 
 We apply a constraint on the integral of temperature in a single region/layer
compartment.  
 For validation, we define a check function that has nonzero value only in the selected 
    compartment and compare its integral to the region-selection form of the integral  
    statement. 
 Value boundary conditions are applied, so the solution is unique, so the constraint 
    acts as a source or sink to maintain the constrained value, we report 
    the energy lost to the constraining mechanism. 
 
}  
   
   
title '3D constraint'  
   
coordinates  
    cartesian3  
   
variables  
    Tp  
   
definitions  
    long = 1  
    wide = 1  
    K                 
    Q = 10*exp(-x^2-y^2-z^2)              { Thermal source }  
   
    flag22=0    { build a test function for region 2, layer 2 }  
    check22 = if flag22>0 then Tp else 0  
   
initial values  
    Tp = 0.  
   
equations  
    Tp:  div(k*grad(Tp)) + Q = 0  
   
constraints  
    { constrain temperature integral in region 2 of layer 2 }  
    integral(Tp,2,2) = 1        
   
extrusion  
    surface "bottom" z = -long  
      layer 'bottom'  
    surface "middle" z=0  
      layer 'top'  
    surface 'top' z= long     
   
boundaries  
    surface 1 value(Tp)=0   { fix bottom surface temp }  
    surface 3 value(Tp)=0   { fix top surface temp }  
   
    Region 1                { define full domain boundary in base plane }  
       layer 1 k=1          { bottom right brick }  
       layer 2 k=0.1        { top right brick }  
       start(-wide,-wide)  
         value(Tp) = 0          { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2 "Left"         { overlay a second region in left half }  
       layer 1 k=0.2        { bottom left brick }  
       layer 2 k=0.4  flag22=1  { top left brick }  
       start(-wide,-wide)  
         line to (0,-wide)      { walk left half boundary in base plane }  

222
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           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors  
    contour(Tp) on surface z=0  as "XY Temp"  
    contour(Tp) on surface x=0  as "YZ Temp"  
    contour(Tp) on surface y=0  as "ZX Temp"  
    elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"  
    elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"  
    elevation(Tp) from (0,0,-long) to (0,0,long)  as "Z-Axis Temp"  
   
plots  
    contour(Tp) on z=0  as "XY Temp"  
    contour(Tp) on x=0  as "YZ Temp"  
    contour(Tp) on y=0  as "ZX Temp"  
   
    summary  
      report("Compare integral forms in region 2 of layer 2 (should be 1.00):")  
      report(integral(Tp,2,2))        
      report(integral(Tp,"Left","Top"))       
      report(integral(check22))  
      report("-----")  
      report "Constraint acts as an energy sink:"  
      report(integral(Q))       as "Source Integral "  
      report(sintegral(normal(-k*grad(Tp)))) as "Surface integral on total outer surface
"  
      report(integral(Q)-sintegral(normal(-k*grad(Tp)))) as "Energy lost to constraint "
 
   
end  
  

5.2.6.2 3d_surf_constraint

{ 3D_SURF_CONSTRAINT.PDE 
 
  This problem demonstrates the use of CONSTRAINTS  on surface integrals in 3D. 
  This is a modification of problem  3D_BRICKS.PDE . 
  We apply the constraint that the total flux leaving the figure must be 1.0. 
  The constraint acts as an auxilliary energy sink, so we report the amount  
    of energy lost to the constraint. 
 
  See the problems in the  APPLICATIONS | CONTROL folder for methods 
    that control the input power to achieve the same kind of goal. 
 
}  
   
title '3D Surface Constraint'  
   
select  
    regrid=off  { use fixed grid to speed up demonstration }  
   
coordinates  
    cartesian3  
   
variables  
    Tp  
   
definitions  
    long = 1  
    wide = 1  
    K                   { thermal conductivity -- values supplied later }  
    Q = 10*exp(-x^2-y^2-z^2)        { Thermal source }  
   
initial values  
    Tp = 0.  
   
equations  
    Tp:  div(k*grad(Tp)) + Q = 0    { the heat equation }  
  
constraints  
    sintegral(normal(k*grad(Tp))) = 1   { force  total surface integral to 1 }  
   
extrusion  
    surface "bottom" z = -long  
      layer 'bottom'  
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    surface "middle" z=0  
      layer 'top'  
    surface 'top' z= long   { divide Z into two layers }  
   
boundaries  
    surface 1 value(Tp)=0   { fix bottom surface temp }  
    surface 3 value(Tp)=0   { fix top surface temp }  
   
    Region 1                { define full domain boundary in base plane }  
       layer 1 k=1          { bottom right brick }  
       layer 2 k=0.1        { top right brick }  
       start(-wide,-wide)  
         value(Tp) = 0      { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2 "Left"         { overlay a second region in left half }  
       layer 1 k=0.2        { bottom left brick }  
       layer 2 k=0.4        { top left brick }  
       start(-wide,-wide)  
         line to (0,-wide)  { walk left half boundary in base plane }  
           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors  
    contour(Tp) on surface z=0  as "XY Temp"  
    contour(Tp) on surface x=0  as "YZ Temp"  
    contour(Tp) on surface y=0  as "ZX Temp"  
    elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"  
    elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"  
    elevation(Tp) from (0,0,-long) to (0,0,long)  as "Z-Axis Temp"  
   
plots  
    contour(Tp) on surface z=0  as "XY Temp"  
    contour(Tp) on surface x=0  as "YZ Temp"  
    contour(Tp) on surface y=0  as "ZX Temp"  
   
    summary  
      report("Constraint Validation:")  
      report(sintegral(normal(k*grad(Tp)))) as "Constrained surface integral on total
outer surface"  
      report(integral(Q))   as "Total interior source"  
      report(integral(Q) - sintegral(normal(k*grad(Tp))))  as "Energy lost to constraint"
 
   
end  
  

5.2.6.3 boundary _constraint

{ BOUNDARY_CONSTRAINT.PDE       
     
  This problem demonstrates the use of boundary-integral CONSTRAINTS . 
 
  A heat equation is solved subject to the constraint that the average temperature 
  on the outer boundary must be 1.0.  
 
  Only natural (derivative) boundary conditions are applied, so the solution is  
  underdetermined subject to an arbitrary additive constant. 
 
  The constraint provides the additional information necessary to make the  
  solution unique. 
 
}  
   
title 'Boundary Constraint Test'  
   
variables  
     u  
   
equations  
     U: div(grad(u)) +x = 0;  
   
constraints  
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     { force the average boundary value to 1 }  
     bintegral(u,"outer") = bintegral(1,"outer")  
   
boundaries  
     Region 1  
        start "outer" (-1,-1)  
        natural(u) = 0       line to (1,-1) to (1,1) to (-1,1) to close  
   
monitors  
    contour(u)  report(bintegral(u,"outer"))  
plots  
    contour(u)   surface(u)  
    elevation(u) on "outer" report(bintegral(u,"outer")/bintegral(1,"outer")) as
"Average"  
    summary  
     report("Constraint Validation:")  
     report(bintegral(u,"outer")/bintegral(1,"outer")) as "Average boundary value"  
   
end  
  

5.2.6.4 constraint

{  CONSTRAINT.PDE   
   
    This problem shows the use of CONSTRAINTS  to resolve an ill-posed problem. 
    There are no value boundary conditions in any of the three equations, so 
    there are infinitely many solutions that satisfy the PDE's.  The constraints 
    select from the family of solutions those which have a mean value of 1. 
 
}  
   
title 'Constraint Test'  
   
variables  
    u1 u2 u3  
   
equations  
    u1: div(grad(u1)) +x = 0  
    u2: div(grad(u2)) +x+y = 0  
    u3: div(grad(u3)) +y = 0  
   
constraints  
    integral(u1) = integral(1)  
    integral(u2) = integral(1)  
    integral(u3) = integral(1)  
   
boundaries  
    Region 1  
      start(-1,-1) line to (1,-1) to (1,1) to (-1,1) to close  
   
monitors  
    contour(u1)  
    contour(u2)  
    contour(u3)  
plots  
    contour(u1)  report(integral(u1)/integral(1)) as "Average"  
    contour(u2)  report(integral(u2)/integral(1)) as "Average"  
    contour(u3)  report(integral(u3)/integral(1)) as "Average"  
    surface(u1)  report(integral(u1)/integral(1)) as "Average"  
    surface(u2)  report(integral(u2)/integral(1)) as "Average"  
    surface(u3)  report(integral(u3)/integral(1)) as "Average"  
   
end  
  

5.2.7 Contact_Boundaries

5.2.7.1 3d_contact

{ 3D_CONTACT.PDE   
 
  This problem shows the use of a contact resistance boundary between layers in 3D. 
  The resistance model is applied to the entire boundary surface. 
 
  See 3D_CONTACT_REGION.PDE  for restriction of the resistance model to a single
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region. 
  (This is a modification of problem 3D_BRICKS.PDE ). 
 
}  
   
title 'steady-state 3D heat conduction with Contact Resistance'  
   
select  
    regrid=off  { use fixed grid }  
   
coordinates  
    cartesian3  
   
variables  
    Tp  
   
definitions  
    long = 1  
    wide = 1  
    K                           { thermal conductivity -- values supplied later }  
    Q = 10*exp(-x^2-y^2-z^2)    { Thermal source }  
    e = 0.01                    {'epsilon' offset to avoid plotting on discontinuities }
   
initial values  
    Tp = 0.  
   
equations  
    Tp : div(k*grad(Tp)) + Q = 0 { the heat equation }  
   
extrusion z = -long,0,long      { divide Z into two layers }  
   
boundaries  
    surface 1 value(Tp)=0       { fix bottom surface temp }  
    surface 2 contact(tp)=jump(tp)/10   { THE CONTACT RESISTANCE }  
    surface 3 value(Tp)=0       { fix top surface temp }  
   
    Region 1            { define full domain boundary in base plane }  
       layer 1 k=1              { bottom right brick }  
       layer 2 k=0.1            { top right brick }  
       start(-wide,-wide)  
         value(Tp) = 0          { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2            { overlay a second region in left half }  
       layer 1 k=0.2            { bottom left brick }  
       layer 2 k=0.4            { top left brick }  
       start(-wide,-wide)  
         line to (0,-wide)              { walk left half boundary in base plane }  
           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors
    contour(Tp) on z=e  as "XY Temp - Upper"
    contour(Tp) on z=-e  as "XY Temp - Lower"
    contour(Tp) on x=e  as "YZ Temp"
    contour(Tp) on y=e  as "ZX Temp"
    elevation(Tp) from (-wide,e,e) to (wide,e,e)  as "X-Axis Temp"
    elevation(Tp) from (e,-wide,e) to (e,wide,e)  as "Y-Axis Temp"
    elevation(Tp) from (e,e,-long) to (e,e,long)  as "Z-Axis Temp"
 
plots
    contour(Tp) on z=e  as "XY Temp - Upper"
    contour(Tp) on z=-e  as "XY Temp - Lower"
    contour(Tp) on x=e  as "YZ Temp"
    contour(Tp) on y=e  as "ZX Temp"
    surface(Tp) on y=e  as "ZX Temp"
    elevation(Tp) from (-wide,e,e) to (wide,e,e)  as "X-Axis Temp"
    elevation(Tp) from (e,-wide,e) to (e,wide,e)  as "Y-Axis Temp"
    elevation(Tp) from (e,e,-long) to (e,e,long)  as "Z-Axis Temp"
 
end  
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5.2.7.2 3d_contact_region

{ 3D_CONTACT_REGION.PDE 
 
  This problem shows the use of a contact resistance boundary between layers. 
  The resistance model is applied only to one region of the boundary surface. 
  (This is a modification of problem 3D_CONTACT.PDE ). 
 
}  
    
title 'steady-state 3D heat conduction with Contact Resistance'  
   
select  
    regrid=off  { use fixed grid }  
   
coordinates  
    cartesian3  
   
variables  
    Tp  
   
definitions  
    long = 1  
    wide = 1  
    K                           { thermal conductivity -- values supplied later }  
    Q = 10*exp(-x^2-y^2-z^2)    { Thermal source }  
   
initial values  
    Tp = 0.  
   
equations  
    Tp : div(k*grad(Tp)) + Q = 0 { the heat equation }  
   
extrusion z = -long,0,long      { divide Z into two layers }  
   
boundaries  
    surface 1 value(Tp)=0       { fix bottom surface temp }  
    surface 3 value(Tp)=0       { fix top surface temp }  
   
    Region 1            { define full domain boundary in base plane }  
       layer 1 k=1              { bottom right brick }  
       layer 2 k=0.1            { top right brick }  
       start(-wide,-wide)  
         value(Tp) = 0          { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2            { overlay a second region in left half }  
       { CONTACT RESISTANCE IN REGION 2 ONLY:  }  
       surface 2 contact(tp)=jump(tp)/10      
       layer 1 k=0.2            { bottom left brick }  
       layer 2 k=0.4            { top left brick }  
       start(-wide,-wide)  
         line to (0,-wide)              { walk left half boundary in base plane }  
           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors  
    contour(Tp) on z=0.01  as "XY Temp - Upper"  
    contour(Tp) on z=-0.01  as "XY Temp - Lower"  
    contour(Tp) on x=0  as "YZ Temp"  
    contour(Tp) on y=0  as "ZX Temp"  
    elevation(Tp) from (-wide/2,0,-long) to (wide/2,0,long)  as "Left Side Temp"  
   
plots  
    contour(Tp) on z=0.01  as "XY Temp - Upper"  
    contour(Tp) on z=-0.01  as "XY Temp - Lower"  
    contour(Tp) on x=0  as "YZ Temp"  
    contour(Tp) on y=0  as "ZX Temp"  
    elevation(Tp) from (-wide/2,0,-long) to (-wide/2,0,long)  as "Left Side Temp"  
    surface(Tp) on y=0  as "ZX Temp" Viewpoint(-3.5,8.2,31)  
   
end  
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5.2.7.3 contact_resistance_heating

{  CONTACT_RESISTANCE_HEATING.PDE 
 
  Contact resistance is modeled using the keywords JUMP  and CONTACT . 
  
  JUMP  represents the "jump" in the value of a variable across an interface 
    (outer value minus inner value, as seen from each cell), 
    and is meaningful only in boundary condition statements. 
  
  CONTACT  is a special form of NATURAL , which requests that the boundary 
  should support a discontinuous value of the variable. 
  
  The model is one of "contact resistance", where the outward current across an  
  interface is given by  
    R*I = -Jump(V) [=(Vinner-Vouter)],  
  and R is the contact resistance. 
  
  Since CONTACT, like NATURAL, represents the outward normal component 
  of the argument of the divergence operator,  the contact resistance condition 
  for this problem is represented as 
    CONTACT(V) = JUMP(Temp)/R 
  
  In this problem, we have two variables, voltage and temperature. 
  There is an electrical contact resistance of 2 units at the interface between 
  two halves, causing a jump in the voltage across the interface. 
  
  The current through the contact is a source of heat in the temperature equation, 
  of value P = R*I^2 = Jump(V)^2/R 
 

}  
   
title "contact resistance heating"  
   
variables  
    V  
    Temp  
   
definitions
    Kt      { thermal conductivity }
    Heat = 0
    Rc = 2    { Electrical contact resistance }
    rho = 1   { bulk resistivity }
    sigma = 1/rho  { bulk conductivity,
I=sigma*grad(V) }
    temp0=0
    size = 3
    V1 = 1
    totR = size*rho+Rc
    cur = V1/totR
    jdrop = cur*Rc 
  
initial values  
     Temp = temp0  
   
equations  
    V:       div(sigma*grad(V))  = 0  
    Temp:    div(Kt*grad(Temp)) + Heat =0  
   
boundaries  
  Region "R1"
    Kt=5
    start 'box' (0,0)
    natural(V)=0 natural(temp)=0 line to (size,0)
    value(V)=V1  value(temp)=0   line to (size,size)
    natural(V)=0 natural(temp)=0 line to (0,size)
    value(V)=0   value(temp)=0   line to close
 
  Region "R2"
    Kt=1
    start (0,0)
    line to (size/2,0)
        contact(V) = (1/rc)*JUMP(V) { resistance jump }
        natural(temp) = JUMP(V)^2/Rc    { heat generation }
    line to(size/2,size)
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        natural(V)=0
        natural(Temp)=0
    line to (0,size) to close

  Feature 'interface' start (size/2,0) line to (size/2,size)

monitors
    contour(Temp)
 
plots
    grid(x,y)
    contour(V) painted
    contour(Temp) painted
    surface(Temp)
    contour(kt*dx(temp)) painted
    contour(kt*dx(temp)) painted
    elevation(V) from(0,1.5) to (3,1.5)
    elevation(temp) from(0,1.5) to (3,1.5)
    elevation(dx(v)) from(0,1.5) to (3,1.5)
    elevation(kt*dx(temp)) from(0,1.5) to (3,1.5)
summary
    report(sintegral(V,'interface','R1')/size)   ! find average interface voltage in
region 1
    report(sintegral(V,'interface','R2')/size)   ! find average interface voltage in
region 2
    report(sintegral(jump(V)^2/rc,'interface')) as "contact source"
    report(sintegral(normal(kt*grad(temp)),'box')) as "outer loss"
    report(size*(jdrop)^2/Rc) as "true heat"

end
  

5.2.7.4 therm al_contact_resistance

{ THERMAL_CONTACT_RESISTANCE.PDE  
   
  This sample demonstrates the application of FlexPDE to heatflow 
  problems with contact resistance between materials. 
  
  We define a square region of material with a conductivity of 5. 
  Imbedded in this square is a diamond-shaped region of material with a 
  uniform heat source of 1, and a conductivity of 1. 
  
  There is a contact resistance of 1/2 unit between the materials. 
  
  Contact resistance is modeled using the keywords JUMP  and CONTACT . 
 
  JUMP  represents the "jump" in the value of a variable across an interface 
  (outer value minus inner value, as seen from each cell), 
  and is meaningful only in boundary condition statements. 
  
  CONTACT  is a special form of NATURAL , which requests that the boundary 
  should support a discontinuous value of the variable. 
  
  The model is one of "contact resistance", where the flux across an interface 
  is given by flux(Temp) = -Jump(Temp)/R, 
  and R is the contact resistance. 
  
  Since CONTACT, like NATURAL, represents the outward normal component 
  of the argument of the divergence operator,  the contact resistance condition is 
  represented as 
    CONTACT(Temp) = -JUMP(Temp)/R 
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 }  
   
title "Thermal Contact Resistance"  
   
variables  
    Temp  
   
definitions  
    { thermal conductivity - values given in regions:
} 
    K                 
    Heat             { Heat source }  
    Flux = -K*grad(Temp)  
    Rc = 1/2         { contact resistance }  
   
initial values  
    Temp = 0  
   
equations  
    Temp: div(Flux) = Heat  
   
boundaries  
    Region 1            { the outer boundary }  
        K=5  
        Heat=0  
        start "Outer" (0,0)  
        value(Temp)=0            { cold boundary }  
        line to (3,0)  to (3,3) to (0,3) to close  
   
    Region 2          { an imbedded diamond }  
        K=1  
        Heat=1        { heat source in the inner diamond }  
        start "Inner" (1.5,0.5)  
   
        contact(Temp) = -JUMP(Temp)/Rc  { the contact flux }  
   
        line to (2.5,1.5)  to (1.5,2.5) to (0.5,1.5) to close  
   
monitors  
    contour(Temp)  
   
plots  
    grid(x,y)  
    contour(Temp) as "Temperature"  
    contour(magnitude(grad(temp))) points=5 as "Flux"  
   
    contour(Temp) zoom(2,1,1,1)  as "Temperature Zoom"  
    elevation(Temp) from (0,0) to (3,3)  
   
    surface(Temp)  
    surface(Temp) zoom(2,1,1,1)  
    vector(-dx(Temp),-dy(Temp)) as "Heat Flow"  
   
    elevation(normal(flux)) on "Outer"  
    elevation(normal(flux)) on "Inner"  
   
end  
  

5.2.7.5 transient_contact_resistance_heating

{ TRANSIENT_CONTACT_RESISTANCE_HEATING.PDE 
 
  This is a time-dependent version of the example CONTACT_RESISTANCE_HEATING.PDE  
 
  An electrical current passes through a material with an electrical contact resistance 
  on the center plane.  The resistance heating at the contact drives a time-dependent 
  heat equation. 
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}  
   
title "transient contact resistance heating"  
   
variables  
    V  
    Temp(0.001)  
   
definitions  
    Kt              { thermal conductivity }  
    Heat  =0  
    Rc = 2          { Electrical contact resistance }
 
    rho = 1         { bulk resistivity }  
    sigma = 1/rho   { bulk conductivity,
I=sigma*grad(V) }  
   
Initial values  
    V = x/3     { a reasonable guess }  
    Temp = 0  
   
equations  
    V:       div(sigma*grad(V))  = 0  
    Temp:    div(Kt*grad(Temp)) + Heat = dt(Temp)  
   
boundaries  
     Region 1  
        Kt=15  
        start (0,0)  
        natural(V)=0    natural(temp)=0     line to (3,0)  
        value(V)=1      value(temp)=0       line to (3,3)  
        natural(V)=0    natural(temp)=0     line to (0,3)  
        value(V)=0      value(temp)=0       line to close  
   
     Region 2  
        Kt=5  
        start (0,0)     line to (1.5,0)  
        contact(V) = (1/rc)*JUMP(V)     { resistance jump }  
        natural(temp) = JUMP(V)^2/Rc    { heat generation }  
              line to(1.5,3)  
        natural(V)=0  natural(Temp)=0  
              line to (0,3) to close  
   
time 0 to 5 by 1e-6  
   
monitors  
    for cycle=5  
      contour(Temp)  
   
plots  
    for cycle=20  
      grid(x,y)  
      contour(V)    painted  
      contour(Temp)    painted  
      surface(Temp)  
      contour(kt*dx(temp))    painted  
      contour(kt*dx(temp))    painted  
      elevation(V) from(0,1.5) to (3,1.5)  
      elevation(temp) from(0,1.5) to (3,1.5)  
      elevation(dx(v)) from(0,1.5) to (3,1.5)  
      elevation(kt*dx(temp))  from(0,1.5) to (3,1.5)  
histories  
      history(Temp) at (0.5,1.5) (1.0,1.5) (1.5,1.5) (2.0,1.5) (2.5,1.5)  
  
end  
  

5.2.8 Coordinate_Scaling

5.2.8.1 scaled_z

{ SCALED_Z.PDE   
 
  This example applies a 10:1 expansion to the z coordinate in a single imbedded layer. 
  Compare solution to UNSCALED_Z.PDE , which does not scale the z-coordinate. 
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  See "Help->Technical Notes->Coordinate Scaling " for a discussion of the techniques  
  used in this example. 
 
}  
   
title 'Scaled Z-coordinate'
 
coordinates
    cartesian3
 
variables
    Tp
    Zs
 
definitions
    long = 1/2      { thickness of the upper and lower layers }
    wide = 1
    w=0.01          { half-thickness of the imbedded slab }
    zscale=1        { The global Z-Scaling factor, defaulted to 1 for top and bottom
layers }
    zscale2=20      { The desired Z-Scaling factor for the center layer }
    ws = w*zscale2  { the scaled half-thickness of the slab }

    K  =0.1         { thermal conductivity -- modified later by layer }
    Q = 0           { Thermal source - modified later by layer }
    T0 = 0
 
initial values
    Tp = 0.
 
equations
    { equations are written using the global scaling factor name.  
      Layer-specific values will be assigned during evaluation }
    Tp:  dx(k*dx(Tp))/zscale + dy(k*dy(Tp))/zscale + dz(k*zscale*dz(Tp)) + Q/zscale = 0 
  then
    Zs: dz(Zs) = 1/zscale
 
extrusion 
    surface 'bottom' z = -long-ws
      layer 'under'
    surface 'slab_bottom' z = -ws
      layer 'slab'
    surface 'slab_top' z= ws
      layer 'over'
    surface 'top' z= long+ws
 
boundaries
    surface 'bottom'  load(Tp)=0.1*(T0-Tp)  value(Zs)=0
    surface 'top'  load(Tp)=0.1*(T0-Tp)
 
    Region 1
      layer 2 
        Q = 100*exp(-x^2-y^2)   { a heat source in the slab layer only }
        zscale = zscale2        { redefine the Z-scaling factor in layer 2 }
        k = 1                   { redefine conductivity in layer 2 }
      start 'sidewall' (-wide,-wide)
        load(Tp) = 0
        layer 2 load(Tp)=0.1*(T0-Tp)/zscale2
        line to (wide,-wide)
             to (wide,wide)
             to (-wide,wide)
             to close
 
monitors
      contour(Tp) on z=0  as "XY Temp"
      contour(Tp) on x=0  as "YZ Temp unscaled"
      contour(Tp) on y=0  as "ZX Temp unscaled"
      contour(Tp) on grid(y,Zs) on x=0 as "YZ Temp scaled"
      contour(Tp) on grid(x,Zs) on y=0 as "ZX Temp scaled"
 
plots
      contour(Zs) on x=0 !temp
      contour(Tp) on z=0  as "XY Temp"
      contour(Tp) on x=0  as "YZ Temp unscaled"
      contour(Tp) on y=0  as "ZX Temp unscaled"
      contour(Tp) on grid(y,Zs) on x=0 as "YZ Temp scaled"
      contour(Tp) on grid(x,Zs) on y=0 as "ZX Temp scaled"
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      elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"
      elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"
      elevation(Tp) from (0,0,-long-ws) to (0,0,long+ws)  as "Z-Axis Temp"
      vector(-k*dx(Tp),-k*dz(Tp)) on y=0 as "Flux on Y=0"
      vector(-k*dx(Tp),-k*dy(Tp)) on z=0 as "Flux on Z=0"
      { since "k" refers to energy passing a through unit surface area in the unscaled
system, 
        it's value is unmodified: }
      elevation(k*dx(Tp)) from (-wide,0,0) to (wide,0,0)  as "Center X-Flux"
      { since differentiation with respect to z involves a scaling, the flux must be
multiplied by 
        the scale factor: }
      elevation(k*dz(Tp)*zscale) from (0,0,-(long+ws)) to (0,0,(long+ws))  as "Center Z-
Flux"
      
      SUMMARY
        { form some integrals for comparison with Unscaled_Z: }
        { the Z flux derivative must be multiplied by the scale factor, but the area of
integration 
          is in true coordinates }
        { flux leaving the slab, evaluated in the slab: }
        report(sintegral(-k*zscale2*dz(Tp),'slab_top','slab'))  
        { flux leaving the slab, evaluated in the upper layer: }
        report(sintegral(-k*1*dz(Tp),'slab_top','over'))  
        report("--")
        { The transverse fluxes are in the correct units, but the area integration must
be
          corrected by dividing by the scale factor (notice that "zscale" will evaluate
to 
          "zscale2" in the slab)}
        report(sintegral(-normal(k*grad(Tp))/zscale,'sidewall','slab'))
 
end

5.2.8.2 unscaled_z

{ UNSCALED_Z.PDE   
 
  This is a reference problem for SCALED_Z.PDE . 
  It solves for heatflow in a sandwich. 
 
}  
  
title 'Unscaled Z coordinate'  
  
coordinates  
    cartesian3  
  
variables  
    Tp  
  
definitions  
    long = 1/2  { thickness of the upper and lower layers }  
    wide = 1  
    w=0.01      { half-thickness of the imbedded slab }  
  
    K  =0.1     { thermal conductivity -- modified later by layer }  
    Q = 0       { Thermal source - modified later by layer }  
    T0 = 0  
  
initial values  
    Tp = 0.  
  
equations       { the heat equation }  
  Tp:  dx(k*dx(Tp)) + dy(k*dy(Tp)) + dz(k*dz(Tp)) + Q = 0      
  
extrusion  
  surface 'bottom' z = -long-w  
    layer 'under'  
  surface 'slab_bottom' z = -w  
    layer 'slab'  
  surface 'slab_top' z= w  
    layer 'over'  
  surface 'top' z= long+w  
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boundaries  
  surface 'bottom'  load(Tp)=0.1*(T0-Tp)  
  surface 'top'  load(Tp)=0.1*(T0-Tp)  
  
  Region 1  
    layer 2   
      Q = 100*exp(-x^2-y^2)   { a heat source in the slab layer only }  
      k = 1         { redefine conductivity in layer 2 }  
    start 'sidewall' (-wide,-wide)  
      load(Tp) = 0  
      layer 2 load(Tp) = 0.1*(T0-Tp)  
      line to (wide,-wide)  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
  
monitors  
  contour(Tp) on z=0  as "XY Temp"  
  contour(Tp) on x=0  as "YZ Temp"  
  contour(Tp) on y=0  as "ZX Temp"  
  
plots  
  contour(Tp) on z=0  as "XY Temp"  
  contour(Tp) on x=0  as "YZ Temp"  
  contour(Tp) on y=0  as "ZX Temp"  
  elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"  
  elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"  
  elevation(Tp) from (0,0,-long-w) to (0,0,long+w)  as "Z-Axis Temp"  
  vector(-k*dx(Tp),-k*dz(Tp)) on y=0 as "Flux on Y=0"  
  vector(-k*dx(Tp),-k*dy(Tp)) on z=0 as "Flux on Z=0"  
  elevation(k*dx(Tp)) from (-wide,0,0) to (wide,0,0)  as "Center X-Flux"  
  elevation(k*dz(Tp)) from (0,0,-(long+w)) to (0,0,(long+w))  as "Center Z-Flux"  
  SUMMARY     
    { form some integrals for comparison with Scaled_Z: }  
    report(sintegral(-k*dz(Tp),'slab_top','slab'))  
    report(sintegral(-k*dz(Tp),'slab_top','over'))  
    report("--")  
    report(sintegral(-normal(k*grad(Tp)),'sidewall','slab'))  
  
end  
  

5.2.9 Eigenvalues

5.2.9.1 3d_oildrum

{ 3D_OILDRUM.PDE  
  
    ******************************************************************* 
    This example illustrates the use of FlexPDE in Eigenvalue problems, or 
    Modal Analysis. 
    ******************************************************************* 
  
    In this problem, we determine the four lowest-energy vibrational modes of 
    a circular cylinder, or "oil drum", clamped on the periphery. 
  
    What we see as results are the pressure distributions of the air inside the 
    drum. 
  
    The three-dimensional initial-boundary value problem associated with the 
    scalar wave equation for sound speed "c" can be written as  
        c^2*del2(u) - dtt(u) = 0,   
    with accompanying initial values and boundary conditions:   
        u = f(s,t)              on some part S1 of the boundary 
        dn(u) + a*u = g(s,t)    on the remainder S2 of the boundary. 
  
    If we assume that solutions have the form   
        u(x,y,z,t) = exp(i*w*t)*v(x,y,z)   
    (where "w" is a frequency) then the equation becomes   
        del2(v) + lambda*v = 0   
    with lambda = (w/c)^2, and with boundary conditions   
        v = 0                   on S1 
        dn(v) + a*v = 0         on S2. 
  
    The values of lambda for which this system has a non-trivial solution 
    are known as the eigenvalues of the system, and the corresponding solutions 
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    are known as the eigenfunctions or vibration modes of the system. 
  
}  
   
title "Vibrational modes of an Oil Drum"  
   
coordinates cartesian3  
   
select   
     modes=4    { Define the number of vibrational modes desired. 
                  The appearance of this selector tells FlexPDE 
                  to perform an eigenvalue calculation, and to 
                  define the name LAMBDA to represent the eigenvalues }   
     ngrid=6            { reduced mesh density for demo }  
     cell_limit = 3000   { keep problem small for demo }  
   
Variables  
     u  
   
equations       {  the eigenvalue equation }  
    U: div(grad(u)) + lambda*u   = 0  
   
{ define the bounding z-surfaces }
extrusion  z = -1,1      
   
boundaries  
     { clamp the bottom and top faces }  
     surface 1 value(u) = 0    
     surface 2 value(u) = 0  
     { define circular sidewall } 
     Region 1           
        start(0,-1)  
        value(u) = 0    { clamp the sides }  
        arc(center=0,0) angle 360  
   
monitors              {  repeated for all modes }  
     contour(u) on x=0  
     contour(u) on y=0  
     contour(u) on z=1/2  
   
plots                 {  repeated for all modes }  
     contour(u) on x=0   surface(u) on x=0  
     contour(u) on y=0   surface(u) on y=0  
     contour(u) on z=1/2    surface(u) on z=1/2  
   
end  

  

5.2.9.2 3d_plate

{ 3D_PLATE.PDE 
 
  This problem considers the oscillation modes of a glass plate in space 
  ( no mountings to constrain motion ). 
            -- Submitted by John Trenholme, Lawrence Livermore Nat'l Lab. 
  
}  
   



FlexPDE 7 : Sample Problems537

TITLE 'Oscillation of a Glass Plate'  
   
COORDINATES  
  cartesian3  
   
SELECT  
    modes = 5  
    ngrid=10  
    errlim = 0.01 { 1 percent is good enough }  
   
VARIABLES  
    U           { X displacement }  
    V           { Y displacement }  
    W           { Z displacement }  
   
DEFINITIONS  
    cm = 0.01       { converts centimeters to meters
}  
   
    long = 20*cm    { length of plate along Y axis }
 
    wide = 10*cm    { width of plate along X axis }
 
    thick = 1.2*cm  { thickness of plate along Z
axis }  
   
    E = 50e9        { Youngs modulus in Pascals }  
    nu = 0.256      { Poisson's ratio  }  
    rho = 2500      { density in kg/m^3 = 1000*[g/
cc] }  
   
    { constitutive relations - isotropic material }
 
    G = E/((1+nu)*(1-2*nu))  
    C11 = G*(1-nu)    C12 = G*nu    C13 = G*nu  
    C22 = G*(1-nu)    C23 = G*nu    C33 = G*(1-nu)  
    C44 = G*(1-2*nu)/2  

    { Strains }  
    ex = dx(U)    ey = dy(V)    ez = dz(W)  
    gxy = dy(U) + dx(V)    gyz = dz(V) + dy(W)    gzx = dx(W) + dz(U)  
   
    { Stresses }  
    Sx  =  C11*ex + C12*ey + C13*ez  
    Sy  =  C12*ex + C22*ey + C23*ez  
    Sz  =  C13*ex + C23*ey + C33*ez  
    Txy =  C44*gxy    Tyz =  C44*gyz    Tzx =  C44*gzx  
   
    { find mean Y and Z translation and X rotation }  
    Vol = Integral(1)  
   
    { scaling factor for displacement plots }  
    Mt =0.1*globalmax(magnitude(x,y,z))/globalmax(magnitude(U,V,W))  
   
INITIAL VALUES  
    U = 1.0e-5    V = 1.0e-5    W = 1.0e-5  
   
EQUATIONS  
    { we assume sinusoidal oscillation at angular frequency omega =sqrt(lambda) }  
    U:  dx(Sx) + dy(Txy) + dz(Tzx) + lambda*rho*U = 0   { X-displacement equation }  
    V:  dx(Txy) + dy(Sy) + dz(Tyz) + lambda*rho*V = 0   { Y-displacement equation }  
    W:  dx(Tzx) + dy(Tyz) + dz(Sz) + lambda*rho*W = 0   { Z-displacement equation }  
   
CONSTRAINTS  
    integral(U)=0               { eliminate translations }  
    integral(V)=0  
    integral(W)=0  
    integral(dx(V)-dy(U)) = 0   { eliminate rotations }  
    integral(dy(W) - dz(V)) = 0  
    integral(dz(U) - dx(W))  = 0  
   
EXTRUSION  
    surface "bottom" z = -thick / 2  
    layer "plate"  
    surface "top" z = thick / 2  
   
BOUNDARIES  
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    region 1  { all sides, and top and bottom, are free }  
        start( -wide/2, -long/2 )  
        line to ( wide/2, -long/2 )  
        line to ( wide/2, long/2 )  
        line to ( -wide/2, long/2 )  
        line to close  
   
MONITORS  
    grid(x+Mt*U,y+Mt*V,z+Mt*W)  as "Shape"  
        report sqrt(lambda)/(2*pi) as "Frequency in Hz"  
   
PLOTS  
    contour( W ) on z = 0 as "Mid-plane Displacement"  
        report sqrt(lambda)/(2*pi) as "Frequency in Hz"  
    grid(x+Mt*U,y+Mt*V,z+Mt*W)  as "Shape"  
        report sqrt(lambda)/(2*pi) as "Frequency in Hz"  
   
    summary  
        report lambda  
        report sqrt(lambda)/(2*pi) as "Frequency in Hz"  
   
END  
  

5.2.9.3 drum head

{ DRUMHEAD.PDE  
  
    ******************************************************************* 
    This example illustrates the use of FlexPDE in Eigenvalue problems, or 
    Modal Analysis. 
    ******************************************************************* 
  
    The two-dimensional initial-boundary value problem associated with the 
    scalar wave equation can be written as  
        c^2*del2(u) - dtt(u) = 0   
    with accompanying initial values and boundary conditions  
        u = f(s,t)              on S1 
        dn(u) + a*u = g(s,t)    on S2. 
  
    If we assume that solutions have the form  
        u(x,y,t) = exp(i*w*t)*v(x,y)   
    then the equation becomes  
        del2(v) + lambda*v = 0   
    with lambda = (w/c)^2, and with boundary conditions  
        v = 0                   on S1 
        dn(v) + a*v = 0         on S2. 
  
    The values of lambda for which this system has a non-trivial solution 
    are known as the eigenvalues of the system, and the corresponding solutions 
    are known as the eigenfunctions or vibration modes of the system. 
  
    In this problem, we determine the eight lowest-energy vibrational modes of 
    a circular drumhead, clamped on the periphery. 
  
    This problem can be solved analytically.  The solutions are of the form  
        v = Jn(r*jnm)*exp(i*n*theta),  
    where Jn is the Bessel function of order n, 
          jnm is the m-th root of Jn. 
  
    The eigenvalues are then just the sequence of jnm^2. In increasing order :
        5.783186, 14.68197, 14.68197, 26.37459, 26.37459, 30.471262, 40.70644, 40.70644

    With default errlim, FlexPDE in the current test gives results within 0.01%.
}  
   
title "Vibrational modes of a drumhead"  
   
select  
     { Define the number of vibrational modes desired. 
       The appearance of this selector tells FlexPDE 
       to perform an eigenvalue calculation }  
     modes=8    
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Variables  
     u  
    
equations           { the eigenvalue equation }  
    U: div(grad(u)) + lambda*u   = 0  
   
boundaries  
    Region 1  
        start(0,-1)  
        value(u) = 0  
        arc(center=0,0) angle 360  
   
monitors            { repeated for all modes }  
    contour(u)  
   
plots               { repeated for all modes }  
    contour(u)  
    surface(u)  
   
end  

  

  

5.2.9.4 drum hole

{ DRUMHOLE.PDE  
  
   ******************************************************************* 
    This example is a modification of DRUMHEAD.PDE , in which 
    the vibrating membrane has a circular hole. 
    *******************************************************************   
}  
   
title "Vibrational modes of a drumhead with a hole"  
   
select  
    modes=8            { Define the number of vibrational modes desired. 
                             The appearance of this selector tells FlexPDE 
                             to perform an eigenvalue calculation }  
   
variables  
     u  
   
equations             { the eigenvalue equation }  
    U: div(grad(u)) + lambda*u   = 0  
   
boundaries  
    Region 1  
        start(0,-1)  
        value(u) = 0  
            arc(center=0,0) angle 360  
        start(0,-0.4)  
        natural(u)=0  
            arc(center=0,-0.2) angle=360  
   
monitors              { repeated for all modes }  
    contour(u)  
   
plots                 { repeated for all modes }  
    contour(u)  
    surface(u)  
   
end  
  

5.2.9.5 filledguide

{ FILLEDGUIDE.PDE

   This problem models an inhomogeneously filled waveguide.

538
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   See discussion in Help section "Electromagnetic Applications | Waveguides" .

   This problem is taken from Fernandez and Lu,
   "Microwave and Optical Waveguide Analysis by the Finite Element Method" page 138.
}

title "Filled Waveguide"

select
  modes = 5      { This is the number of Eigenvalues desired. }
  ngrid = 30
  overshoot = 1e-9     { request very tight Conjugate Gradient convergence }

variables
  Hx(0.01)        ! some eigenfunctions are zero, so apply a threshold
  Hy(0.01)        ! ... to avoid infinite regrid

definitions
  cm = 0.01       ! conversion from cm to meters
  b = 1*cm        ! box height
  L = 2*b         ! box width
  epsr            ! values will be given by region
  epsr1=1
  epsr2=1.5
  eps0 = 8.85e-12
  mu0 = 4e-7*pi
  c =  1/sqrt(mu0*eps0) ! light speed
  k0b = 4               ! normalized driving frequency
  k0 = k0b/b
  k02 = k0^2            ! k0^2=omega^2*mu0*eps0

  ! terms used in equations and BC's
  curlh = dx(Hy)-dy(Hx)
  divh = dx(Hx)+dy(Hy)

  ! the solution generates some negative eigenvalues, so we shift the eigenvalues to a
range where only the
  ! positive values appear
  shift = 200000
  true_lambda=lambda+shift

  ! extract the propagation wave number kz
  kz = if(true_lambda>0)then sqrt(true_lambda) else -sqrt(abs(true_lambda))

equations
  ! Hx equation multiplied by epsr to enforce continuity of Hz
  Hx: dx(divh) - dy(curlh) + k02*Hx*epsr - (lambda+shift)*Hx = 0
  Hy: dx(curlh/epsr) + dy(divh)/epsr + k02*Hy - (lambda+shift)*Hy/epsr = 0

boundaries
  region 1  epsr=epsr1
    start(0,0)
    natural(Hx) = 0  value(Hy)=0
    line to (L,0)
    value(Hx) = 0  value(Hy)=0  natural(Hy)=0
    line to (L,b)
    natural(Hx) = 0 value(Hy)=0
    line to (0,b)
    value(Hx) = 0  natural(Hy)=0
    line to close

  region 2  epsr=epsr2
    start(b,b)
    line to (0,b) to (0,0) to (b,0)
    line to close

monitors
  contour(Hx) range=(-1,1)
  contour(Hy) range=(-1,1)

plots

332
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  contour(Hx) range=(-1,1) report(k0) report(kz)
  surface(Hx) range=(-1,1)  report(k0) report(kz)
  contour(Hy) range=(-1,1)  report(k0) report(kz)
  surface(Hy) range=(-1,1)  report(k0) report(kz)
  surface(divh) range=(-1,1)  as "Hz" report(k0) report(kz)
  surface(curlh/epsr) range=(-1,1)  as "Ez" report(k0) report(kz)

summary  export
  report lambda
  report shift
  report true_lambda
  report(k0)
  report( if(true_lambda<0) then "*" else " ")  ! mark negative eigenvalues
  report(kz)
  report(kz/k0)

end

5.2.9.6 shiftguide

{  SHIFTGUIDE.PDE 
 
   This problem demonstrates the technique of eigenvalue shifting to select 
   an eigenvalue band for analysis.  Compare these results to the problem 
   Waveguide20, and you will see that the negative modes here correspond to 
   the modes below the shift value, while the positive modes here correspond 
   to the modes above the shift value.   The result modes  in the shifted calculation 
   comprise a complete range of the unshifted modes. (The correspondence is 
   1:9, 2:8, 3:10, 4:11, 5:12, 6:13, 7:7, 8:6). 
  
   The solution algorithm used in FlexPDE finds the eigenvalues of lowest 
   magnitude, so you will always see a band of positive and negative values 
   centered on the shift value. 
}  
   
title "TE Waveguide - eigenvalue shifting"  
 
  
select  
  modes = 8   
  ngrid=20  
   
variables  
  hz  
   
definitions  
  L = 2  
  h = 0.5       ! half box height 
  g = 0.01      ! half-guage of wall 
  s = 0.3*L     ! septum depth 
  tang = 0.1    ! half-width of tang 
  Hx = -dx(Hz)  
  Hy = -dy(Hz)  
  Ex = Hy  
  Ey = -Hx  

  shift = 40    ! PERFORM AN EIGENVALUE SHIFT 
   
equations  
  Hz:  del2(Hz) + lambda*Hz + shift*Hz = 0  
   
constraints  
  integral(Hz) = 0  { since Hz has only natural boundary conditions, 
                        we need an additional constraint to make 
                        the solution unique }  
   
boundaries  
  region 1  
    start(0,0)  
    natural(Hz) = 0     line to (L,0) to (L,1) to (0,1)  to (0,h+g)  
    natural(Hz) = 0  
        line to (s-g,h+g) to (s-g,h+g+tang) to (s+g,h+g+tang)  
             to (s+g,h-g-tang) to (s-g,h-g-tang) to (s-g,h-g) to (0,h-g)  
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    line to close  
   
monitors  
    contour(Hz)  
   
plots  
    contour(Hz) painted  report (lambda+shift) as "Shifted Lambda"  
   
summary  
    report lambda  
    report (lambda+shift) as "Shifted Lambda"  
   
end  
  

5.2.9.7 vibar

{ VIBAR.PDE 
 
  This problem analyzes the standing-wave vibrational modes of an elastic bar. 
 
  The equations of Stress/Strain in a material medium can be given as 
        dx(Sx) + dy(Txy) + Fx = 0 
        dx(Txy) + dy(Sy) + Fy = 0 
 
  where Sx and Sy are the stresses in the x- and y- directions, 
  Txy is the shear stress, and Fx and Fy are the body forces in the 
  x- and y- directions. 
 
  In a time-dependent problem, the material acceleration and viscous force 
  act as body forces, and are included in a new body force term 
        Fx1 = Fx0 - rho*dtt(U) + mu*del2(dt(U)) 
        Fy1 = Fy0 - rho*dtt(V) + mu*del2(dt(V)) 
 
  where rho is the material mass density, mu is the viscosity, and U and V 
  are the material displacements in the x and y directions. 
 
  If we assume that the displacement is harmonic in time (all transients 
  have died out), then we can assert 
        U(t) = U0*exp(-i*omega*t) 
        V(t) = V0*exp(-i*omega*t) 
 
  Here U0(x,y) and V0(x,y) are the complex amplitude distributions, and 
  omega is the angular velocity of the oscillation. 
 
  Substituting this assumption into the stress equations and dividing out 
  the common exponential factors, we get (implying U0 by U and V0 by V) 
        dx(Sx) + dy(Txy) + Fx0 + rho*omega^2*U - i*omega*mu*del2(U) = 0 
        dx(Txy) + dy(Sy) + Fy0 + rho*omega^2*V - i*omega*mu*del2(V) = 0 
 
  All the terms in this equation are now complex.  Separating into real 
  and imaginary parts gives 
        U = Ur + i*Ui 
        Sx = Srx + i*Six 
        Sy = Sry + i*Siy 
        etc... 
 
  Expressed in terms of the (assumed real) constitutive relations of the material, 
        Srx = [C11*dx(Ur) + C12*dy(Vr)] 
        Sry = [C12*dx(Ur) + C22*dy(Vr)] 
        Trxy = C33*[dy(Ur) + dx(Vr)] 
        etc... 
 
  The final result is a set of four equations in Ur,Vr,Ui and Vi. 
    Ur: dx(Srx) + dy(Trxy) + rho*omega^2*Ur + omega*mu*del2(Ui) = 0 
    Ui: dx(Six) + dy(Tixy) + rho*omega^2*Ui - omega*mu*del2(Ur) = 0 
    Vr: dx(Trxy) + dy(Sry) + rho*omega^2*Vr + omega*mu*del2(Vi) = 0 
    Vi: dx(Tixy) + dy(Siy) + rho*omega^2*Vi - omega*mu*del2(Vr) = 0 
 
  In the absence of viscous effects, these equations separate, with no imaginary 
  terms appearing in the real equations, and vice versa. 
 
  We can therefore solve only for the real components Ur and Vr, which we 
  will continue to refer to as U and V. 
 
  Solving the eigenvalue system  
    U:        dx(Sx)  + dy(Txy) + lambda*rho*U = 0 
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    V:        dx(Txy)   + dy(Sy) + lambda*rho*V = 0 
  we find the resonant frequencies lambda = omega^2 together with the  
  corresponding spatial amplitude distributions Uand V. 
 
  In order to quantify the "natural" (or "load") boundary condition mechanism, 
  we can write the equations as 
    U:     div(P) + lambda*rho*U = 0 
    V:     div(Q) + lambda*rho*V = 0 
  where P = [Sx,Txy] 
  and   Q = [Txy,Sy] 
 
  The natural (or "load") boundary condition for the U-equation defines the 
  outward surface-normal component of P, while the natural boundary condition 
  for the V-equation defines the surface-normal component of Q. Thus, the 
  natural boundary conditions for the U- and V- equations together define 
  the surface load vector. 
 
  On a free boundary, both of these vectors are zero, so a free boundary 
  is simply specified by 
    load(U) = 0 
    load(V) = 0. 
 
 }  
  
title "Vibrating Bar - Modal Analysis"  
   
select  
    modes=8   
   
variables  
    U    { X-displacement }  
    V    { Y-displacement }  
   
definitions  
    L = 1               { Bar length }  
    hL = L/2  
    W = 0.1             { Bar thickness }  
    hW = W/2  
    nu = 0.3            { Poisson's Ratio }  
    E  = 20             { Young's Modulus for Steel x10^11(dynes/cm^2) }  
    G  = 0.5*E/(1+nu)  
    rho = 7.8           { Density (g/cm^3) }  
   
    { plane strain coefficients }  
    E1 = E/((1+nu)*(1-2*nu))  
    C11 = E1*(1-nu)  
    C12 = E1*nu  
    C22 = E1*(1-nu)  
    C33 = E1*(1-2*nu)/2  
   
    { Stresses }  
    Sx = (C11*dx(U) + C12*dy(V))       
    Sy = (C12*dx(U) + C22*dy(V))  
    Txy = C33*(dy(U) + dx(V))  
   
    mag=0.05  
   
initial values  
    U = 0  
    V = 0  
   
equations               { define the displacement equations }  
    U:  dx(Sx)  + dy(Txy) + lambda*rho*U = 0  
    V:  dx(Txy)  + dy(Sy) + lambda*rho*V = 0  
   
constraints
  line_integral(V,"mount")=0    { constrain the net right end y-motion to be zero }
 
boundaries
    region 1
      start (0,-hW)
 
      { free boundary on bottom, no normal stress }
      load(U)=0     load(V)=0       line to (L,-hW)
 
      { clamp the right end x-motion }
      value(U) = 0      line to (L,hW)
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      { free boundary on top, no normal stress }
      load(U)=0     load(V)=0       line to (0,hW)
 
      load(U) = 0   load(V) = 0     line to close

feature start "mount" (L,-hW) line to (L,hW)
 
monitors  
    grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  
plots  
    grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  
    contour(U) as "X-Displacement(M)"  
    contour(V) as "Y-Displacement(M)"  
   
end  
  

5.2.9.8 waveguide

{ WAVEGUIDE.PDE 
 
  This problem solves for the Transverse-Electric modes of a T-septate 
  rectangular waveguide. 
 
  Assuming that Z is the propagation direction, we can write 
    E(x,y,z) = E(x,y)*exp(i*(omega*t-Kz*z)) 
    H(x,y,z) = H(x,y)*exp(i*(omega*t-Kz*z)) 
  where omega is the angular frequency and kz denotes the propagation constant. 
 
  In a Transverse-Electric waveguide, the electric field component in the propagation 
  direction is zero, or Ez = 0. 
 
  Substituting these equations into the source-free Maxwell's equations and rearranging, 
  we can write 
    Ey =  -(omega*mu/kz)*Hx 
    Ex = (omega*mu/kz)*Hy 
    Hx = -i*dx(Hz)*kz/kt 
    Hy = i*dy(Hz)*kz/kt 
    with kt = [omega^2*eps*mu - kz^2] 
 
  It can also be shown that in this case Hz satisfies the homogeneous Helmholtz equation 
    dxx(Hz) + dyy(Hz) + Kt^2*Hz = 0 
  together with the homogeneous Neumann boundary condition on the conducting wall 
    dn(Hz) = 0  
 
  In order to avoid clutter in this example script, we will supress the proportionality
factors. 
  (The leading "i" in the definition of Hx and Hy is merely a phase shift.) 
         -----  From J. Jin,  "The Finite Element Method in Electromagnetics", p. 197 
}  
   
title "TE Waveguide"  
   
select  
  modes = 4     { This is the number of Eigenvalues desired. }  
  
variables  
  hz  
   
definitions  
  L = 2  
  h = 0.5       ! half box height 
  g = 0.01      ! half-guage of wall 
  s = 0.3*L     ! septum depth 
  tang = 0.1    ! half-width of tang 
  Hx = -dx(Hz)  
  Hy = dy(Hz)  
  Ex = Hy  
  Ey = -Hx  
   
equations  
  Hz:  del2(Hz) + lambda*Hz = 0        { lambda = Kt^2 }  
   
constraints  
  integral(Hz) = 0  { since Hz has only natural boundary conditions, 
                        we need an additional constraint to make  
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                        the solution unique }  
   
boundaries  
  region 1  
    start(0,0)  
    natural(Hz) = 0     ! this condition applies to all subsequent segments 
      ! walk the box body 
      line to (L,0) to (L,1) to (0,1)  to (0,h+g)  
      ! walk the T-septum
               to (s-g,h+g) to (s-g,h+g+tang) fillet(g/2) to (s+g,h+g+tang) fillet(g/2)
               to (s+g,h-g-tang) fillet(g/2) to (s-g,h-g-tang) fillet(g/2) to (s-g,h-g)
to (0,h-g)
      line to close
 
monitors
  contour(Hz)
 
plots
  contour(Hz) painted
  vector(Hx,Hy)  as "Transverse H" norm
  contour(magnitude(Hx,Hy))
  contour(magnitude(Hx,Hy))  zoom(0.5,0.5,0.2,0.2)
  vector(Ex,Ey)  as "Transverse E" norm
  contour(magnitude(Ex,Ey))
  contour(magnitude(Ex,Ey))  zoom(0.5,0.5,0.2,0.2)
   
end  
  

5.2.9.9 waveguide20

{  WAVEGUIDE20.PDE 
 
   This problem solves for the Transverse-Electric modes of a T-septate 
    rectangular waveguide.  It is a copy of WAVEGUIDE.PDE  with more modes. 
}  
   
title "TE Waveguide"  
   
select  
  modes = 20        { This is the number of Eigenvalues desired. }  
  ngrid=20          { we need enough density to resolve higer modes }  
   
variables  
  hz  
   
definitions  
  L = 2  
  h = 0.5               ! half box height 
  g = 0.01              ! half-guage of wall 
  s = 0.3*L             ! septum depth 
  tang = 0.1            ! half-width of tang 
  Hx = -dx(Hz)  
  Hy = -dy(Hz)  
  Ex = Hy  
  Ey = -Hx  
   
equations  
   Hz:  del2(Hz) + lambda*Hz = 0  
   
constraints  
  integral(Hz) = 0  { since Hz has only natural boundary conditions, 
            we need to constrain the answer }  
   
boundaries  
  region 1  
    start(0,0)  
    natural(Hz) = 0     line to (L,0) to (L,1) to (0,1)  to (0,h+g)  
    natural(Hz) = 0  
        line to (s-g,h+g) to (s-g,h+g+tang) to (s+g,h+g+tang)  
             to (s+g,h-g-tang) to (s-g,h-g-tang) to (s-g,h-g) to (0,h-g)  
    line to close  
   
monitors  
  contour(Hz)  
   
plots  

544
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  contour(Hz) painted  
   
end  
  

5.2.10 Functions

5.2.10.1 com plex_functions

{ COMPLEX_FUNCTIONS.PDE }

TITLE 'complex function test'    

COORDINATES cartesian2 

VARIABLES        { this test uses no variables, it is a plotting test only }

SELECT  ngrid=40

DEFINITIONS    
! sample complex
  a=9
  b=4
! explicit root computation
  z = complex(a,b)
  r = sqrt(a^2+b^2)
  d = z+r
  dabs = sqrt((a+r)^2+b^2)
  zscale = sqrt(r)/dabs
  zroot = zscale*complex(a+r,b)
! reference value
  c = 9+sqrt(97)
  xd = sqrt(2*c)
  zr = c/xd
  zi = 4/xd

! expanded code
  zrootf = sqrt(CABS(z))*CEXP(0,0.5*atan2(b,a)) 

BOUNDARIES
  REGION 1
    START(-1,-1)
    LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE

feature start(-1,0) line to (1,0)
feature start(0,-1) line to (0,1)

PLOTS
  contour(atan2(y,x))
  contour(CARG(x,y))
  contour(CABS(x,y))
  contour(CEXP(x,y))
  contour(CLOG(x,y))
  contour(CSQRT(x,y))
  contour(CARG(complex(x,y)))
  contour(CABS(complex(x,y)))
  contour(CEXP(complex(x,y)))
  contour(CLOG(complex(x,y)))
  contour(CSQRT(complex(x,y)))

SUMMARY
  report("Z=A+i*B")
  report(a) as "A"
  report(b) as "B"
  report(zr) as "test real"
  report(REAL(zroot))
  report(REAL(CSQRT(z)))    ! test new function
  report(REAL(zrootf))
  report(REAL(CSQRT(z)*CSQRT(z)))
  report("")
  report(zi) as "test imag"
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  report(IMAG(zroot))
  report(IMAG(CSQRT(z)))    ! test new function
  report(IMAG(zrootf))
  report(IMAG(CSQRT(z)*CSQRT(z)))
  report("")
  report(r) as "test cabs(z)"
  report(CABS(z))      ! test new function
  report("")
  report(sqrt(zr^2+zi^2)) as "test cabs(zroot)"
  report(CABS(zroot))     ! test new function
  report(CABS(zrootf))     ! test new function
  report("")
  report(REAL(CLOG(z))) report(IMAG(CLOG(z)))
  report(REAL(CEXP(CLOG(z)))) report(IMAG(CEXP(CLOG(z))))

END

5.2.10.2 function_definition

{  FUNCTION_DEFINITION.PDE   
  
   This example demonstrates the use of functional parameter definitions . 
 
}  
   
title 'Functional Parameter Definition test'  
  
Variables  
     u  
   
definitions  
   
  { Declare "Sq" a function of argument "A".  
       "A" is a dummy name that represents the actual argument passed 
        by an invocation.  }  
  Sq(a) = a*a  
  { Define two functions for use in domain layout. 
        The "n" argument rotates by 90 degree increments.}  
  xx(n) = cos(n*pi/2)          
  yy(n) = sin(n*pi/2)  
   
equations  
  { invoke the "Sq" function as a component of the equation.  This makes 
    the system nonlinear }  
  U: div(grad(u)) + 80*Sq(u)*dx(u) +4 = 0  
   
boundaries  
    region 1  
        start(xx(0),yy(0))  
        value(u)=0  
        line to (xx(1),yy(1))   { definition evaluates corners of a diamond }  
             to (xx(2),yy(2))  
             to (xx(3),yy(3))  
        to close  
   
monitors  
    contour(u)  
   
plots  
    surface(u)  
    contour(u)  
   
end  
  

5.2.10.3 error_reporting

{ ERROR_reporting.PDE
  This sample shows the use of the TIME_ERROR  and SPACE_ERROR  functions.
  It is a copy of the sample CHEMBURN.PDE .
}

205

161 161

360
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title
  'Open Tube Chemical Reactor with Strip Heater'

select
   painted      { make color-filled contour plots }

variables
  Temp(threshold=0.1)
  C(threshold=0.1)

definitions
  Lz = 1
  r1=1
  heat=0
  gamma = 16
  beta = 0.2
  betap = 0.3
  BI = 1
  T0 = 1
  TW = 0.92
  RC = (1-C)*exp(gamma-gamma/Temp) { the very nasty reaction rate }
  xev=0.96      { some plot points }
  yev=0.25

initial values
  Temp=T0
  C=0

equations
  Temp:     div(grad(Temp)) + heat + betap*RC = dt(Temp)
  C:        div(grad(C)) + beta*RC = dt(C)

boundaries
  region 1
    start (0,0)

    { a mirror plane on X-axis }
    natural(Temp) = 0
    natural(C) = 0
    line to (r1,0)     

    { "Strip Heater" at fixed temperature }
    { ramp the boundary temp in time, because  discontinuity is costly to diffuse } 
    value(Temp)=T0 + 0.2*uramp(t,t-0.05)                                    

    natural(C)=0                { no mass flow on strip heater }
    arc(center=0,0) angle 5     

    { convective cooling and no mass flow on outer arc }
    natural(Temp)=BI*(TW-Temp) 
    natural(C)=0                
    arc(center=0,0) angle 85    

    { a mirror plane on Y-axis }
    natural(Temp) = 0
    natural(C) = 0
    line to (0,0) to close   

time 0 to 1

plots
  for cycle=10                  { watch the fast events by cycle }
    grid(x,y)
    contour(Temp) fixed range (0.9,2.5)
    contour(C) as "Completion" fixed range(0,1.1)
    contour(space_error())
    contour(space_error(Temp))

  for t= 0.1 by 0.05 to 0.2 by 0.01 to 0.3 0.5 endtime   { show some surfaces during burn
}
    contour(Temp) fixed range (0.9,2.5)
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    surface(Temp) fixed range (0.9,2.5)
    contour(C) as "Completion" fixed range(0,1.1)
    surface(C) as "Completion" fixed range(0,1.1)

histories
  history(Temp) at (0,0) (xev/2,yev/2) (xev,yev) (yev/2,xev/2) (yev,xev) 
  history(C) at (0,0)  (xev/2,yev/2) (xev,yev) (yev/2,xev/2) (yev,xev) as "Completion"
  history(time_error(Temp),time_error(C),time_error())
  history(time_error(Temp),time_error(C))

end

5.2.10.4 globalm ax

{ GLOBALMAX.PDE

  This sample demonstrates the use of the GLOBALMAX  function and its variants in 2D.
  It is a copy of the example THERMAL_CONTACT_RESISTANCE.PDE .
 }

title "Thermal Contact Resistance"

variables
    Temp

definitions
    K                           { thermal conductivity - values given in regions }
    Heat                        { Heat source }
    Flux = -K*grad(Temp)
    Rc = 1/2         { contact resistance }

initial values
    Temp = 0

equations
    Temp: div(Flux) = Heat

boundaries
    Region 1    "Outer"        { the outer boundary }
        K=5
        Heat=0
        start "Outer" (0,0)
        value(Temp)=0            { cold boundary }
        line to (3,0)  to (3,3) to (0,3) to close

    Region 2   "Inner"       { an imbedded diamond }
        K=1
        Heat=1        { heat source in the inner diamond }
        start "Inner" (1.5,0.5)
        contact(Temp) = -JUMP(Temp)/Rc  { the contact flux }
        line to (2.5,1.5)  to (1.5,2.5) to (0.5,1.5) to close

monitors
    contour(Temp)

plots
    grid(x,y)
    contour(Temp) as "Temperature"
    contour(magnitude(grad(temp))) points=5 as "Flux"
    contour(Temp) zoom(2,1,1,1)  as "Temperature Zoom"
    elevation(Temp) from (0,0) to (3,3)
    surface(Temp)
    surface(Temp) zoom(2,1,1,1)
    vector(-dx(Temp),-dy(Temp)) as "Heat Flow"
    elevation(normal(flux)) on "Outer"
    elevation(normal(flux)) on "Inner"
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summary
  report(globalmax(Temp),globalmax_x(Temp),globalmax_y(Temp)) as "Global Maximum"
  report(" ")
  report(globalmax(Temp,"Inner"),globalmax_x(Temp,"Inner"),globalmax_y(Temp,"Inner")) as
"Inner Maximum"
  report(globalmax(Temp,"Outer"),globalmax_x(Temp,"Outer"),globalmax_y(Temp,"Outer")) as
"Outer Maximum"
  report(" ")
  report(globalmax(Temp,1),globalmax_x(Temp,1),globalmax_y(Temp,1)) as "Region 1 Maximum"
  report(globalmax(Temp,2),globalmax_x(Temp,2),globalmax_y(Temp,2)) as "Region 2 Maximum"

end

5.2.10.5 globalm ax_3d

{  GLOBALMAX_3D.PDE

  This sample demonstrates the use of the GLOBALMAX  function and its variants in 3D.
  It is a copy of the example 3D_BRICKS+TIME.PDE .
}

title 'steady-state 3D heat conduction'

select
    regrid=off  { use fixed grid }

coordinates
    cartesian3

variables
    Tp

definitions
    long = 1
    wide = 1
    K   { thermal conductivity -- values supplied later }
    Q = 10*exp(-x^2-y^2-z^2)   { thermal source }

initial values
    Tp = 0.

equations
    Tp : div(k*grad(Tp)) + Q = 0    { the heat equation }

extrusion      { divide Z into two layers }
  surface z = -long
      layer "lower"
  surface z = 0
      layer "upper"
  surface z = long

boundaries
    Surface 1 value(Tp)=0       { fix bottom surface temp }
    Surface 3 value(Tp)=0       { fix top surface temp }

    Region 1  "right"  { define full domain boundary in base plane }
       layer 1 k = 1            { bottom right brick }
       layer 2 k = 0.1          { top right brick }
       start(-wide,-wide)
         value(Tp) = 0          { fix all side temps }
         line to (wide,-wide)   { walk outer boundary in base plane }
           to (wide,wide)
           to (-wide,wide)
           to close

    Region 2  "left"  { overlay a second region in left half }
       layer 1 k = 0.2          { bottom left brick }
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       layer 2 k = 0.4          { top left brick }
       start(-wide,-wide)
         line to (0,-wide)      { walk left half boundary in base plane }
           to (0,wide)
           to (-wide,wide)
           to close

monitors
    contour(Tp) on z=0  as "XY Temp"
    contour(Tp) on x=0  as "YZ Temp"
    contour(Tp) on y=0  as "XZ Temp"
    elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"
    elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"
    elevation(Tp) from (0,0,-long) to (0,0,long)  as "Z-Axis Temp"

plots
    contour(Tp) on z=0  as "XY Temp"
    contour(Tp) on x=0  as "YZ Temp"
    contour(Tp) on y=0  as "XZ Temp"
    contour(Tp) on x=globalmax_x(Tp)  as "YZ Temp at max"  report(globalmax_x(Tp)) as
"X_max"
    elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"
    elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"
    elevation(Tp) from (0,0,-long) to (0,0,long)  as "Z-Axis Temp"

summary
  report(globalmax(Tp), globalmax_x(Tp), globalmax_y(Tp), globalmax_z(Tp)) as "Global
Maximum"
  report(" ")
  report(globalmax(Tp, "left"), globalmax_x(Tp, "left"), globalmax_y(Tp, "left"),
globalmax_z(Tp, "left")) as "Left Maximum"
  report(globalmax(Tp, "right"), globalmax_x(Tp, "right"), globalmax_y(Tp, "right"),
globalmax_z(Tp, "right")) as "Right Maximum"
  report(globalmax(Tp, "lower"), globalmax_x(Tp, "lower"), globalmax_y(Tp, "lower"),
globalmax_z(Tp, "lower")) as "Lower Maximum"
  report(globalmax(Tp, "upper"), globalmax_x(Tp, "upper"), globalmax_y(Tp, "upper"),
globalmax_z(Tp, "upper")) as "Upper Maximum"
  report(globalmax(Tp, "right", "upper"), globalmax_x(Tp, "right", "upper"),
globalmax_y(Tp, "right", "upper"), globalmax_z(Tp, "right", "upper")) as "Right Upper
Maximum"
  report(" ")
  report(globalmax(Tp, 1), globalmax_x(Tp, 1), globalmax_y(Tp, 1), globalmax_z(Tp, 1)) as
 "Region 1 Maximum"
  report(globalmax(Tp, 2), globalmax_x(Tp, 2), globalmax_y(Tp, 2), globalmax_z(Tp, 2)) as
 "Region 2 Maximum"
  report(globalmax(Tp, 1, 1), globalmax_x(Tp, 1, 1), globalmax_y(Tp, 1, 1),
globalmax_z(Tp, 1, 1)) as "Region 1 Layer 1 Maximum"
  report(globalmax(Tp, 2, 2), globalmax_x(Tp, 2, 2), globalmax_y(Tp, 2, 2),
globalmax_z(Tp, 2, 2)) as "Region 2 Layer 2 Maximum"

end

5.2.10.6 standard_functions

{ STANDARD_FUNCTIONS.PDE 
 
   This example illustrates available mathematical functions  in FlexPDE.  
   It also shows the use of FlexPDE as a plot utility. 
 
}  
title "Test Standard Functions"  
  
coordinates cartesian1  
  
{ -- No variables, no equations -- }  
  
{ -- Definitions can be included, if desired -- }  
  
{ -- We need a plot domain: -- }  
boundaries  
    region 1  
      start(-1) line to (1)  
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plots  
    elevation(sqrt(x)) from (0) to (1)  
    elevation(dx(sqrt(x)),0.5/sqrt(x)) from (0.01) to (1)  
  
    elevation(sin(pi*x)) from (-1) to (1)  
    elevation(dx(sin(pi*x)),pi*cos(pi*x)) from (-1) to (1)  
  
    elevation(cos(pi*x)) from (-1) to (1)  
    elevation(dx(cos(pi*x)),-pi*sin(pi*x)) from (-1) to (1)  
  
    elevation(tan(pi*x)) from (-0.499) to (0.499)  
    elevation(dx(tan(pi*x)),pi/cos(pi*x)^2) from (-0.499) to (0.499)  
  
    elevation(exp(x)) from (-1) to (1)  
    elevation(dx(exp(x)),exp(x)) from (-1) to (1)  
  
    elevation(ln(x)) from (0.01) to (1)  
    elevation(dx(ln(x)),1/x) from (0.01) to (1)  
  
    elevation(log10(x)) from (0.01) to (1)  
    elevation(dx(log10(x)),1/(x*ln(10))) from (0.01) to (1)  
  
    elevation(arcsin(x)) from (-1) to (1)  
    elevation(dx(arcsin(x)),1/sqrt(1-x^2)) from (-0.999) to (0.999)  
  
    elevation(arccos(x)) from (-1) to (1)  
    elevation(dx(arccos(x)),-1/sqrt(1-x^2)) from (-0.999) to (0.999)  
  
    elevation(arctan(x)) from (-1) to (1)  
    elevation(dx(arctan(x)),1/(1+x^2)) from (-1) to (1)  
  
    elevation(abs(x)) from (-1) to (1)  
    elevation(dx(abs(x))) from (-1) to (1)  
  
    elevation(sinh(x)) from (-1) to (1)  
    elevation(dx(sinh(x)),cosh(x)) from (-1) to (1)  
  
    elevation(cosh(x)) from (-1) to (1)  
    elevation(dx(cosh(x)),sinh(x)) from (-1) to (1)  
  
    elevation(tanh(x)) from (-1) to (1)  
    elevation(dx(tanh(x)),1/cosh(x)^2) from (-1) to (1)  
  
    elevation(erf(x)) from (-1) to (1)  
    elevation(dx(erf(x)),2*exp(-x^2)/sqrt(pi)) from (-1) to (1)  
  
    elevation(erfc(x)) from (-1) to (1)  
    elevation(dx(erfc(x)),-2*exp(-x^2)/sqrt(pi)) from (-1) to (1)  
  
    elevation(sign(x)) from (-1) to (1)  
    elevation(dx(sign(x))) from (-1) to (1)  
  
    elevation(x^(-4)) from (0.01) to (0.1)  
    elevation(dx(x^(-4)),-4*x^(-5)) from (0.01) to (0.1)  
  
    elevation(x^(2*x)) from (0.001) to (1)  
    elevation(dx(x^(2*x)),2*x^(2*x)*(1+ln(x))) from (0.001) to (1)  
  
    elevation(bessj(0,20*x),bessj(1,20*x),bessj(2,20*x)) from (0) to (1) as "Bessel
J0,J1,J2"
    elevation(bessy(0,20*x),bessy(1,20*x),bessy(2,20*x)) from (0.05) to (1) as "Bessel
Y0,Y1,Y2"
    elevation(dx(bessj(0,20*x)),-20*bessj(1,20*x)) from (0) to (1) as "dx(J0)"
    elevation(dx(bessj(1,20*x)),20*(bessj(1,20*x)/(20*x)-bessj(2,20*x))) from (0.001) to
(1) as "dx(J1)"
  
    elevation(expint(1,2*x),expint(2*x)) from (0.001) to (1)  
    elevation(1/gammaf(1,2*x),1/gammaf(2*x)) from (0.001) to (1)  
   
end  
  

5.2.10.7 sum

{ SUM.PDE   
 
  This example demonstrates the use of the SUM  function. 167
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  It poses a heatflow problem with a heat source made up of four 
  gaussians.  The source is composed by a SUM over gaussians 
  referenced to arrays of center coordinates. 
 
}  
title 'Sum test'  
  
Variables  
    u  
  
definitions  
    k = 1  
    u0 = 1-x^2-y^2     { boundary forced to parabolic values }  
    xc = array(-0.5,0.5,0.5,-0.5)  { arrays of source spot coordinates }  
    yc = array(-0.5,-0.5,0.5,0.5)  
    s = sum( i, 1, 4, exp(-10*((x-xc[i])^2+(y-yc[i])^2)) )        { summed Gaussian
source }  
  
equations  
    U: div(K*grad(u)) +s = 0  
  
boundaries  
    region 1  
        start(-1,-1)  
        value(u)=u0 
        line to (1,-1) 

to (1,1) 

to (-1,1) 

to close  
  
monitors  
    grid(x,y)  
    contour(u)  
    contour(s)  

plots  
    grid(x,y)  
    contour(u)  
    contour(s)  
  
end  

  

5.2.10.8 swage_pulse

{ SWAGE_PULSE.PDE   
 
  A pulse can be made by two ifs: 
  r1 = IF x<x1 THEN 0 ELSE 1
  r2 = IF x<x2 THEN 1 ELSE 0
  pulse = r1*r2 
  
  This can be directly translated in to SWAGE  or RAMP  statements with width W: 
  spulse = SWAGE(x-x1,0,1,w) * SWAGE(x-x2,1,0,w) 
  rpulse = RAMP(x-x1,0,1,w) * RAMP(x-x2,1,0,w) 
 
}  
   
title "SWAGE and RAMP Pulses"  
   
select  
     elevationgrid=2000  
   
{ -- No variables, no equations -- }  
   
definitions  
  x1 = -0.5  
  x2 = 0.5  
  w = 0.05  
  swage_pulse = SWAGE(x-x1,0,1,w) * SWAGE(x-x2,1,0,w)  
  ramp_pulse = RAMP(x-x1,0,1,w) * RAMP(x-x2,1,0,w)  
   
boundaries  
    region 1  
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      start(-1,-0.1) line to (1,-0.1) to (1,0.1) to (-1,0.1) to close  
   
plots  
    elevation(swage_pulse) from (-1,0) to (1,0)  
    elevation(ramp_pulse) from (-1,0) to (1,0)  
   
end  
  

5.2.10.9 swage_test

{ SWAGE_TEST.PDE   
  
  This example illustrates the use of the SWAGE  and RAMP  functions to generate 
  smoother alternatives to the IF..THEN  construct. 
  
  IF..THEN is frequently used to turn sources on and off, to define discontinuous 
  initial conditions and the like. 
  
  But in an adaptive system like FlexPDE, discontinuities can be very troublesome. 
  They create very high frequency transients which can cause intense regridding 
  and tiny timesteps.  When they occur in equation coefficients, they can cause 
  convergence failure in Newton's method iterations. 
  
  The SWAGE and RAMP functions are an attempt to give users an alternative to the 
  IF..THEN for defining transitions.  These functions, particularly SWAGE, allow 
  FlexPDE to sense the presence of  a transition and follow it in the iterative solver. 
  
  In the plots created by this problem, we show both the values generated by the
functions, 
  and their derivatives.  By contrast, an IF..THEN has an infinite (ie, undefined)
derivative 
  which is impossible to accurately represent numerically. 
}  
   
title "SWAGE and RAMP Functions"  
   
select  
    elevationgrid=2000  
   
{ -- No variables, no equations -- }  
   
{ -- Definitions can be included, if desired -- }
 
   
{ -- We need a plot domain: -- }  
boundaries  
    region 1  
      start(-1,-0.1) line to (1,-0.1) 
        to (1,0.1) to (-1,0.1) to close  
   
plots  
    elevation(ramp(x,-1,1,0.1), swage(x,-
1,1,0.1)) 
        from (-0.5,0) to (0.5,0)  

    elevation(dx(ramp(x,-1,1,0.1)), dx(swage(x,-
1,1,0.1))) 
        from (-0.5,0) to (0.5,0)  
      
end  
  

5.2.10.10 unit_functions

{ UNIT_FUNCTIONS.PDE  
  
 This example illustrates the unit step, unit pulse, 
 and unit ramp functions ustep(arg1), upulse(arg1,arg2), 
 and uramp(arg1,arg2) See Unit Functions .
 
}  
   
title  
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  "unit functions"  
   
select  
  elevationgrid=500  
   
{no variables}  
   
definitions  
  x1 = 0.2  
  x2 = 0.4  
   
{no equations}  
   
{plot domain -- required}  
boundaries  
  region 1  
    start (-1,0)  
    line to (1,0) to (1,1) to (-1,1) to close  
   
plots  
  elevation(ustep(x-x1)) from (0,0) to (1,0)  
  elevation(dx(ustep(x-x1))) from (0,0) to (1,0)  
  elevation(upulse(x-x1,x-x2)) from (0,0) to (1,0)  
  elevation(dx(upulse(x-x1,x-x2))) from (0,0) to (1,0)  
  elevation(uramp(x-x1,x-x2)) from (0,0) to (1,0)  
  elevation(dx(uramp(x-x1,x-x2))) from (0,0) to (1,0)  
  ! generating a square wave by clipping a cosine  
  elevation(ustep(cos(4*pi*x))) from (-1,0) to (1,0)   
  ! the duty cycle can be controlled by offsetting the cosine from zero 
  elevation(ustep(cos(4*pi*x)-0.3)) from (-1,0) to (1,0)   
   
end  
  

5.2.10.11 vector_functions

{ VECTOR_FUNCTIONS.PDE   
 
  This example illustrates the vector functions  
 
  VECTOR 
  MAGNITUDE 
  DOT 
  CROSS 
  NORMAL 
  TANGENTIAL 
 
}  
  
title  
  "vector functions"  
  
select  
  elevationgrid=500  
  
{no variables}  
  
definitions  
  
  u= exp(-x^2+ y)               { A scalar potential, perhaps }  
  f= grad(u)                    { F = grad(u)  is a vector }  
  df= div(f)                    { Divergence of F is a scalar}  
  cf= curl(f)                   { Curl of F is a new vector }  
  vx= -sin(y)   vy= 2*sin(x)    { vector components }  
  v= vector(vx,vy)              { Another vector }  
  mv= magnitude(v)              { Magnitude of v }  
  cv= curl(v)  
  ccv= curl(curl(v))  
  tvv = v*v { v*v is a tensor }
  divtx = 2*vx*dx(vx)+vx*dy(vy)+vy*dy(vx)   {x-component of div(t) }
  divty = vx*dx(vy)+vy*dx(vx)+2*vy*dy(vy)    {y-component of div(t) }
  divt = vector(divtx,divty)
  
{no equations}  
  
{plot domain -- required}  
boundaries  
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  region 1  
    start "Outer" (-1,0)  
    line to (1,0) to (1,1) to (-1,1) to close  
  
  feature  
   start "inner" (-1/2,1/2) line to (1/2,1/2)  
  
plots  
  vector(f)  
  elevation(normal(f)) on "Outer"  
  elevation(tangential(f)) on "inner"  
  contour(df)   as "Div F"  
  contour(mv)   as "Magnitude V"  
  contour(dot(v,vector(x,0)))  
  contour(zcomp(cross(f,v)))  
  contour(zcomp(cv))   as "Curl V"  
  vector(ccv)   as "Curl Curl V"  
  vector(div(v*v))  as "Div(V*V) inline"
  vector(divt)  as "Div(V*V) expanded"
  vector(div(tvv))  as "Div(V*V) tensor parameter"  
end  
  

5.2.11 Implicit_Curves

5.2.11.1 im plicit_curve_boundary

{ IMPLICIT_CURVE_BOUNDARY.PDE

  This example creates a polynomial boundary segment using the
  implicit ADAPT CURVE  descriptor. With ADAPT, FlexPDE finds the
  solution to the given expression that goes through the current
  point and tracks the curve in the direction specified (+Y).
}
Title 'Implicit Curve Boundary'
Coordinates cartesian2
Variables u

Definitions
     k = 1
     u0 = 1-x^2-y^2
     s = 2*3/4+5*2/4

Initial Values u = 1

Equations
  U: div(K*grad(u)) + s = 0

Boundaries
  region 1
    start(-0.1, 0.004) value(u)=u0  
    line to (0.1,0.004)
    { create a boundary segment that follows the expression
      (x^2+y^2)^2 - 3*x^2*y - y^3 = A, where A is calculated using
      the current point, and start moving in the +Y direction. }
    adapt curve ((x^2+y^2)^2 - 3*x^2*y - y^3)  by (+y) to close

Plots
  contour(u) 
  surface(u) 

End

5.2.11.2 im plicit_curve_surface

{ IMPLICIT_CURVE_SURFACE.PDE
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  This example shows how FlexPDE can be used to plot polynomial
  expressions and their derivatives. This can be helpful in many
  different scenarios, but is presented here because expression
  F3 is used in the example IMPLICIT_CURVE_BOUNDARY.PDE .
}
Title 'Example Surfaces'
Coordinates cartesian2
Select contours=50

Definitions
  f1 = (x^2+y^2)^3-4*x^2*y^2
  f2 = (x^2+y^2)^2-4*x*y
  f3 = (x^2+y^2)^2 - 3*x^2*y - y^3 

Boundaries
  region 1
    start(-2,-1)
    line to (2,-1) to(2,2) to (-2,2) to close

Plots
  contour(F1)
  contour(F1)     zoom(-1,0, 2,1)
  contour(dx(F1)) zoom(-1,0, 2,1)
  contour(dy(F1)) zoom(-1,0, 2,1)
  elevation(dx(F1),dy(F1)) from (-1,0) to (1,0)

  contour(F2)
  contour(F2)     zoom(-1,0, 2,1)
  contour(dx(F2)) zoom(-1,0, 2,1)
  contour(dy(F2)) zoom(-1,0, 2,1)
  elevation(dx(F2),dy(F2)) from (-1,0) to (1,0)

  contour(F3)
  contour(F3)     zoom(-1,0, 2,1)
  contour(dx(F3)) zoom(-1,0, 2,1)
  contour(dy(F3)) zoom(-1,0, 2,1)
  elevation(dx(F3),dy(F3)) from (-1,0) to (1,0.0)

End

5.2.11.3 sine_boundary

{ SINE_BOUNDARY.PDE

  This example creates a sinusoidal boundary segment using
  the implicit CURVE  descriptor. FlexPDE follows the given
  equation exactly, so the current point and the ending point
  must satisfy the equation or an error is issued. It starts
  tracking the4 curve in the direction specified (-X).
}
title 'Sine Boundary'
coordinates cartesian2
variables u

definitions
  k = 1
  bottom = -1

initial values u=1

equations
  U: div(K*grad(u)) + 4 = 0

boundaries
  Region 1
    start(-1,bottom)
      value(u)=0  
    line to (10,bottom)
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      natural(u)=0
    line to (10,2)
      value(u)=1
    { create a boundary segment that follows the equation
      y = cos(pi*x)+1, and start moving in the -X direction. }
    curve (y = cos(pi*x)+1) by (-x) to (-1,0)  
      natural(u)=0  
    line to close

plots
  contour(u) 
  elevation(u) from(-1,0) to (1,0)

end

5.2.11.4 sine_boundary _3d

{ SINE_BOUNDARY_3D.PDE

  This example is a modification of SINE_BOUNDARY.PDE  into 3D.
}
title 'Sine Boundary 3D'
coordinates cartesian3
variables u

definitions
  k = 1
  bottom = -1

initial values u=1

equations
  U: div(K*grad(u)) + 4 = 0

extrusion z = 0,1

boundaries
  Region 1
    start(-1,bottom)
      value(u)=0  
    line to (10,bottom)
      natural(u)=0
    line to (10,2)
      value(u)=1
    { create a boundary segment that follows the equation
      y = cos(pi*x)+1, and start moving in the -X direction. }
    curve (y = cos(pi*x)+1) by (-x) to (-1,0)  
      natural(u)=0  
    line to close

plots
  grid(x,y) on z=1/2
  contour(u)  on z=1/2
  surface(u)  on z=1/2
  elevation(u) from(-1,0,1/2) to (1,0,1/2)

end

5.2.12 Import_Export

5.2.12.1 3d_m esh_export

{ 3D_MESH_EXPORT.PDE 
 
  This example shows the use of the TRANSFER  command to export problem data 
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  and mesh structure in 3D problems. 
 
  The accompanying test 3D_MESH_IMPORT.PDE  reads the transfer file produced here. 
 
  (The framework of the problem is a version of 3D_ANTIPERIODIC.PDE .) 
 
}  
   
title '3D MESH TRANSFER TEST'  
   
coordinates cartesian3  
   
variables  
    u  
   
definitions  
    k = 1  
    an = pi/4          { this is the angular size of the repeated segment }  
    crot = cos(an)     { the sine and cosine needed in the transformation }  
    srot = sin(an)  
    H = 0  
    xc = 1.5  
    yc = 0.2  
    rc = 0.1  
   
equations  
    U: div(K*grad(u)) + H = 0  
   
extrusion z=0,0.4,0.6,1  
   
boundaries  
    Region 1  
   
       start(1,0) line to (2,0)  
   
       value(u) = 0  arc(center=0,0) to (2*crot,2*srot)  
   
       antiperiodic(x*crot+y*srot, -x*srot+y*crot)  
       line to (crot,srot)  
   
       value(u)=0  
       arc(center= 0,0)  to close  
   
    Limited Region 2  
        layer 2 H=1  
        start(xc-rc,0) line to (xc+rc,0) to (xc+rc,rc) to (xc-rc,rc) to close  
   
    Limited Region 3  
        layer 2 H=-1  
        start((xc-rc)*crot,(xc-rc)*srot)  
        line to ((xc+rc)*crot,(xc+rc)*srot)  
             to ((xc+rc)*crot+rc*srot,(xc+rc)*srot-rc*crot)  
             to ((xc-rc)*crot+rc*srot,(xc-rc)*srot-rc*crot) to close  
   
  plots  
     contour(u) on z=0.5 paint  
     grid(x,y,z)  
   
     transfer(u)  file="mesh3u.xfr" ! Export mesh and data 
     transfer()   file="mesh3.xfr"  ! Export mesh only 
   
  end  
  

5.2.12.2 3d_m esh_im port

{ 3D_MESH_IMPORT.PDE 
 
    This example shows the use of the TRANSFERMESH  command to import a 
    3D Mesh.  The mesh file is created by running 3D_MESH_EXPORT.PDE . 
  
    Note that the domain structure must exactly match that of the exporting problem. 
    Periodicity condtions must also be the same, except that periodic and antiperiodic 
    may be exchanged. 
  
    (The framework of this problem is 3D_ANTIPERIODIC.PDE .) 
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}  
   
title '3D MESH IMPORT TEST'  
   
coordinates cartesian3  
   
variables  
    u  
   
definitions  
    k = 1  
    { angular size of the repeated segment: } 
    an = pi/4          
    { sine and cosine needed in transformation } 
    crot = cos(an)    
    srot = sin(an)  
    H = 0  
    xc = 1.5  
    yc = 0.2  
    rc = 0.1  
   
    transfermesh("3d_mesh_export_output/
mesh3.xfr")       ! << read the mesh file 
   
equations  
    U: div(K*grad(u)) + H = 0  
   
extrusion z=0,0.4,0.6,1  
   
boundaries  
    Region 1  
       start(1,0) line to (2,0)     
       value(u) = 0  arc(center=0,0) to (2*crot,2*srot)  
   
       antiperiodic(x*crot+y*srot, -x*srot+y*crot)  
       line to (crot,srot)  
   
       natural(u)=x-2.4*y       ! BC changed from exporting problem 
       arc(center= 0,0)  to close  
   
    Limited Region 2  
        layer 2 H = 1  
        start(xc-rc,0) line to (xc+rc,0) to (xc+rc,rc) to (xc-rc,rc) to close  
   
    Limited Region 3  
        layer 2 H = -1  
        start((xc-rc)*crot,(xc-rc)*srot)  
        line to ((xc+rc)*crot,(xc+rc)*srot)  
                to ((xc+rc)*crot+rc*srot,(xc+rc)*srot-rc*crot)  
                to ((xc-rc)*crot+rc*srot,(xc-rc)*srot-rc*crot) to close  
   
plots  
     contour(u) on z=0.5 paint  
     grid(x,y,z)  
   
end  
  

5.2.12.3 3d_post_processing

{ 3D_POST_PROCESSING.PDE 
 
  This example demonstrates the use of the TRANSFERMESH  facility to import
  both data and mesh structure from 3D_MESH_EXPORT.PDE  and perform
  post-processing without gridding or solving any equations.

  This is easily accomplished in a step-wise process:
  1) make a copy of the script that generated the exported data
  2) remove the VARIABLES and EQUATIONS sections
  3) remove any boundary conditions stated in the BOUNDARIES section
  4) add the TRANSFERMESH statement in the DEFINITIONS section
  5) add any new plots that you desire

  Note that the domain structure must exactly match that of the exporting problem.
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  3D_MESH_EXPORT.PDE  must be run before running this problem.

}  
   
title 'Using TRANSFERMESH for post-processing'  
   
coordinates cartesian3  
   
definitions  
    k = 1  
    an = pi/4          { this is the angular size of the repeated segment }  
    crot = cos(an)     { the sine and cosine needed in the transformation }  
    srot = sin(an)  
    H = 0  
    xc = 1.5  
    yc = 0.2  
    rc = 0.1  
    transfermesh("3d_mesh_export_output/mesh3u.xfr",U)
   
extrusion z=0,0.4,0.6,1  
   
boundaries  
    Region 1  
   
       start(1,0) line to (2,0)  
       arc(center=0,0) to (2*crot,2*srot)  
       line to (crot,srot)  
       arc(center= 0,0)  to close  
   
    Limited Region 2  
        layer 2 H=1  
        start(xc-rc,0) line to (xc+rc,0) to (xc+rc,rc) to (xc-rc,rc) to close  
   
    Limited Region 3  
        layer 2 H=-1  
        start((xc-rc)*crot,(xc-rc)*srot)  
        line to ((xc+rc)*crot,(xc+rc)*srot)  
             to ((xc+rc)*crot+rc*srot,(xc+rc)*srot-rc*crot)  
             to ((xc-rc)*crot+rc*srot,(xc-rc)*srot-rc*crot) to close  
   
plots  
    grid(x,y,z)  
    grid(x,y) on z=0.5
    contour(u) on z=0.5 zoom(1.3,0,0.4,0.4)  
    contour(u) on z=0.5 zoom(1.4,0,0.2,0.2) paint 
   
end  
  

5.2.12.4 3d_surf_export

{ 3D_SURF_EXPORT.PDE 
 
  This problem shows data export on an extrusion surface in 3D. 
 
  Values are exported on a cut plane in default text format, 
  and on a cut plane and an extrusion surface in user-specified columnar format. 
  (See "Format 'string' " in the Help Index for formatting rules.) 
 
  The output files will be given the default names  
  "3d_surf_export.p02", "...p03" and "...p04", corresponding to the second, 
  third and fourth plot specifications. 
 
  The problem is a modification of 3D_SPHERE.PDE . 
}  
   
title '3D Export Test - Sphere'  
   
coordinates  
     cartesian3  
   
variables  
     u  
   
definitions  
     k = 0.1                    { conductivity }  
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     heat =6*k                  { internal heat source }  
    u0 = exp(-x^2-y^2)  
   
equations  
    U: div(K*grad(u)) + heat   = 0  
   
extrusion  
    surface z = -sqrt(1-(x^2+y^2))      { the bottom hemisphere }  
    surface z = sqrt(1-(x^2+y^2))       { the top hemisphere }  
   
boundaries  
    surface 1 value(u) = u0     { fixed value on sphere surfaces }  
    surface 2 value(u) = u0  
    region 1  
        start(1,0) arc(center=0,0) angle=360  
   
plots  
    grid(x,y,z)  
    contour(u) on x=0          { YZ plane through diameter }  
    export  
    contour(u) on z=0.5        { XY plane above center }  
            export format "#x#b#y#b#z#b#1"  
    contour(u) on surface 2            { top surface }  
            export format "#x#b#y#b#z#b#1"  
   
end  
  

5.2.12.5 blocktable

{ BLOCKTABLE.PDE 
 
  This example shows the use of the BLOCK  modifier in reading TABLE  data. 
 
  The BLOCK  modifier allows table data to be interpreted in Histogram profile. 
  The default interpretation imposes a 10% rise width on the histogram blocks, 
  to avoid dramatic timestep cuts when data are used as driving profiles in  
  time-dependent problems. 
 
  The BLOCK(rise)  qualifier allows the specification of a rise width as a fraction 
  of block width. 
 
}  
  
title '1D BLOCK table'  
  
select  
    regrid=off  
  
{ No Variables are necessary }  
  
definitions  
    { single value format with default 10% rise width: }  
    u = block table("table1.tbl")  
    { assignment list format with 50% rise width: }  
    block(0.5) tabledef("table1.tbl",v)  
    { single value format with un-blocked interpretation: }  
    w = table("table1.tbl")  
  
boundaries  
    Region 1  
      start(0,0)  
      line to (10,0) to (10,1) to (0,1) to close  
    
plots  
    contour(u)  as "10% rise"  
    contour(v)  as  "50% rise"  
    contour(w)  as "Unblocked"  
    elevation(u) as "10% rise" from(0,0.5) to (10,0.5)  
    elevation(v) as "50% rise" from(0,0.5) to (10,0.5)  
    elevation(w) as "Unblocked" from(0,0.5) to (10,0.5)  
    elevation(u, v, w) from(0,0.5) to (10,0.5)  
  
end  
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5.2.12.6 export

{ EXPORT.PDE  
 
  This sample demonstrates the use of several forms of data export selectors. 
  All exports use the default file naming conventions, which append modifiers  
  to the problem name. 
 
  A heat flow problem is solved on a square for example purposes. 
 
}  
  
title "Demonstrate forms of export"  
  

variables  
    Temp                  
  
definitions  
    K = 1                         
    source = 4                    
    Texact = 1-x^2-y^2      
    flux=magnitude(K*grad(Temp))  
  
Initial values  
    Temp = 0                      
  
equations  
    Temp: div(K*grad(Temp)) + source = 0     
  
boundaries                        
    Region 1                      
        start "BDRY" (-1,-1)      
        value(Temp)=Texact        
        line to (1,-1)                
             to (1,1)  
             to (-1,1)  
             to close                 
  
monitors  
    contour(Temp)               
  
plots                             
    { this contour plot exports graphic images in four formats:  
        ( notice that the BMP file is 46 times larger than the other formats!)  }  
    contour(Temp) PNG EPS EMF BMP  
    { export temperature and flux in NetCDF format }
    cdf(temp,flux)
    { export FlexPDE TABLE format }  
    table(temp)  
    { export temperature and flux in TecPlot format }  
    tecplot(temp,flux)  
    { export temperature and flux in linearized VTK format }  
    vtklin(temp,flux)  
  
  
end  
  

5.2.12.7 export_form at

{ EXPORT_FORMAT.PDE   
 
  This problem demonstrates a few variations on the use of the 
  FORMAT  modifier in data export. 
 
}  
   
Title 'Test FORMATTED export'  
   
Variables  
  u(1.0)  
   
Equations  
  U:  dxx(u) + dyy(u) = -4  
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Boundaries  
  region 1  
    start(0.5,1)  
    value(u)=0                  { the cold outer boundary }  
    line to (2.5,1) to (2.5,2) to (0.5,2) to close  
   
    start(1,1.2)  
    natural(u) = 0  
    line to (1,1.8) to (2,1.8)  
    line to (1.52,1.52) to (1,1.52) to (1,1.48) to (1.52,1.48)  
         to (2,1.2) to close  
   
Monitors  
  contour(u)  
   
Plots  
   
  { An ELEVATION plot prints a tag-delimited data list to the file "PTABLE.TXT":}  
  elevation(u) from (1.5,1) to (1.5,2) export format "#y#b#1" file="ptable.txt"  
   
  { A CONTOUR plot prints a tab-delimited table of values in the default 

 file "export_format.p02": }  
  contour(u^2)  export format "#x#b#y#b#1"  
   
  { A VECTOR plot prints a table of vectors delimited by commas and parentheses 
        in the file "VECTOR.TXT": }  
  vector(-dx(u),-dy(u))  zoom(1.9,1.7,0.2,0.2)  export format "(#x,#y)=(#1,#2)"  
        file "vectors.txt"  
   
  { A TABLE output without graphics writes a 10x10 table of FIXED POINT gridding 
        statements suitable for inclusion in another PDE descriptor 
        (in the default file "export_format_01.tbl"): }  
  table(u) format "fixed point (#x,#y) point load(u)=(#1-u)" points=10  
   
  { A TABLE output without graphics writes a 12x10 table of gaussian source 
        statements suitable for inclusion in another PDE descriptor 
        (in the default file "export_format_02.tbl"): }  
  table(u) format "+a*exp(-((x-#x)/c)^2-((y-#y)/c)^2)*(#1-u)" points=(12,10)  
   
End  
  

5.2.12.8 export_history

{ EXPORT_HISTORY.PDE   
 
  This example illustrates use of the FORMAT  modifier in the export of a 
  HISTORY  plot.   
 
  The repeat (#R ) construct is used to create a comma-delimited data list.   
 
  The problem is the same as FLOAT_ZONE.PDE . 
 
}  
  
title  
  "FORMATTED HISTORY EXPORT"  
  
coordinates  
  xcylinder('Z','R')  
  
select  
  cubic         { Use Cubic Basis }  
  
variables  
  temp (threshold=100)  
  
definitions  
  k = 0.85      { thermal conductivity}  
  cp = 1        { heat capacity }  
  long = 18  
  H = 0.4       { free convection boundary coupling }  
  Ta = 25       { ambient temperature }  
  A = 4500      { amplitude }  
  
  source = A*exp(-((z-1*t)/.5)^2)*(200/(t+199))  
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initial value  
  temp = Ta  
  
equations  
  Temp:  div(k*grad(temp)) + source = cp*dt(temp)  
  
boundaries  
  region 1  
    start(0,0)  
    natural(temp) = 0 line to (long,0)  
    value(temp) = Ta line to (long,1)  
    natural(temp) = -H*(temp - Ta) line to (0,1)  
    value(temp) = Ta line to close  
  feature  
    start(0.01*long,0) line to (0.01*long,1)  
  
time -0.5 to 19 by 0.01  
  
monitors  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0,1) to (long,1) range=(0,1800) as "Surface Temp"  
  contour(temp)  
  
plots  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0,0) to (long,0) range=(0,1800) as "Axis Temp"  
  
histories  
  { EXPORT a formatted HISTORY file: }  
   history(temp) at (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)  
                   (9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0) (16,0)  
                   (17,0) (18,0)  export format "#t#r,#i"  
  
end  
  

5.2.12.9 m esh_export

{ MESH_EXPORT.PDE   
   
  This example uses a modification of the sample problem HEAT_BOUNDARY.PDE  
  to illustrate the use of the TRANSFER  output function.   
 
  Both the temperatures calculated here and the final mesh structure are transferred 
  as input to the stress calculation MESH_IMPORT.PDE   
 
}  
   
title "Test TRANSFER output"  
   
variables  
     Temp  
   
definitions  
     K = 1  
     source = 4  
     Tzero = 0  
     flux = -K*grad(Temp)  
   
equations  
    Temp: div(K*grad(Temp)) + source = 0  
   
boundaries  
     Region 1  
        start "OUTER" (0,0)  
        natural(Temp)=0     line to(1,0)  
   
        natural(Temp)=0     arc (center=0,0) to (0,1)  
   
        natural(Temp)=0     line to close  
   
        start "INNER" (0.4,0.2)  
        natural(Temp)=Tzero-Temp  
          arc (center=0.4,0.4)  
             to (0.6,0.4)  
             to (0.4,0.6)  
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             to (0.2,0.4)  
             to close  
   
monitors  
     contour(Temp)  
   
plots  
     grid(x,y)  
     contour(Temp)  
     surface(Temp)  
     vector(-K*dx(Temp),-K*dy(Temp)) as "Heat Flow"  
     contour(source)  
     elevation(normal(flux)) on "outer" range(-0.08,0.08)  
         report(bintegral(normal(flux),"outer")) as "bintegral"  
     elevation(normal(flux)) on "inner" range(1.95,2.3)  
         report(bintegral(normal(flux),"inner")) as "bintegral"  
   
     { HERE IS THE TRANSFER OUTPUT COMMAND: }  
     transfer(Temp,source) file="transferm.xfr"  
   
end  
  

5.2.12.10 m esh_im port

{ MESH_IMPORT.PDE   
 
  This problem demonstrates the use of the TRANSFERMESH  facility to import 
  both data and mesh structure from MESH_EXPORT.PDE . 
 
  MESH_EXPORT.PDE  must be run before running this problem. 
 
}  
  
title 'Testing the TRANSFERMESH statement'  
  
select  
    painted             { paint all contour plots }  
  
variables  
    U  
    V  
  
definitions  
    nu = 0.3            { define Poisson's Ratio }  
    E  = 21             { Young's Modulus x 10^-11 }  
    G  = E/(1-nu^2)  
    C11 = G  
    C12 = G*nu  
    C22 = G  
    C33 = G*(1-nu)/2  
  
    alpha = 1e-3  
    b = G*alpha*(1+nu)  
  
   { HERE IS THE TRANSFERMESH INPUT FUNCTION: }  
    transfermesh('mesh_export_output/transferm.xfr',Temp)  
  
    Sxx = C11*dx(U) + C12*dy(V) - b*Temp  
    Syy = C12*dx(U) + C22*dy(V) - b*temp  
    Sxy = C33*(dy(U) + dx(V))  
  
initial values  
    U = 0  
    V = 0  
  
equations  
    U:  dx(Sxx) + dy(Sxy)  = 0  
    V:  dy(Syy) + dx(Sxy) = 0  
  
boundaries  
    Region 1  
        start "OUTER" (0,0)  
        natural(U)=0 value(V)=0         { no y-motion on x-axis }  
          line to(1,0)  
        natural(U)=0 natural(V)=0       { free outer boundary }  
          arc (center=0,0) to (0,1)  
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        value(U)=0 natural(V)=0         { no x-motion on y-axis }  
          line to close  
  
        natural(U)=0 natural(V)=0       { free inner boundary }  
        start "INNER" (0.4,0.2)  
          arc (center=0.4,0.4)  
             to (0.6,0.4)  
             to (0.4,0.6)  
             to (0.2,0.4)  
             to close  
  
monitors  
      grid(x+100*U,y+100*V)  
  
plots  
     contour(Temp)  
     grid(x+100*U,y+100*V)  
     vector(U,V) as "Displacement"  
     contour(U) as "X-Displacement"  
     contour(V) as "Y-Displacement"  
     contour(Sxx) as "X-Stress"  
     contour(Syy) as "Y-Stress"  
     surface(Sxx) as "X-Stress"  
     surface(Syy) as "Y-Stress"  
  
end  
  

5.2.12.11 post_processing

{ POST_PROCESSING.PDE   

  This example demonstrates the use of the TRANSFERMESH  facility to import
  both data and mesh structure from MESH_EXPORT.PDE  and perform
  post-processing without gridding or solving any equations.

  This is easily accomplished in a step-wise process:
  1) make a copy of the script that generated the exported data
  2) remove the VARIABLES and EQUATIONS sections
  3) remove any boundary conditions stated in the BOUNDARIES section
  4) add the TRANSFERMESH statement in the DEFINITIONS section
  5) add any new plots that you desire

  Note that the domain structure must exactly match that of the exporting problem.

  MESH_EXPORT.PDE  must be run before running this problem.

}  
   
title "Using TRANSFERMESH for post-processing"  
   
definitions  
    K = 1  
    transfermesh('mesh_export_output/transferm.xfr',Temp)

boundaries  
     Region 1  
        start "OUTER" (0,0)  
        line to(1,0)  
        arc (center=0,0) to (0,1)  
        line to close  
   
        start "INNER" (0.4,0.2)  
          arc (center=0.4,0.4)  
             to (0.6,0.4)  
             to (0.4,0.6)  
             to (0.2,0.4)  
             to close  
   
plots  
     grid(x,y)  
     contour(Temp)  
     contour(Temp) zoom(0.2,0.2,0.1,0.1)
     surface(Temp)  
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     vector(-K*dx(Temp),-K*dy(Temp)) as "Heat Flow"  
   
end  
  

5.2.12.12 sm oothtable

{ SMOOTHTABLE.PDE

   This example shows the use of the SMOOTH  modifier for data tables.

   No PDE system is solved in this example, it is purely a display of TABLE data.
   
}
title 'Smooth Table Input Test'
 
definitions
  size=10
  ts = table('table_s.tbl')  
  tsx = smooth(1,0) table('table_s.tbl')  
  tsy = smooth(0,1) table('table_s.tbl')  
  tsxy = smooth(1,1) table('table_s.tbl')  
 
boundaries
  region 1
    start(0,size)
    line to (0,0) to (size,0) to (size,size) to close
 
plots
  grid(x,y)
  surface(ts) as 'Table'
  surface(tsx) as 'X-smooth'
  surface(tsy) as 'Y-smooth'
  surface(tsxy) as 'XY-smooth'
elevation(ts,tsx) from(0,size/2) to (size,size/2)  as 'X-smooth'
elevation(ts,tsy) from(size/2,0) to (size/2,size)  as 'Y-smooth'
elevation(ts,tsxy) from(size/2,0) to (size/2,size)  as 'XY-smooth'
 
end

5.2.12.13 splinetable

{ SPLINETABLE.PDE 
 
   This example solves the same system as TABLE.PDE , using a Spline interpretation of
the 
   data in the table file 'TABLE.TBL'. 
   The file format is the same for TABLE  or SPLINE TABLE  input. 
  
   The SPLINE TABLE operator can be used to build spline tables of one or two
dimensions. 
   The resulting interpolation is third order in the coordinates, with continuous values 
   and derivatives. First or second derivatives of the interpolated function may be
computed. 
  
   Here the table is used as source and diffusivity in a fictitious heat equation, merely
to 
   show the use of the table variable. 
  
   The SAVE function is used to construct a Finite Element interpolation of the data from
the 
   spline table, for comparison of derivatives.  Cubic FEM basis is used so that the
second 
   derivative is meaningful. 
}  
title 'Spline Table Input Test'  
   
select  
  regrid=off  
  
variables  
  u  
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definitions    
  alpha = spline table('table.tbl')  ! construct spline fit of table: 
  beta = 1/alpha    
  femalpha = save(alpha)             ! save a FEM interpolation of table:
   
equations  
  U:  div(alpha*grad(u)) + beta = 0  
   
boundaries  
  region 1  
    start(0,10)  
    value(u) = 0  
    line to (0,0) to (10,0) to (10,10) to close  
  monitors  
  contour(u)  
   
plots  
  grid(x,y)  
  contour(alpha) as 'table'  
  contour(dx(alpha)) as 'dx(table)'  
  contour(dy(alpha)) as 'dy(table)'  
  vector(grad(alpha)) as 'grad(table)'  
  surface(alpha) as 'table'  
  contour(dxx(alpha)) as 'dxx(table)'  
  contour(dxy(alpha)) as 'dxy(table)'  
  contour(dyy(alpha)) as 'dyy(table)'  
  contour(dxx(alpha)+dyy(alpha))  as "Table Curvature"  
  contour(div(grad(femalpha)))  as "FEM Curvature"  
  surface(beta) as "table reciprocal"   
  contour(u) as "temperature solution"  
  surface(u) as "temperature solution"  
   
end  
  

5.2.12.14 table

{  TABLE.PDE 
 
   This problem demonstrates the use of tabular data. 
   It reads the file "TABLE.TBL", uses the data in a heat equation, 
   and displays the table data. 
 
}  
title 'Table Input Test'  
   
select  
  errlim = 0.0005  
   
variables  
  u  
   
definitions  
  alpha = table('table.tbl')  
  beta = 1/alpha  
   
equations  
  U:  div(alpha*grad(u)) + beta = 0  
   
boundaries  
  region 1  
    start(0,10)  
    value(u) = 0  
    line to (0,0) to (10,0) to (10,10) to close  
   
monitors  
  contour(u)  
   
plots  
  grid(x,y)  
  contour(alpha)  as "Conductivity (Table data)"  
  surface(alpha) as 'Conductivity (Table data)'  
  vector(grad(alpha)) as 'grad(table)'  
  surface(beta)  as "Source (Table Reciprocal)"  
  contour(u)  as "Temperature solution"  
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  surface(u)  as "Temperature solution"  
   
end  
  

5.2.12.15 tabledef

{  TABLEDEF.PDE   
 
    This problem illustrates the use of the TABLEDEF  function to define several  
    parameters from an imported table named TABLEDEF.TBL 
  
    Note that the TABLEDEF  function has the same syntax as the TRANSFER  function. 
    The difference is that TABLEDEF  uses a rectangular grid of data values,  
    while TRANSFER  uses an unstructured triangular finite element mesh created  
    by a prior FlexPDE run. 
  
}  
title 'Table Input Test'  
   
select  
  errlim = 0.0005  
   
variables  
  u  
   
definitions  
  tabledef('tabledef.tbl',alpha,beta)  
   
equations  
  U:  div(alpha *grad(u)) + beta = 0  
   
boundaries  
  region 1  
    start(0,10)  
    value(u) = 0  
    line to (0,0) to (10,0) to (10,10) to close  
   
monitors  
  contour(u)  
   
plots  
  grid(x,y)  
  contour(u)  
  surface(u)  
  contour(alpha)  
  contour(beta)  
  vector(grad(alpha))  
   
end  
  

5.2.12.16 table_export

{  TABLE_EXPORT.PDE 
 
  This example shows the use of FlexPDE as a generator of data tables 
  in proper format to be read in by other FlexPDE problems. 
 
  We define a domain which is the domain of the table coordinates, and 
  compute and export the table. 
 
  No variables or equations are declared. 
 
  This example exports both a 1D and a 2D table of a Gaussian in the table 
   files "GAUS1.TBL" and "GAUS2.TBL".   
 
  The output is in default format, suitable for TABLE  input to other FlexPDE runs.   
  See "FORMAT 'string'" in the Help Index for formatting controls. 
 
  See TABLE_IMPORT.PDE  for an example of reading the TABLE  created here. 
    
}  
  
title 'TABLE generation'  
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select  
    regrid=off  
  
definitions  
    u = exp(-16*(x^2+y^2))  
  
boundaries  
    Region 1  
        start(-1,-1)  
        line to (1,-1) to (1,1) to (-1,1) to close  
plots  
    contour(u)  
    surface(u)  
    ! 2D table 
    table(u) points=51 file='gauss2.tbl'  
    ! 1D table 
    elevation(u) from(-1,0) to (1,0) export file='gauss1.tbl'  
  
end  
  

5.2.12.17 table_im port

{  TABLE_IMPORT.PDE 
 
  This example reads a 1D table created by TABLE_EXPORT.PDE  and fits 
  the data with a cubic spline.  It then compares derivatives with 
  analytic values.     
 
}  
   
title '1D Spline table import'  
   
select  
    regrid=off  
   
definitions  
     u = spline table("table_export_output/gauss1.tbl")  
     gu = exp(-16*x^2)  
boundaries  
     Region 1  
        start(-1,-1)  
        line to (1,-1) to (1,1) to (-1,1) to close  
plots  
     contour(u) as "imported data"  
     contour(dx(u)) as "X-derivative of imported data"  
     contour(dxx(u)) as "XX-derivative of imported data"  
     elevation(u, gu) from(-1,0) to (1,0) as "Imported data and exact function"  
     elevation(dx(u), dx(gu)) from(-1,0) to (1,0) as "Imported X-derivative and exact
function"  
     elevation(dxx(u), dxx(gu)) from(-1,0) to (1,0) as "Imported XX-derivative and exact
function"  
   
end  
  

5.2.12.18 transfer_export

{  TRANSFER_EXPORT.PDE   
   
  This example uses a modification of the sample problem  
  HEAT_BOUNDARY.PDE  to illustrate the use of the TRANSFER  output  
  function.  Temperatures calculated here are transferred as  
  input to the stress calculation TRANSFER_IMPORT.PDE    
 
}  
   
   
title "TRANSFER export test"  
   
variables  
    Temp (threshold=0.1)  
   
definitions  
    K = 1  
    source = 4  

570

415 212

572



Sample Problems : Usage 572

    Tzero = 0  
    flux = -K*grad(Temp)  
   
equations  
    Temp:  div(K*grad(Temp)) + source = 0  
   
boundaries  
    Region 1  
        start "OUTER" (0,0)  
        natural(Temp)=0        line to(1,0)  
   
        natural(Temp)=0        arc (center=0,0) to (0,1)  
   
        natural(Temp)=0        line to close  
   
        start "INNER" (0.4,0.2)  
        natural(Temp)=Tzero-Temp  
        arc (center=0.4,0.4)  
           to (0.6,0.4)  
           to (0.4,0.6)  
           to (0.2,0.4)  
           to close  
   
monitors  
    contour(Temp)  
   
plots  
    grid(x,y)  
    contour(Temp)  
    surface(Temp)  
    vector(-K*dx(Temp),-K*dy(Temp)) as "Heat Flow"  
    contour(source)  
    elevation(normal(flux)) on "outer" range(-0.08,0.08)  
       report(bintegral(normal(flux),"outer")) as "bintegral"  
    elevation(normal(flux)) on "inner" range(1.95,2.3)  
       report(bintegral(normal(flux),"inner")) as "bintegral"  
   
    { HERE IS THE TRANSFER OUTPUT COMMAND: }  
    transfer(Temp,K) file="transfer.xfr"  
   
end  
  

5.2.12.19 transfer_im port

{ TRANSFER_IMPORT.PDE   
 
  This problem demonstrates the use of the TRANSFER  facility to import 
  temperatures from TRANSFER_EXPORT.PDE  as the source of thermal expansion 
  driving a stress calculation. 
 
  TRANSFER_EXPORT.PDE  must be run before running this problem. 
}  
  
title 'Testing the TRANSFER input function'  
  
select  
    painted             { paint all contour plots }  
  
variables  
    U  
    V  
  
definitions  
    nu = 0.3            { define Poisson's Ratio }  
    E  = 21             { Young's Modulus x 10^-11 }  
    G  = E/(1-nu^2)  
    C11 = G  
    C12 = G*nu  
    C22 = G  
    C33 = G*(1-nu)/2  
  
    alpha = 1e-3  
    b = G*alpha*(1+nu)  
  
    { HERE IS THE TRANSFER INPUT FUNCTION: }  
    transfer('transfer_export_output/transfer.xfr',Temp,Kxfer)  
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    Sxx = C11*dx(U) + C12*dy(V) - b*Temp  
    Syy = C12*dx(U) + C22*dy(V) - b*temp  
    Sxy = C33*(dy(U) + dx(V))  
  
initial values  
    U = 0  
    V = 0  
  
equations  
    U:  dx(Sxx) + dy(Sxy)  = 0  
    V:  dy(Syy) + dx(Sxy) = 0  
  
constraints  
     integral(u) = 0  
     integral(v) = 0  
     integral(dx(v)-dy(u)) = 0  
  
boundaries  
     Region 1  
        start "OUTER" (0,0)  
          
        natural(U)=0 value(V)=0     line to(1,0)  
        natural(U)=0 natural(V)=0     
            arc (center=0,0) to (0,1) { free outer boundary }  
        value(U)=0 natural(V)=0     line to close  
  
        { free inner boundary }  
        start "INNER" (0.4,0.2)  
        natural(U)=0 natural(V)=0   
        arc (center=0.4,0.4)  
           to (0.6,0.4)  
           to (0.4,0.6)  
           to (0.2,0.4)  
           to close  
  
monitors  
      grid(x+100*U,y+100*V)  
  
plots  
     contour(Temp)  report(Kxfer)  
     grid(x+100*U,y+100*V)  
     vector(U,V) as "Displacement"  
     contour(U) as "X-Displacement"  
     contour(V) as "Y-Displacement"  
     contour(Sxx) as "X-Stress"  
     contour(Syy) as "Y-Stress"  
     surface(Sxx) as "X-Stress"  
     surface(Syy) as "Y-Stress"  
  
end  
  

5.2.13 Integrals

5.2.13.1 2d_integrals

{ 2D_INTEGRALS.PDE 
  This problem demonstrates the specification of various integrals in 2D. 
}  
   
title '2D Integrals'  
   
coordinates  
    ycylinder  
   
variables  
    Tp  
  
select errlim=1e-4  
   
definitions  
    R0 = 0.1  
    R1 = 0.4  
    R2 = 0.6  
    Long = 1.0  
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    K                   { thermal conductivity -- values supplied later }  
    Q = 10*max(1-((r-R1)^2+z^2),0)              { Thermal source }  
   
    { This definition shows the use of a selector to force integration of Tp only in
inner region }  
    flag2=0      
    temp2 = if flag2>0 then Tp else 0  
   
initial values  
    Tp = 0.  
   
equations  
    Tp:    div(k*grad(Tp)) + Q = 0        { the heat equation }  
   
boundaries  
   
    Region 1        { define full domain boundary }  
       K = 1  
       start "outside" (R0,-Long/2)  
         value(Tp) = 0      { fix all side temps }  
         line to (R2,-Long/2)     
           to (R2,Long/2)  
           to (R0,Long/2)  
           to close  
   
    Region 2 "Inner"       
       flag2=1  
       k=0.2         
       start "Inner" (R0,-Long/2)  
         line to (R1,-Long/2)       
           to (R1,Long/2)  
           to (R0,Long/2)  
           to close  
   
monitors  
    contour(Tp)   
   
plots  
    contour(Tp)   
    contour(k*dz(Tp))   
    contour(q)   
  
    summary  
      report("Compare various forms for integrating over region 2")  
      report(integral(Tp,2))        
      report(integral(Tp,"Inner"))       
      report(integral(temp2))   { integrates over full volume, but temp2 is zero in
region 1 }  
      report '-----'  
   
      report("Compare various forms for integrating over total volume")  
      report(integral(Tp,"ALL"))    
      report(integral(Tp))  
      report '-----'  
   
      report("Compare various forms for integrating over surface of region 2")  
      report(sintegral(normal(-k*grad(Tp)),2))    
      report(sintegral(normal(-k*grad(Tp)),'Inner'))     
      report '-----'  
   
      report("Compare surface flux on region 2 to internal divergence integral")  
      report(sintegral(normal(-k*grad(Tp)),"Inner"))     
      report(integral(Q,"Inner"))    
      report '-----'  
  
      report("Compare surface flux on total volume to internal divergence integral")  
      report(sintegral(normal(-k*grad(Tp))))     
      report(integral(Q))    
      report '-----'  
  
end
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5.2.13.2 3d_integrals

{ 3D_INTEGRALS.PDE 
  This problem demonstrates the specification of various integrals in 3D. 
  ( This is a modification of problem  3D_BRICKS.PDE ) 
}  
   
title '3D Integrals'  
   
coordinates  
    cartesian3  
   
variables  
    Tp  
   
definitions  
    long = 1  
    wide = 1  
    K                   { thermal conductivity -- values supplied later }  
    Q = 10*max(1-x^2-y^2-z^2,0)              { Thermal source }  
   
    { These definitions create a selector that supresses evaluation  
        of Tp except in region 2 of layer 2 }  
    flag22=0      
    check22 = if flag22>0 then Tp else 0  
   
    { These definitions create a selector that supresses evaluation  
        of Tp except in region 2 of all layers }  
    flag20=0      
    check20 = if flag20>0 then Tp else 0  
   
initial values  
    Tp = 0.  
   
equations  
    Tp:    div(k*grad(Tp)) + Q = 0        { the heat equation }  
   
extrusion  
    surface "bottom" z = -long  
      layer 'bottom'  
    surface "middle" z=0  
      layer 'top'  
    surface 'top' z= long   { divide Z into two layers }  
   
boundaries  
    surface 1 value(Tp)=0   { fix bottom surface temp }  
    surface 3 value(Tp)=0   { fix top surface temp }  
   
    Region 1        { define full domain boundary in base plane }  
       layer 1 k=1      { bottom right brick }  
       layer 2 k=0.1        { top right brick }  
       start "outside" (-wide,-wide)  
         value(Tp) = 0      { fix all side temps }  
         line to (wide,-wide)   { walk outer boundary in base plane }  
           to (wide,wide)  
           to (-wide,wide)  
           to close  
   
    Region 2 "Left"     { overlay a second region in left half }  
       flag20=1  
       layer 1 k=0.2        { bottom left brick }  
       layer 2 k=0.4  flag22=1  { top left brick }  
       start(-wide,-wide)  
         line to (0,-wide)      { walk left half boundary in base plane }  
           to (0,wide)  
           to (-wide,wide)  
           to close  
   
monitors  
    contour(Tp) on surface z=0  as "XY Temp"  
    contour(Tp) on surface x=0  as "YZ Temp"  
    contour(Tp) on surface y=0  as "ZX Temp"  
    elevation(Tp) from (-wide,0,0) to (wide,0,0)  as "X-Axis Temp"  
    elevation(Tp) from (0,-wide,0) to (0,wide,0)  as "Y-Axis Temp"  
    elevation(Tp) from (0,0,-long) to (0,0,long)  as "Z-Axis Temp"  
   
plots  
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    contour(Tp) on z=0  as "XY Temp"  
    contour(Tp) on x=0  as "YZ Temp"  
    contour(Tp) on y=0  as "ZX Temp"  
    contour(k*dz(Tp)) on z=-0.001  as "Low Middle Z-Flux"  
    contour(k*dz(Tp)) on z=0.001  as "High Middle Z-Flux"  
   
    summary  
      report("Compare various forms for integrating over region 2 of layer 2")  
      report(integral(Tp,2,2))        
      report(integral(Tp,"Left","Top"))       
      report(integral(check22))  
      report '-----'  
   
      report("Compare various forms for integrating over region 2 in all layers")  
      report(integral(Tp,2,0))        
      report(integral(check20))  
      report '-----'  
   
      report("Compare various forms for integrating over total volume")  
      report(integral(Tp,"ALL","ALL"))    
      report(integral(Tp))  
      report '-----'  
   
      report("Compare various forms for integrating over surface 'middle'")  
      report(sintegral(normal(-k*grad(Tp)),2))    
      report(sintegral(normal(-k*grad(Tp)),'Middle'))     
      report(sintegral(-k*dz(Tp),2))      
      report '-----'  
   
      report("Compare various forms for integrating over surfaces")  
      report(sintegral(normal(-k*grad(Tp)),1))  as "Bottom Flux"  
      report(sintegral(normal(-k*grad(Tp)),3))  as "Top Flux"  
      report(sintegral(normal(-k*grad(Tp)),"outside")) as "Side Flux"  
      report(sintegral(normal(-k*grad(Tp)),1)+sintegral(normal(-k*grad(Tp)),3)  
            +sintegral(normal(-k*grad(Tp)),"outside")) as "Bottom+Top+Side Flux"  
      report(sintegral(normal(-k*grad(Tp))))    { surface integral on total outer surface
}  
      report(integral(Q) )  as "Source Integral"  
      report(sintegral(normal(-k*grad(Tp)),"outside")  
            +sintegral(normal(-k*grad(Tp)),1)+sintegral(normal(-k*grad(Tp)),3)  
            -integral(Q) )  as "Energy Error"  
      report(integral(div(-k*grad(Tp))) )   as "Divergence Integral"  
      report '-----'  
   
      report("Compare surface flux on region 2 of layer 2 to internal divergence
integral")  
      { surface integral over outer surface of region 2, layer 2 }  
      report(sintegral(normal(-k*grad(Tp)),"Left","Top"))     
      report(integral(Q,"Left","Top"))    
      report '-----'  
   
end  
  

5.2.13.3 tim e_integral

{ TIME_INTEGRAL.PDE    
   
  This example illustrates use of the TIME_INTEGRAL  function in time-dependent
problems. 
}  
  
title  
  "Float Zone"  
  
coordinates  
  xcylinder('Z','R')  
  
variables  
  temp (threshold=100)  
  
definitions  
  k = 0.85                            {thermal conductivity}  
  cp = 1                              { heat capacity }  
  long = 18  
  H = 0.4                             {free convection boundary coupling}  
  Ta = 25                             {ambient temperature}  
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  A = 4500                            {amplitude}  
  
  source = A*exp(-((z-1*t)/.5)^2)*(200/(t+199))  
  
  tsource = time_integral(vol_integral(source))  
  
initial value  
  temp = Ta  
  
equations  
  temp:  div(k*grad(temp)) + source = cp*dt(temp)  
  
boundaries  
  region 1  
    start(0,0)  
    natural(temp) = 0 line to (long,0)  
    value(temp) = Ta line to (long,1)  
    natural(temp) = -H*(temp - Ta) line to (0,1)  
    value(temp) = Ta line to close  
  feature  
    start(0.01*long,0) line to (0.01*long,1)  
  
time -0.5 to 19  
  
monitors  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0,1) to (long,1) range=(0,1800) as "Surface Temp"  
  contour(temp)  
  contour(dt(temp))  
  
plots  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0,0) to (long,0) range=(0,1800) as "Axis Temp"  
  
histories  
  history(temp,dt(temp)) at (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)  
                   (9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0) (16,0)  
                   (17,0) (18,0)  
  history(tsource)  as "Total Source"  
  
end  
  

5.2.14 Mesh_Control

5.2.14.1 3d_curvature

{ 3D_CURVATURE.PDE 
 
  This problem demonstrates automatic mesh densification due to curvature and 
  proximity to small features. 
   
  The example consists of a three-layer heatflow problem.  The bottom layer contains 
  a hidden rise, or "dimple", that rises close to the base of the adjoining layer. 
 
  FlexPDE detects this dimple and automatically refines the computation mesh to  
  resolve the curvature of the tip. 
 
  It also detects the proximity of the dimple peak to the adjoining layer and refines
the 
  mesh in that layer as well. 
 
}  
 
    
title '3D Layer curvature resolution Test'  
   
coordinates  
    cartesian3  
   
select  
    paintregions  
   
variables  
    Tp  
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definitions  
    long = 1  
    wide = 1  
    K  = 1  
    Q = 0  
    narrow = 0.2  
    z1 = 0  
    z2 = 0.1+0.3*exp(-(x^2+y^2)/narrow^2)  
    z3 = 0.5  
    z4= 1  
   
initial values  
    Tp = 0.  
   
equations  
    Tp:  div(k*grad(Tp)) + Q = 0  
   
extrusion z = z1,z2,z3,z4  
   

boundaries  
    surface 1 value (Tp)=0  
    surface 4 value (Tp)=1  
   
    Region 1  
       layer 1 k=10  
       layer 3 k=5  
       start (-wide,-wide)  
         line to (wide,-wide)  to (wide,wide) to (-wide,wide) to close  
   
monitors  
      grid (x,z) on y=0  
      contour (Tp) on z=0.38  painted  
   
plots  
      grid(x,y,z) on layer 1  
      grid (x,z) on y=0  
      grid(x,y) on surface 2  
      contour (Tp) on y=0  as "ZX Temp"  
      contour (Tp) on z=0.38  painted  
   
end  
  

5.2.14.2 boundary _density

{  BOUNDARY_DENSITY.PDE   
 
   This problem demonstrates the use of the MESH_DENSITY  parameter to 
   control mesh density along a boundary. 
  
   The boundary of the inner region is forced to a grid spacing of 0.02 
 
}  
   
title 'Cell Size Control'  
   
variables  
     u  
   
definitions  
     k = 1  
     u0 = 1-x^2-y^2  
     s = 2*3/4+5*2/4  
     b = 0.1  
     c = 0.02  
   
equations  
    U: div(K*grad(u)) +s = 0  
   
boundaries  
     Region 1  
        start(-1,-1)  
        value(u)=u0  
        line to (1,-1) to (1,1) to (-1,1) to close  
     Region 2  
        start(-b,-b)  
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        mesh_density = 1/c    { command inside the boundary path }  
        line to (b,-b) to (b,b) to (-b,b) to close  
   
plots  
     grid(x,y)  
     contour(u)  on region 2  
   
end  
  

5.2.14.3 boundary _spacing

{  BOUNDARY_SPACING.PDE   
 
   This problem demonstrates the use of the MESH_SPACING  parameter to 
   control mesh density along a boundary. 
  
   The boundary of the inner region is forced to a grid spacing of 0.02 
}  
  
 
title 'Cell Size Control'  
   
variables  
     u  
   
definitions  
     k = 1  
     u0 = 1-x^2-y^2  
     s = 2*3/4+5*2/4  
     b = 0.1  
     c = 0.02  
   
equations  
     U: div(K*grad(u)) +s = 0  
   
boundaries  
     Region 1  
        start(-1,-1)  
        value(u)=u0  
        line to (1,-1) to (1,1) to (-1,1) to close  
     Region 2  
        start(-b,-b)  
        mesh_spacing=c  { command placed inside the boundary path }  
        line to (b,-b) to (b,b) to (-b,b) to close  
   
plots  
     grid(x,y)  
     contour(u)  on region 2  
   
end  
  

5.2.14.4 front

{ FRONT.PDE 
 
  This example demonstrates the use of the FRONT  statement 
  to create a dense mesh at a moving front. 
 
  The FRONT  command is used to force mesh refinement wherever the 
  concentration variable passes through a value of 0.5.  
 
  The problem is the same as CHEMBURN.PDE . 
 
}  
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title  
  'FRONT statement in Chemical Reactor'  
   
select  
   painted      { make color-filled contour plots }
 
   
variables  
  Temp (threshold=1)  
  C (threshold=1)  
   
definitions  
  Lz = 1  
  r1=1  
  heat=0  
  gamma = 16  
  beta = 0.2  
  betap = 0.3  
  BI = 1  
  T0 = 1  
  TW = 0.92  
  { the very nasty reaction rate: }  
  RC = (1-C)*exp(gamma-gamma/Temp)    
  xev=0.96    { some plot points }  
  yev=0.25  
   
initial value  
  Temp=T0  
  C=0  
   
equations  
  Temp:  div(grad(Temp)) + heat + betap*RC = dt(Temp)  
  C:  div(grad(C)) + beta*RC = dt(C)  
   
boundaries  
  region 1  
    start (0,0)  
            
   { a mirror plane on X-axis }  
    natural(Temp) = 0  
    natural(C) = 0  
    line to (r1,0)       
   
    { "Strip Heater" at fixed temperature }  
    { ramp the boundary temp in time, because  discontinuity is costly to diffuse }   
    value(Temp)=T0 + 0.2*uramp(t,t-0.05)                                      
    natural(C)=0                { no mass flow on strip heater }  
    arc(center=0,0) angle 5       
   
    { convective cooling and no mass flow on outer arc }  
    natural(Temp)=BI*(TW-Temp)   
    natural(C)=0                  
    arc(center=0,0) angle 85      
        
    { a mirror plane on Y-axis }  
    natural(Temp) = 0  
    natural(C) = 0  
    line to (0,0) to close     
   
time 0 to 1  
   
{ FORCE CELLS TO SPAN NO MORE THAN 0.1 ACROSS C=0.5 }  
front(C-0.5, 0.1)    
   
plots  
  for cycle=10                  { watch the fast events by cycle }  
    grid(x,y)  
    contour(Temp)  
    contour(C) as "Completion"  
   
  for t= 0.2 by 0.05 to 0.3        { show some surfaces during burn }  
    surface(Temp)  
    surface(C) as "Completion"  
   
histories  
  history(Temp,C) at (0,0) (xev/2,yev/2) (xev,yev) (yev/2,xev/2) (yev,xev)  
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end  
  

5.2.14.5 m esh_density

{ MESH_DENSITY.PDE   
 
   This example demonstrates the use of the MESH_DENSITY  parameter to 
   control mesh density. 
 
   A global density function is defined as a Gaussian distribution returning 
   1 cell-per-unit density at the center, rising to 54.6 cell-per-unit density 
   at the corners. 
 
   This global distribution is overridden by a regional definition of 50 cell-per-unit 
   density in a central region. 
 
}  
  
title 'Cell Size Control'  
  
variables  
    u  
  
definitions  
    k = 1  
    u0 = 1-x^2-y^2  
    s = 2*3/4+5*2/4  
    mesh_density = exp(2*(x^2+y^2))  
    box = 0.1  
  
equations  
    u : div(K*grad(u)) +s = 0  
  
boundaries  
    Region 1  
        start(-1,-1)  
            value(u)=u0  
        line to (1,-1) to (1,1) to (-1,1) to close  
    Region 2  
        mesh_density = 50  
        start(-box,-box)  
        line to (box,-box) to (box,box) to (-box,box) to close  
  
plots  
    grid(x,y)  
    contour(u)  
  
end  
  

5.2.14.6 m esh_spacing

{ MESH_SPACING.PDE   
 
  This example demonstrates the use of the MESH_SPACING  parameter to 
  control mesh density. 
  
  A global density function is defined as a Gaussian distribution returning  
  1 unit mesh spacing at the center, falling to 0.018 at the corners. 
  
  This global distribution is overridden by a regional definition of  
  0.02 mesh spacing in a central region. 
  
}  
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title 'Cell Size Control'  
   
variables  
     u  
   
definitions  
     k = 1  
     u0 = 1-x^2-y^2  
     s = 2*3/4+5*2/4  
     mesh_spacing = exp(-2*(x^2+y^2))  
     b = 0.1  
     c = 0.02  
   
equations  
     u : div(K*grad(u)) +s = 0  
   
boundaries  
     Region 1  
        start(-1,-1)  
        value(u)=u0     
        line to (1,-1) to (1,1) to (-1,1) to close
 
     Region 2  
        mesh_spacing = c  
        start(-b,-b)    
        line to (b,-b) to (b,b) to (-b,b) to close
 
   
plots  
     grid(x,y)  
     contour(u)  
   
end  

  

5.2.14.7 resolve

{ RESOLVE.PDE 
   
  This is a test problem from Timoshenko: Theory of Elasticity, p41 
 
  The RESOLVE  statement has been added to force regridder to resolve the 
  shear stress. 
 
 }  
  
title "RESOLVE shear stress in bent bar"  
  
select  
    elevationgrid=500  
    cubic  
  
variables  
    U   { X-displacement }  
    V    { Y-displacement }  
  
definitions  
    L = 1               { Bar length }  
    hL = L/2  
    W = 0.1             { Bar thickness }  
    hW = W/2  
    eps = 0.01*L  
    I = 2*hW^3/3        { Moment of inertia }  
  
    nu = 0.3            { Poisson's Ratio }  
    E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }  
                        { plane stress coefficients }  
    G  = E/(1-nu^2)  
    C11 = G  
    C12 = G*nu  
    C22 = G  
    C33 = G*(1-nu)/2  
  
    amplitude=1e-6      { a guess for grid-plot scaling }  
    mag=0.1/amplitude  
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    force = 250         { total loading force in Newtons (~10 pound force) }  
    dist = 0.5*force*(hW^2-y^2)/I      { Distributed load }  
  
    Sx = (C11*dx(U) + C12*dy(V))        { Stresses }  
    Sy = (C12*dx(U) + C22*dy(V))  
    Txy = C33*(dy(U) + dx(V))  
  
    Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)  
    Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)  
    Sxexact = -force*x*y/I  
    Txyexact = -0.5*force*(hW^2-y^2)/I  
  
    small = 1e-5  
  
initial values  
    U = 0  
    V = 0  
  
equations  { define the displacement equations }  
    U:  dx(C11*dx(U) + C12*dy(V)) + dy(C33*(dy(U) + dx(V))) = 0  
    V:  dx(C33*(dy(U) + dx(V)))   + dy(C12*dx(U) + C22*dy(V)) = 0  
  
{  force regridder to resolve the shear stress. 
     Avoid the ends, where the stress is extreme. }  
resolve (Txy, 100*(x/L)*(1-x/L))  
  
boundaries  
    region 1  
      start (0,-hW)  
  
      { free boundary on bottom, no normal stress }  
      load(U)=0  load(V)=0  line to (L,-hW)  
  
      { clamp the right end }  
      value(U) = Uexact     line to (L,0) point value(V) = 0  
      line to (L,hW)  
  
      { free boundary on top, no normal stress }  
      load(U)=0  load(V)=0  line to (0,hW)  
  
      { apply distributed load to Y-displacement equation }  
      load(U)=0  load(V)=dist   line to close  
  
plots  
    grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  
    elevation(V,Vexact) from(0,0) to (L,0) as "Center Y-Displacement(M)"  
    elevation(V,Vexact) from(0,hW) to (L,hW) as "Top Y-Displacement(M)"  
    elevation(U,Uexact) from(0,hW) to (L,hW) as "Top X-Displacement(M)"  
    elevation(Sx,Sxexact) from(0,hW) to (L,hW) as "Top X-Stress"  
    elevation(Sx,Sxexact) from(0,0) to (L,0) as "Center X-Stress"  
    elevation(Txy,Txyexact) from(0,hW) to (L,hW) as "Top Shear Stress"  
    elevation(Txy,Txyexact) from(0,0) to (L,0) as "Center Shear Stress"  
    elevation(Txy,Txyexact) from(hL,-hW) to (hL,hW) as "Center Shear Stress"  
  
end  
  

5.2.15 Misc

5.2.15.1 askuser

{  ASKUSER.PDE  
 
    This example demonstrates the use of the ASK USER command to take input from the user
at run time.
    The problem is a copy of FILLET.PDE .
}

  title 'ASK USER test'

  Variables
     u 

  select 
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     ngrid=ask user("What do yo want to use for NGRID?")

  definitions
     k = 1
     u0 = 1-x^2-y^2
     s = ask user("What source do you want to use?",2*3/4+5*2/4)

  equations
     U: div(K*grad(u)) +s = 0

  boundaries
     Region 1
        start(-1,-1)
        value(u)=u0 line to (1,-1) FILLET(0.1)
                to (-0.25,-0.25) FILLET(0.1)
        to (-1,1) BEVEL(0.1)
        to close

  plots
     grid(x,y) 
     contour(u)  points=200
     grid(x,y) zoom(0.6,-1, 0.2,0.2)  
     contour(u) zoom(0.6,-1, 0.2,0.2)  as "Convex Fillet Closeup"
     grid(x,y) zoom(-0.35,-0.35, 0.2,0.2) 
     contour(u) zoom(-0.35,-0.35, 0.2,0.2) as "Concave Fillet Closeup"

  end

5.2.15.2 bc_sets

{ BC_SETS.PDE

  This example shows the basic use of boundary condition sets.
}

TITLE 'BC Sets'

COORDINATES cartesian2

VARIABLES u v

BOUNDARY CONDITIONS
  'inlet' : value(u)=1   natural(v)=1
  'outlet': natural(u)=1 value(v)=10
  'side'  : natural(u)=0 natural(v)=0

EQUATIONS
  u: div(grad(u))=0
  v: div(grad(v))=0

BOUNDARIES
  Region 1
    start(0,0) use bc 'side'
    line to (5,0) use bc 'outlet'
    line to (5,1) use bc 'side'
    line to (0,1) use bc 'inlet'
    line to close

PLOTS
  contour(u)
  contour(v)
END
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5.2.15.3 bc_switching

{ BC_SWITCHING.PDE

  This script demonstrates a technique for switching a boundary condition
  from NATURAL to VALUE. FlexPDE does not allow this switch directly, but
  it can be mimicked by using a NATURAL condition that is equivalent to the
  VALUE condition.

  To achieve this, one can apply a flux that drives the boundary to the
  desired value. The flux is a "large" penalty term multiplied by the
  difference of the desired value (U0) and the actual value :

  NATURAL(U) = penalty*(U0-U)

  The size of the penalty term will dictate how rigorously the value is
  tracked.

  Now the switching boundary condition can be implemented in an IF statement:

  NATURAL(U) = IF condition THEN penalty*(U0-U) ELSE otherflux

}

title "Boundary Condition Switching"

variables Temp

definitions
  penalty = 300  { penalty for value bc }
  Temp0 = 15     { ambient temperature }
  heater = 315   { heater temperature }
  h = 1          { block size }
  k = 0.85       { thermal conductivity }
  cp = 1         { heat capacity }
  rt = 0.5       { heater ramp time }

  delta = h/4 + URAMP(t-1,t-5)*h/2 { moving point for BC switch }

equations
  Temp : div(k*grad(Temp)) = cp*dt(Temp)

initial values
  Temp = Temp0

boundaries
  region 1
    start(0,0)
    line to (h,0)
      natural(Temp) = if (y > delta) then penalty*(Temp0-Temp) else 0
    line to (h,h)
      nobc(Temp)
    line to (0,h)
      value(Temp) = RAMP(t-rt,Temp0,heater,2*rt)
    line to close

time 0 to 6 by 1e-4

monitors
  for cycle = 10
    contour(Temp)
    elevation(Temp) from(h,0) to (h,h)

plots
  for t = 1 by 1 to 6
    contour(Temp)
    elevation(Temp) from(h,0) to (h,h)



Sample Problems : Usage 586

histories
    history(Temp) at (0,h/2), (h,h/5), (h,4*h/5)

end

5.2.15.4 data_fitting

{ DATA_FITTING.PDE

    This example uses GLOBAL VARIABLES to form a least-squares fit to a Gaussian data
distribution, 
    and then follows the fit as the Gaussian diffuses out.
    
    The basic process of least-squares fitting seeks to minimize the integral of the
square of the 
    difference between the given data and the analytic fit function:
    
    minimize G = Integral (( F - P)^2 * dV)
    where F is the analytic fit and P is the array of given data.
    
    The technique is to find a stationary point in the derivatives of G with respect to
the fit parameters.
    
    In our case, we choose F(x,y) = A*exp(-R^2/W^2), where A is the amplitude and W is
the half-width 
    of the fitted Gaussian, and R is the radius sqrt(x^2+y^2), (a pre-defined name in
FlexPDE).
    
    With this definition, we can define the fit equations
    dG/dA = Integral(2*(F-P)*dF/dA) = 0
    dG/dW = Integral(2*(F-P)*dF/dW) = 0
    
    We start by solving the fit equations in an INITIAL EQUATIONS section, then proceed
to solve the
    fit equations simultaneously with the diffusion of the data field.
}

title 'Least-Squares Data Fitting'

coordinates cartesian2

variables p(Threshold = 0.001)  ! the raw data field

global variables
     A(Threshold = 0.001)   ! The Fit amplitude
     W(Threshold=0.001) ! The Fit half-width

definitions
    box = 1.5    ! The Domain Size
    wdata = 0.1  ! The half-width of the data Gaussian
    k = 0.1      ! the diffusivity of the data equation

    ! Force denser mesh at the peak of the data
    mesh_den =  50
    mesh_density = mesh_den*exp(-(x^2+y^2)/wdata^2)    

    ! The Gaussian fit equation terms    
    fitf = A*exp(-r^2/W^2)
    dfdk = fitf/A
    dfdw = fitf * (2*r^2/W^3)
    fitg = fitf - p
 
initial equations
    A : integral(2*fitg*dfdk) = 0
    W: integral(2*fitg*dfdw) = 0
    
equations
    p : dt(p) =div(k*grad(p)) 
    A : integral(2*fitg*dfdk) =0
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    W:  integral(2*fitg*dfdw) =0

boundaries
  region 1
    start(-box,-box)
    line to (box,-box) to (box,box) to (-box,box) to close

initial values
    p = exp(-(x^2 + y^2)/wdata^2)
    A = 0.9 ! slightly erroneous first guess amplitude
    W= 1.1*wdata ! slightly erroneous first guess half-width

time 0 to 1 

plots
for cycle=1
   elevation(fitf,p) from (-box,0) to (box,0)
      report(A)  report(integral(2*fitg*dfdk))
   contour(fitf) 
   contour(p)
   contour(fitg) as "Fit Error"
   contour(dfdk) 
   contour(dfdw) 
   history(A)
   history(W)

end

5.2.15.5 fillet

{  FILLET.PDE   
  
    This example demonstrates the use of the FILLET  and BEVEL  commands 
}  
  
title 'fillet test'  
  
variables  
    u  
  
definitions  
    k = 1  
    u0 = 1-x^2-y^2  
    s = 2*3/4+5*2/4  
  
equations  
    U: div(K*grad(u)) +s = 0  
  
boundaries  
    Region 1  
        start(-1,-1)  
        value(u)=u0 
        line to (1,-1) FILLET(0.1)  
             to (-0.25,-0.25) FILLET(0.1)  
             to (-1,1) BEVEL(0.1)  
             to close  
  

monitors  
     grid(x,y)  
     contour(u)  
plots  
     grid(x,y)  
     contour(u)  
     contour(u) zoom(0.6,-1, 0.2,0.2)  as "Convex Fillet Closeup"  
     contour(u) zoom(-0.3,-0.3, 0.1,0.1) as "Concave Fillet Closeup"  
  
end  
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5.2.15.6 fit+weight

{ FIT+WEIGHT.PDE  
   
  This test shows the use of spatially-varying weights in the FIT  function. 
  
  There are no variables or equations here, just a domain and some tabular 
  data which is FIT in different ways. 
  
  The weight declared in the FIT statement is effectively the square of the 
  spatial distance over which variations are smoothed. 
 
}  
   
title 'Test Variable-Weight FIT'  
   
definitions  
    u = table('table.tbl')  
   
   
boundaries  
    region 1  
      start(0,10)  
      line to (0,0) to (10,0) to (10,10) to close  
   
plots  
     grid(x,y)  
     contour(u)  
     contour(fit(u))   as 'unweighted'  
     contour(fit(u,0.2))   as 'constant weight'  
     contour(fit(u,0.02*(x-5)^2)) as 'side-weights'
 
     contour(fit(u,0.05*x)) as 'right-side weight'
 
   
end  
  

5.2.15.7 ifthen

{ IFTHEN.PDE   
  
  This example demonstrates the use of "IF...THEN"  conditionals in arithmetic
statements.   
 
  We solve a heat equation in which the conductivity is defined by a conditional 
  (IF..THEN) expression. 
 
  Caveat: 
    IF..THEN can be dangerous if used improperly. 
    Equation coefficients that are discontinuous functions of the system 
    variables can cause convergence failure or tiny timesteps and slow 
    execution.  See SWAGETEST.PDE . 
 
}  
  
title 'Nonlinear heatflow, conditional conductivity'  
  
Variables  
    u  
  
definitions  
    a =    IF (u<0.5) and (x<100)  
           THEN    IF u < 0.2  
                   THEN 1.4  
                   ELSE 1+2*abs(u)  
           ELSE 2  
  
Initial values  
    u = 1 - (x-1)^2 - (y-1)^2  
  
equations  
    U: div(a*grad(u)) + 4 = 0;  
  
boundaries  

164
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    Region 1  
        start(0,0)  
            value(u)=0  
        line to (2,0) to (2,2) to (0,2) to close  
  
monitors  
    contour(u)  
plots  
    surface(u)  
    contour(u)  
    contour(a) as "Conditional Conductivity"  
    elevation(a,u) from (0,1) to (2,1) as "Conductivity and Solution"  
  
end  
  

5.2.15.8 lum p

{ LUMP.PDE   
 
  This example illustrates use of the LUMP  function. 
 
  LUMP(F) saves an averaged value of F in each mesh cell, and returns the same 
  value for any position within the cell. 
 
  Notice that LUMP(F) is NOT the same as the "lumped parameters" frequently referred to  
  in finite element literature. 
 
  LUMP(f)  is syntactically like SAVE(f) , in that it stores a representation of 
  its argument for later use. 

}  
title 'LUMP test'  
  
select  
    contourgrid=400  { use a very dense plot grid to show lump structure }  
    threads=1
  
Variables  
    u  
  
definitions  
    k = 2  
    u0 = 1+x^2+y^2  
    s = u0 - 4*k  
    lumps = lump(s)        { Used in a definition }  
  
Initial values  
    u = 1  
  
equations  
    U: u - div(K*grad(u))  = s  
  
boundaries  
    Region 1  
        start(-1,-1)  
            value(u)=u0  
        line to (1,-1) to (1,1) to (-1,1) to close  
  
monitors  
    contour(u)  
  
plots  
    grid(x,y)  
    contour(u)  
    contour(s)  
    contour(lump(s))    as "Lumped Source - Direct Reference"  
    contour(lumps) as "Lumped Source - Defined Parameter"  
  
end  
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5.2.15.9 m aterial_sets

{  MATERIAL_SETS.PDE

 This example shows the basic use of MATERIALS  for grouping parameter values.
 There are no variables or equations.
}

Title 'Material Sets - Bricks'

Coordinates cartesian3

Select ngrid = 1 { grid coarsely for plotting example }

Materials  { These values are arbitrary and not intended to reflect the actual physical
values for these materials }
    'iron' :     K = 4  J = 1
    'aluminum' : K = 3  J = 2
    'plastic' :  K = 2  J = 3
    'wood' :     K = 1  J = 4

Extrusion z = 0, 1, 2, 3, 4

Boundaries
    Region 1
       Layer 1 use material 'iron'
       Layer 2 use material 'aluminum'
       Layer 3 use material 'plastic'
       Layer 4 use material 'wood'
       start(0,0) line to (1,0) to (1,1) to (0,1) to close

    Region 2
       use material 'iron'
       start(0,1) line to (1,1) to (1,2) to (0,2) to close
Plots
    contour(K) on x=0.5 painted range(0,5)
    contour(J) on x=0.5 painted range(0,5)

End

5.2.15.10 point_load

{  POINT_LOAD.PDE

   This example demonstrates the use of the POINT LOAD bc.
   It is a modification of the example POLAR_COORDINATES.PDE .
}

  title 'Point Load'

  Variables
     u

  definitions
     k = 1
     u0 = 1-r^2
     s = 4
     dr(f) = (x/r)*dx(f) + (y/r)*dy(f)      { functional definition of polar
derivatives... }
     dphi(f) = (-y)*dx(f) + x*dy(f)     {... in cartesian coordinates }
     pload = staged (0, 2)

 equations  { equation expressed in polar coordinates }
            { (Multiplied by r^2 to clear the r=0 singularity) }
     U: r*dr(r*dr(u)) + dphi(dphi(u)) + r*r*s = 0
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  boundaries
     Region 1
        start(0,0)  point load(u)=pload
        natural(u) = 0 line to (1,0)
        value(u)=u0 arc(center=0,0) angle=90
        natural(u)=0 line to close

  monitors
     grid(x,y) as "Computation Mesh"
     contour(u) as "Solution"
     contour(u-u0) as "Error (u-u0)"

  plots
     grid(x,y) as "Computation Mesh"
     contour(u) as "Solution"
     contour(u-u0) as "Error (u-u0)"

  end

5.2.15.11 polar_coordinates

{  POLAR_COORDINATES.PDE   
 
   This example demonstrates the use of functional parameter definitions 
    to pose equations in polar-coordinate form.  The function definitions  
    expand polar derivatives in cartesian (XY) geometry. 
}  
  
title 'Polar Coordinates'  
  
Variables  
    u  
  
definitions  
    k = 1  
    u0 = 1-r^2  
    s = 4  
    dr(f) = (x/r)*dx(f) + (y/r)*dy(f)  { functional definition of polar derivatives... }
 
    dphi(f) = (-y)*dx(f) + x*dy(f)     {... in cartesian coordinates }  
  
equations  { equation expressed in polar coordinates   
                 (Multiplied by r^2 to clear the r=0 singularity) }  
    U: r*dr(r*dr(u)) + dphi(dphi(u)) + r*r*s = 0     
  
boundaries  
    Region 1  
        start(0,0)  
        natural(u) = 0 line to (1,0)  
        value(u)=u0    arc(center=0,0) angle=90  
        natural(u)=0   line to close  
  
monitors  
    grid(x,y) as "Computation Mesh"  
    contour(u) as "Solution"  
    contour(u-u0) as "Error (u-u0)"  

plots  
    grid(x,y) as "Computation Mesh"  
    contour(u) as "Solution"  
    contour(u-u0) as "Error (u-u0)"  
end  
  

5.2.15.12 repeat

{ REPEAT.PDE   
   
  This example illustrates the use of the REPEAT  statement to generate 
  repetitive structures, and the string facility for creating labels. 
 

181



Sample Problems : Usage 592

}  
title 'REPEAT and $string test'  
   
Variables  
    u  
   
definitions  
    a = 1  
    { a list of X-coordinates: }
    xc=array(1/3, 2/3, 3/3, 4/3, 5/3)  
    { a list of Y-coordinates: }  
    yc=array(1/3, 2/3, 3/3, 4/3, 5/3)   
   
    rad = 0.1  { radius of circular dots }  
    s = 0  
   
equations  
    U: div(a*grad(u)) + s  = 0;      
   
boundaries  
    region 1  
        start(0,0)  
            value(u)=0  
        line to (2,0) to (2,2) to (0,2) to close  
    region 2  
        a = 0.05  
        s = 4*magnitude(x-1,y-1)  
        repeat i=1 to 5                    { an indexed loop on X-position }  
            repeat j=1 to 5                { an indexed loop on Y-position }  
                { an array of circular dots at the tabulated coordinates }  
                start "Loop"+$i+$j (xc[i]+rad,yc[j])  {construct loop name using string
conversion }  
                arc(center=xc[i],yc[j]) angle=360  
            endrepeat  
        endrepeat  
   
monitors  
    contour(u)  
   
plots  
    contour(u) painted  
    surface(u)  
    surface(s) as "Source"  
        repeat i=1 to 5  
            repeat j=1 to 5  
                elevation(u) on  'loop'+$i+$(j)  
            endrepeat  
        endrepeat  
   
end  
  

5.2.15.13 rotated_ellipse

{ ROTATED_ELLIPSE.PDE

  This example shows the use of ROTATE  to create a rotated
  ellipse. The selector MERGEDIST  is used to allow fewer digits
  of accuracy in the positions of the points on the ellipse.
}
TITLE 'Electrostatic Potential and Electric Field'

VARIABLES V Q

SELECT mergedist = 0.01 ! merge imprecise points in ellipse

DEFINITIONS eps = 1

EQUATIONS
  V: div(eps*grad(V)) = 0       {potential equation}
  Q: div(grad(Q)/eps) = 0       {adjoint equation}

BOUNDARIES

227
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  REGION 1
    start(0,0)
    value(V) = 0 natural(Q) = tangential(grad(V))
    line to (3,0)
    line to (3, 2.5)
    value(V) = 100 natural(Q) = tangential(grad(V))
    arc(center = 1.5, 2.5) angle= 180.
    line to close
    ! embedded path will become an EXCLUDE :
    start( 2.08, 2.08)
    natural(V) = 0 natural(Q) = tangential(grad(V))
    arc(center = 1.5, 1.5 rotate= 45.) to ( 1.22, 1.78)
    arc(center = 1.5, 1.5 rotate= 45.) to ( 0.92, 0.92)
    arc(center = 1.5, 1.5 rotate= 45.) to ( 1.78, 1.22)
    arc(center = 1.5, 1.5 rotate= 45.) to ( 2.08, 2.08)

PLOTS
   grid(x,y)
   contour(V) as 'Potential'
   surface(V) as 'Potential'
   contour(Q) as 'Field Lines'
   vector(-dx(V),-dy(V)) as 'Electric Field'

END

5.2.15.14 save

{ SAVE.PDE   
 
  This example illustrates use of the SAVE  function. 
 
  SAVE(F) computes the value of F at each mesh node, and returns interpolated 
  values for any position within a cell. 
  If  F is very expensive to compute, the use of SAVE can reduce the overall cost  
  of a simulation. 
  SAVE also hides the complexity of F from differentiation in forming the coupling 
  matrix, and may therefore avoid numerical difficulties encountered in computing 
  the derivatives of pathological functions. 
 
}  
title 'SAVE test'  
  
select  
    ngrid=20  
    contourgrid=100  { use a very dense plot grid to show data structure }  
  
Variables  
    u,v  
  
definitions  
    k = 2  
    u0 = 1+x^2+y^2  
    s = cos(20*x)*cos(20*y)  
    save_s = save(s)       { Used in a definition }  
  
Initial values  
    u = 1  
  
equations  
    U: u - div(K*grad(u))  = s  
    V: v - div(K*grad(v))  = save_s  
  
boundaries  
    region 1  
        start(-1,-1)  
            value(u)=u0 value(v)=u0  
        line to (1,-1) to (1,1) to (-1,1) to close  
    region 2  
        k=4  
        start(-1,-1) line to (0,-1) to (0,0) to (-1,0) to close  
  
plots  
    grid(x,y)  
    contour(u)  

166



Sample Problems : Usage 594

    contour(v)  
    contour(s)  
    contour(save_s)      
    elevation(s, save_s) from(-1,0) to (1,0)  
  
end  
  

5.2.15.15 spacetim e1

{ SPACETIME1.PDE  
 
  This example illustrates the use of FlexPDE to solve an initial value problem 
  of 1-D transient heatflow as a 2D boundary-value problem.   
 
  Here the spatial coordinate is represented by X, the time coordinate by Y, 
  and the temperature by u(x,y). 
 
  With these symbols, the transient heatflow equation is:  
        dy(u) = D*dxx(u),  
  where D is the diffusivity, given by  
        D = K/s*rho,  
        K       is the conductivity, 
        s       is the specific heat, 
  and   rho     is the density. 
 
  The problem domain is taken to be the unit square. 
 
  We specify the initial value of u(x,0) along y=0, as well as the time history 
  along the sides x=0 and x=1. 
 
  The value of u is thus assigned everywhere on the boundary except 
  along the segment y=1, 0<x<1.  Along that boundary, we use the
  natural boundary condition,  
        natural(u) = 0,  
  since this corresponds to the application of no boundary sources on this 
  boundary segment and hence implies a free segment.  This builds in the 
  assumption that y = 1 (and hence t = 1) is sufficiently large for steady 
  state to have been reached. [Note that since the only y-derivative term is 
  first order, the default procedure of FlexPDE does not integrate this term 
  by parts, and the Natural(u) BC does not correspond to a surface flux, 
  functioning only as a source or sink.] 
 
  This problem can be solved analytically, so we can plot the deviation 
  of the FlexPDE solution from the exact answer. 
 
}  
  
title "1-D Transient Heatflow as a Boundary-Value problem"  
select  
     alias(x) "distance"  
     alias(y) "time"  
  
variables  
     u  
  
definitions  
     diffusivity = 0.06     { pick a diffusivity that gives a nice graph }  
     frequency = 2          { frequency of initial sinusoid }  
     fpi = frequency*pi  
     ut0 = sin(fpi*x)       { define initial distribution of temperature }  
     u0 = exp(-fpi^2 *diffusivity*y)*ut0   { define exact solution }  
  
Initial values  
     u = ut0                { initialize all time to t=0 value }  
  
equations  
     U: dy(u) = diffusivity*dxx(u) { define the heatflow equation }  
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boundaries  
     Region 1  
        start(0,0)  
        value(u)=ut0    { set the t=0 temperature }  
        line to (1,0)  
  
        value(u) = 0    { always cold at x=1 }  
        line to (1,1)  
  
        natural(u) = 0  { no sources at t=1 }  
        line to (0,1)  
  
        value(u) = 0    { always cold at x=0 }  
        line to close  
  
monitors  
     contour(u)  
  
plots  
     contour(u)  
     surface(u)  
     contour(u-u0) as "error"  
  
end  

  

5.2.15.16 spacetim e2

{ SPACETIME2.PDE  
 
  This example is a modification of SPACETIME1.PDE , showing the solution of 
  one-dimensional transient heatflow with differing material properties, 
  cast as a boundary-value problem. 
 
  The time variable is represented by Y, and the temperature by u(x,y). 
 
  We specify two regions of differing conductivity, KX. 
 
  The initial Temperature is given as a truncated parabola along y=0. 
 
  We specify reflective boundary conditions in X (natural(u)=0) along 
  the sides x=0 and x=1. 
 
  The value of u is thus assigned everywhere on the boundary except 
  along the segment y=1, 0<x<1.  Along that boundary, we use the
  natural boundary condition,  
               natural(u) = 0,  
  since this corresponds to the application of no boundary sources. 
 
}  
  
title "1-D Transient Heatflow as a Boundary-Value Problem"  
  
Variables  
     u               { define U as the system variable }  
  
definitions  
     kx              { declare KX as a parameter, but leave the value for later }  
  
Initial values  
     u = 0           { unimportant, since this problem is masquerading 
                                  as a linear boundary-value problem }  
  
equations           { define the heatflow equation }  
    U: dy(u)  =  dx(kx*dx(u))  
  
boundaries  
    region 1  
        kx = 0.1                 { conductivity = 0.1 in region 1 }  
  
        start(0,0)  
        value(u)=2.025-10*x^2   { define the temperature at t=0, x<=0.45 }  
        line to (0.45,0)  
  
        value(u) = 0            { force zero temperature for t=0, x>0.45 }  
        line to (1,0) to (1,1)  

594



Sample Problems : Usage 596

  
        natural(u) = 0          { no flux across x=1 boundary }  
        line to (1,1)  
  
        natural(u) =  0         { no sources on t=1 boundary }  
        line to (0,1)  
  
        natural(u) = 0          { no flux across x=0 boundary }  
        line to close  
  
    region 2  
        kx = 0.01                { low conductivity in region 2 }  
        start(0.45,0)           { lay region 2 over center strip of region 1 }  
        line to (0.55,0)  
             to (0.55,1)  
             to (0.45,1)  
             to close  
  
monitors  
     contour(u)  
  
plots  
     contour(u)  
     surface(u)  
  
end  
  

5.2.15.17 spline_boundary

{ SPLINE_BDRY.PDE 
 
  This example shows the use of the SPLINE  statement in constructing boundary curves. 
 
  A circular arc is approximated by five spline segments. 
  The end segments are made very short to establish the proper slope at the ends. 
 
  The problem solves a heatflow equation on a quarter circle and compares the solution  
  with the analytic value. 
 
}  
  
title 'Spline Boundary'  
  
Variables  
    u  
  
definitions  
    k = 1  
    u0 = 1-r^2  
    s = 4  
  
equations  
    U: div(k*grad(u)) + s  = 0  
  
boundaries  
    Region 1  
        start(0,0)  
        natural(u) = 0 line to (1,0)  
        value(u)=0  
        spline to(0.99985,0.01745)  ! short initial interval to establish slope 
               to (0.866,0.5)  
               to(0.5,0.866)  
               to (0.01745,0.99985)    ! short final interval to establish slope 
               to (0,1)  
        natural(u)=0 line to close  
  
monitors  
    grid(x,y)  
    contour(u)  
    contour(u-u0)  
plots  
    grid(x,y)  
    contour(u)  
    contour(u-u0)  
end  
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5.2.15.18 staged_geom etry

{ STAGED_GEOMETRY.PDE   
   
  This problem shows the use of staging to solve  a problem for a range 
  of geometries.  
 
}  
   
title 'Staged Geometry'  
   
select  
    stages=3  
    autostage=off  { pause after each stage }  
  
definitions  
    width = 2*stage  
   
Variables  
    u  
   
equations  
    U: div(grad(u)) + 4 = 0;  
   
boundaries  
    region 1  
        start(0,0)  
        value(u)=0  
        line to (width,0) to (width,2) to (0,2) to close  
   
monitors  
    contour(u)  
   
plots  
    grid(x,y)  
    surface(u)  
    contour(u)  
   
histories  
    history(integral(u)) vs width as "Integral vs width"  
   
end  
  

5.2.15.19 stages

{ STAGES.PDE   
   
  This example demonstrates the use of staging to solve a problem for a range of
parameters.   
 
  We stage both the equation parameters and the solution ERRLIM . 
 
  The problem is a nonlinear test, which solves a modified steady-state Burgers
equation. 
 
}  
  
title 'Staged Problem'  
  
select  
    stages = 3 { run only the first three of the listed stages }  
    errlim = staged(0.01, 0.001, 0.0005)  
  
Variables  
    u  
  
definitions  
    scale = staged(1, 2, 4, 8)     { extra value ignored }  
    a = 1/scale  
  
Initial values  
    u = 1 - (x-1)^2 - (y-1)^2  
  
equations  
    U: div(a*grad(u)) + scale*u*dx(u) +4 = 0;  
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boundaries  
    region 1  
        start(0,0)  
        value(u)=0  
        line to (2,0) to (2,2) to (0,2) to close  
  
monitors  
    contour(u)  
  
plots  
    surface(u) report scale as "Scale"  
    contour(u) report scale as "Scale"  
  
histories  
    history(integral(u)) vs scale  as "Ingegral vs Scale"  
end  
  

5.2.15.20 tabulate

{ TABULATE.PDE 
 
  This problem tabulates an arithmetic expression into a data table. 
 
  The structure of the inline tabulate command is: 
    TABULATE <range_controls> : <expression>
 
  The <range_control> clause is
    VERSUS  <name> ( <list_specification> )
  or
    FOR  <name> ( <list_specification> )

  A <list_specification> may be the name of an array or a list of values,
  possibly including "BY <step> TO <last>" clauses.
 
  A TABULATE  command can be preceded by SPLINE  to request  
  spline interpolation rather than the default linear interpolation. 
 
  TABLES  may be constructed with one, two or three coordinates. 
 
  The constructed tables are exported in various forms, to show the use 
  of TABULATE  to create tables for other FlexPDE applications to use. 
 
}  
title 'Tabulation Test'  
  
select  
  regrid=off  

variables  
  u  
  
definitions  
  alpha =tabulate versus x(0 by 0.1 to 10)  
                  versus y(0 by 0.1 to 10)  
                  : sin(x)*sin(y)+1.1  
  xar =array (0 by 0.1 to 10)  
  beta =spline tabulate for x(xar)  
                        for y(0 by 0.1 to 10)  
                        : sin(x)*sin(y)+1.1  
  p = x  
  q = p+y  
  s = y^2*(p+q)  
  
equations  
  U:   div(beta*grad(u)) + alpha = 0  
  
boundaries  
  region 1  
    start(0,10)  
    value(u) = 0  
    line to (0,0) to (10,0) to (10,10) to close  
  
monitors  
  contour(u)  
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plots  
  grid(x,y) as "computation mesh"  
  contour(u) as "solution"  
  surface(u) as "solution"  
  contour(alpha)  as "tabulated data" export file='alpha.tbl'  
  contour(beta) as "spline-tabulated data"    
  contour(alpha-beta)  as "linear-spline difference"  
  vector(grad(alpha))  as "table gradient"  
  vector(grad(beta))  as "spline gradient"  
  surface(alpha)  as "tabulated data"  
  surface(beta) as "spline data"  
  table(alpha)    
  table(s)  
  vtk(beta)  
  
contour(space_error())  
  
end  
  

5.2.15.21 tensors

{  TENSORS.PDE

 This example illustrates tensor manipulations. There are no variables or equations,
 just definitions and plots. A boundaries section IS needed even though it is not used.
}

Title
  "vector functions"

Definitions

  v1 = vector(1,2,3)
  v2 = vector(3,2,1)
  vv = v1*v2 ! vector product

  t1 = tensor((1,2,3),(4,5,6),(7,8,9))
  t2 = tensor((1,4,7),(2,5,8),(3,6,9))
  t12 = t1**t2 ! dot product

  dot12 = dot(t1,t2)
  dot1v = dot(t1,v1)
  dotv1 = dot(v1,t1)
  dotv2 = dot(v1,t2)
  dot12v = dot(dot12,v1)

Boundaries { plot domain always required }
  region "dummy"
    start (-1,0) line to (1,0) to (1,1) to (-1,1) to close

Plots
  summary ("OPERATIONS WITH A TENSOR RESULT :")
    report ""
    report "Vector product V1 * V2" 
    report "(1,2,3) * (3,2,1) = ((3,2,1), (6,4,2), (9,6,3))" 
    report ""
    report(xxcomp(vv), xycomp(vv), xzcomp(vv)) as "VV xx,xy,xz "
    report(yxcomp(vv), yycomp(vv), yzcomp(vv)) as "VV yx,yy,yz "
    report(zxcomp(vv), zycomp(vv), zzcomp(vv)) as "VV zx,zy,zz "
    report ""
    report "Tensor dot product T1 ** T2"
    report "((1,2,3), (4,5,6), (7,8,9)) ** ((1,4,7), (2,5,8), (3,6,9))"
    report " = ((14,32,50), (32,77,122), (50,122,194))"
    report(xxcomp(t12), xycomp(t12), xzcomp(t12)) as "T12 xx,xy,xz "
    report(yxcomp(t12), yycomp(t12), yzcomp(t12)) as "T12 yx,yy,yz "
    report(zxcomp(t12), zycomp(t12), zzcomp(t12)) as "T12 zx,zy,zz "
    report ""
    report "Tensor dot product DOT( T1, T2 )"
    report "((1,2,3), (4,5,6), (7,8,9)) ** ((1,4,7), (2,5,8), (3,6,9))"
    report " = ((14,32,50), (32,77,122), (50,122,194))"
    report ""
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    report(xxcomp(dot12), xycomp(dot12), xzcomp(dot12)) as "DOT12 xx,xy,xz "
    report(yxcomp(dot12), yycomp(dot12), yzcomp(dot12)) as "DOT12 yx,yy,yz "
    report(zxcomp(dot12), zycomp(dot12), zzcomp(dot12)) as "DOT12 zx,zy,zz "
    report "Alternatively :"
    report(xcomp(xcomp(dot12)), ycomp(xcomp(dot12)), zcomp(xcomp(dot12))) as "DOT12
x(x),x(y),x(z) "         
    report(xcomp(ycomp(dot12)), ycomp(ycomp(dot12)), zcomp(ycomp(dot12))) as "DOT12
y(x),y(y),y(z) "
    report(xcomp(zcomp(dot12)), ycomp(zcomp(dot12)), zcomp(zcomp(dot12))) as "DOT12
z(x),z(y),z(z) "

  summary ("OPERATIONS WITH A VECTOR RESULT :")
    report ""
    report "Vector Tensor dot product DOT( V1, T1 )" 
    report "DOT( (1,2,3), ((1,2,3), (4,5,6), (7,8,9)) ) = (30,36,42)" 
    report(xcomp(dotv1), ycomp(dotv1), zcomp(dotv1)) as "DOTV1 "
    report ""
    report "Vector Tensor dot product DOT( V1, T2 )"
    report "DOT( (1,2,3), ((1,4,7), (2,5,8), (3,6,9)) ) = (14,32,50)" 
    report(xcomp(dotv2), ycomp(dotv2), zcomp(dotv2)) as "DOTV2 "
    report ""
    report "Tensor Vector dot product DOT( T1, V1 )"
    report "DOT( ((1,2,3), (4,5,6), (7,8,9)), (1,2,3) ) = (14,32,50)" 
    report(xcomp(dot1v), ycomp(dot1v), zcomp(dot1v)) as "DOT1V "
    report ""
    report "Tensor Vector dot product DOT( DOT12, V1 )"
    report "DOT( ((14,32,50), (32,77,122), (50,122,194)), (1,2,3) ) = (228,552,876)" 
    report(xcomp(dot12v), ycomp(dot12v), zcomp(dot12v)) as "DOT12V "

End

5.2.15.22 two_histories

{ TWO_HISTORIES.PDE    
 
  This example illustrates use of multiple arguments in a HISTORY  plot. 
  It also shows the use of the WINDOW plot qualifier on a HISTORY  plot. 
  The problem is the same as FLOAT_ZONE.PDE . 
}  
  
title  
  "Multiple HISTORY functions"  
  
coordinates  
  xcylinder('Z','R')  
  
select  
  cubic                         { Use Cubic Basis }  
  
variables  
  temp (threshold=100)  
  
definitions  
  k = 0.85                            {thermal conductivity}  
  cp = 1                              { heat capacity }  
  long = 18  
  H = 0.4                             {free convection boundary coupling}  
  Ta = 25                             {ambient temperature}  
  A = 4500                            {amplitude}  
  
  source = A*exp(-((z-1*t)/.5)^2)*(200/(t+199))  
  
initial value  
  temp = Ta  
  
equations  
  temp:  div(k*grad(temp)) + source = cp*dt(temp)  
  
boundaries  
  region 1  
    start(0,0)  
    natural(temp) = 0 line to (long,0)  
    value(temp) = Ta line to (long,1)  
    natural(temp) = -H*(temp - Ta) line to (0,1)  
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    value(temp) = Ta line to close  
  feature  
    start(0.01*long,0) line to (0.01*long,1)  
  
time -0.5 to 19 by 0.01  
  
monitors  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0,1) to (long,1) range=(0,1800) as "Surface Temp"  
  contour(temp)  
  
plots  
  for t = -0.5 by 0.5 to (long + 1)  
  elevation(temp) from (0,0) to (long,0) range=(0,1800) as "Axis Temp"  
  
histories  
  
  history(temp,dt(temp)) at (5,0) (10,0) (15,0)  
  history(temp,dt(temp)) at (5,0) (10,0) (15,0) window = 5  ! moving window 
  history(temp,dt(temp)) at (5,0) (10,0) (15,0) window(3,8) ! fixed window 
  history(integral(temp),integral(dt(temp)))  
  
end  
  

5.2.16 Moving_Mesh

5.2.16.1 1d_stretch_x

{ 1D_STRETCH_X.PDE

  This example demonstrates moving meshes in 1D.
  A Gaussian distribution is defined on a 1D mesh.
  The mesh is  then stretched to twice its initial size,
  while the Gaussian remains fixed in space.
 
  Mesh motion is imposed by explicit positions of the endpoints.
 
}
TITLE "stretching line"
 
COORDINATES
  cartesian1

VARIABLES
  u
  xm = move(x)
 
DEFINITIONS
  Hl = 1
  gwid = 0.15
  u0 = exp(-x^2/gwid^2)
  lmove = Hl + t
  vx = dt(xm)
 
INITIAL VALUES
  u = u0
  dt(xm) = x/Hl
 
EULERIAN EQUATIONS
  U:   dt(u)=0
  Xm:  div(grad(vx))=0
 
BOUNDARIES
  REGION 1
    { In 1D, "point" boundary conditions must FOLLOW the point at which 
        they are to be applied: }
    START(-Hl)   point value(u)=0 point value(xm)= -lmove
    Line to (Hl) point value(u)=0  point value(xm)= lmove
 
TIME 0 TO 0.5 by 0.01

MONITORS
  for cycle=1
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    elevation(u,u0) from(-10*Hl) to (10*Hl) range (0,1)
    elevation(vx) from(-10*Hl) to (10*Hl) range (0,1)
 
PLOTS
  for time=0.1 by 0.1 to endtime
    elevation(u,u0)   from(-10*Hl) to (10*Hl) range (0,1)
    elevation(vx)     from(-10*Hl) to (10*Hl) range (0,1)

END

5.2.16.2 2d_blob_position

{ 2D_BLOB_POSITION.PDE

  This problem illustrates moving meshes in 2D.
  A circular boundary shrinks and grows sinusoidally in time.
  The mesh coordinates are solved directly, without a mesh velocity variable.

  See 2D_BLOB_VELOCITY.PDE  for a version that uses mesh velocity variables.

}
TITLE 'Pulsating circle in 2D - position specification'

COORDINATES
  cartesian2

VARIABLES
  Phi           { the temperature }
  Xm = MOVE(x)  { surrogate X }
  Ym = MOVE(y)  { surrogate Y }

DEFINITIONS
  K = 1         { default conductivity }
  R0 = 0.75     { initial blob radius }
  Um = dt(Xm)
  Vm = dt(Ym)

INITIAL VALUES
  Phi = (y+1)/2

EULERIAN EQUATIONS
  Phi:  Div(-k*grad(phi)) = 0
  Xm:  div(grad(Xm)) = 0
  Ym:  div(grad(Ym)) = 0

BOUNDARIES
  REGION 1 'box'
    START(-1,-1)
      VALUE(Phi)=0
      VELOCITY(Xm)=0 VELOCITY(Ym)=0
    LINE TO (1,-1)
      NATURAL(Phi)=0
    LINE TO (1,1)
      VALUE(Phi)=1
    LINE TO (-1,1)
      NATURAL(Phi)=0
    LINE TO CLOSE
  REGION 2  'blob'  { the embedded blob }
    k = 0.001
    START 'ring' (R0,0)
      VELOCITY(Xm) = -0.25*sin(t)*x/r
      VELOCITY(Ym) = -0.25*sin(t)*y/r
    ARC(CENTER=0,0) ANGLE=360 TO CLOSE

TIME 0 TO 2*pi

MONITORS
  for cycle=1
    grid(x,y)

603



FlexPDE 7 : Sample Problems603

    contour(phi)
PLOTS
  FOR T = 0 BY pi/20 TO 2*pi
    GRID(x,y)
    CONTOUR(Phi)  notags nominmax
    VECTOR(-k*grad(Phi))
    CONTOUR(magnitude(Um,Vm))
    VECTOR(Um,Vm) fixed range(0,0.25)
    ELEVATION(Phi) FROM (0,-1) to (0,1)
    ELEVATION(Normal(-k*grad(Phi))) ON 'ring'
END

5.2.16.3 2d_blob_velocity

{ 2D_BLOB_VELOCITY.PDE

  This problem illustrates moving meshes in 2D.
  A circular boundary shrinks and grows sinusoidally in time.
  The mesh coordinates are solved by reference to a mesh velocity variable.
 
  See 2D_BLOB_POSITION.PDE  for a version that uses no mesh velocity variables.

}
TITLE 'Pulsating circle in 2D - velocity specification'
 
COORDINATES
  cartesian2
 
VARIABLES
  Phi           { the temperature }
  Xm = MOVE(x)  { surrogate X }
  Ym = MOVE(y)  { surrogate Y }
  Um(0.1)       { mesh x-velocity }
  Vm(0.1)       { mesh y-velocity }
 
DEFINITIONS
  K = 1    { default conductivity }
  R0 = 0.75    { initial blob radius }
 
INITIAL VALUES
  Phi = (y+1)/2

EULERIAN EQUATIONS
  Phi:  Div(-k*grad(phi)) = 0
  Xm:  dt(Xm) = Um
  Ym:  dt(Ym) = Vm
  Um:  div(grad(Um)) = 0
  Vm:  div(grad(Vm)) = 0
 
BOUNDARIES
  REGION 1 'box'
    START(-1,-1)
      VALUE(Phi)=0
      VELOCITY(Xm)=0 VELOCITY(Ym)=0
      VALUE(Um)=0 VALUE(Vm)=0
    LINE TO (1,-1)
      NATURAL(Phi)=0
    LINE TO (1,1)
      VALUE(Phi)=1
    LINE TO (-1,1)
      NATURAL(Phi)=0
    LINE TO CLOSE
  REGION 2  'blob'  { the embedded blob }
    k = 0.001
    START 'ring' (R0,0)
      VELOCITY(Xm) = Um
      VELOCITY(Ym) = Vm
      VALUE(Um) = -0.25*sin(t)*x/r
      VALUE(Vm) = -0.25*sin(t)*y/r
    ARC(CENTER=0,0) ANGLE=360 TO CLOSE
 
TIME 0 TO 2*pi
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MONITORS
  for cycle=1
    grid(x,y)
    contour(phi)

PLOTS
  FOR T = 0 BY pi/20 TO 2*pi
    GRID(x,y)
    CONTOUR(Phi)  notags nominmax
    VECTOR(-k*grad(Phi))
    CONTOUR(magnitude(Um,Vm))
    VECTOR(Um,Vm) fixed range(0,0.25)
    ELEVATION(Phi) FROM (0,-1) to (0,1)
    ELEVATION(Normal(-k*grad(Phi))) ON 'ring'

END

5.2.16.4 2d_lagrangian_shock

{  2D_LAGRANGIAN_SHOCK.PDE

    This example demonstrates moving meshes in 2D by solving Sod's shock tube problem 
    (a 1D problem) on a 2D moving mesh. 

    Mesh nodes are given the local fluid velocity, so the model is fully Lagrangian.
 
    Ref: G.A. Sod, "A Survey of Several Finite Difference Methods for Systems of
Nonlinear
    Hyperbolic Conservation Laws", J. Comp. Phys. 27, 1-31 (1978)
 
    See also Kershaw, Prasad and Shaw, "3D Unstructured ALE Hydrodynamics with the
    Upwind Discontinuous Finite Element Method", UCRL-JC-122104, Sept 1995.

    Other versions of this problem can be found in the "Applications | Fluids"  folder.

}
 
TITLE "Sod's Shock Tube Problem - 2D Lagrangian"
SELECT
  ngrid= 100
  regrid=off
 
VARIABLES
  rho(1)
  u(1)
  P(1)
  xm=move(x)
 
DEFINITIONS
  len = 1
  wid = 0.01
  gamma = 1.4
  { define a damping term to kill unwanted oscillations }
  eps =  0.001  
 
  v = 0
  rho0  = 1.0 - 0.875*uramp(x-0.49, x-0.51)
  p0 = 1.0 - 0.9*uramp(x-0.49, x-0.51)
 
INITIAL VALUES
  rho = rho0
  u = 0
  P = p0
 
EULERIAN EQUATIONS
  { equations are stated as appropriate to the Eulerian (lab) frame.
    FlexPDE will add motion terms to convert to Lagrangian form for moving mesh }
  { since the equation is really in x only, we add dyy(.) terms with natural(.)=0
    on the sidewalls to impose uniformity across the fictitious y coordinate }
  rho:   dt(rho) + u*dx(rho) + rho*dx(u)  = dyy(rho) + eps*dxx(rho)
  u:     dt(u) + u*dx(u) + dx(P)/rho      = dyy(u) + eps*dxx(u)

376
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  P:     dt(P) + u*dx(P) + gamma*P*dx(u)  = dyy(P) + eps*dxx(P)
  xm:    dt(xm) = u
 
BOUNDARIES
   REGION 1
    { we must impose the same equivalence dt(xm)=u on the side boundaries
    as in the body equations: }
    START(0,0)      
    natural(u)=0    dt(xm)=u        line to (len,0)
    value(xm)=len   value(u)=0      line to (len,wid)
    dt(xm)=u        natural(u)=0    line to (0,wid)
    value(xm)=0     value(u)=0      line to close
 
TIME 0 TO 0.375
 
MONITORS
  for cycle=5
    grid(x,10*y)
    elevation(rho) from(0,wid/2) to (len,wid/2) range (0,1)
    elevation(u)   from(0,wid/2) to (len,wid/2) range (0,1)
    elevation(P)   from(0,wid/2) to (len,wid/2) range (0,1)
 
PLOTS
  for t=0 by 0.02 to 0.143, 0.16 by 0.02 to 0.375
    grid(x,10*y)
    elevation(rho) from(0,wid/2) to (len,wid/2) range (0,1)
    elevation(u)   from(0,wid/2) to (len,wid/2) range (0,1)
    elevation(P)   from(0,wid/2) to (len,wid/2) range (0,1)
 
END

5.2.16.5 2d_m ovepoint

{  2D_MOVEPOINT.PDE

  This example is a variation  of 2D_STRETCH_XY.PDE  demonstrating the use of
  moving and non-moving point declarations.

  A point defined by name as a MOVABLE POINT  and used in the definition of the domain
will move
  with the mesh.

  Any point declared explicitly or not used in the domain definition will remain fixed.

}
TITLE "stretching brick"

SELECT
  regrid=off     

VARIABLES
  u
  xm = move(x)
  ym = move(y)

DEFINITIONS
  Hl = 1/2
  gwid = 0.15
  u0= exp(-(x^2+y^2)/gwid^2)
  lmove = Hl + t
  ms = gwid^2/u0
  vx = dt(xm)
  vy = dt(ym)
  P = movable point(Hl,Hl)
  Q = movable point(0.1,0)
  R = point(-0.2,-0.2)

INITIAL VALUES
  u= u0
  dt(xm) = x/Hl

607
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  dt(ym) = y/Hl

EQUATIONS
  U:  dt(u)=0
  Xm:  div(grad(vx))=0
  Ym:  div(grad(vy))=0

BOUNDARIES
  REGION 1
    mesh_spacing = ms
    START(-Hl,-Hl)
    value(u) = 0 nobc(xm) value(ym)=-lmove
    Line to (Hl,-Hl)
    value(u)=0 value(xm)=lmove nobc(ym)
    line to P
    value(u)=0 nobc(xm) value(ym) = lmove
    line to (-Hl,Hl)
    value(u)=0 value(xm)=-lmove nobc(ym)
    line to close

  NODE POINT Q

TIME 0 TO 0.5 by 0.01! 10

MONITORS
  for cycle=1
    grid(x,y) zoom(-Hl-1/2,-Hl-1/2, 2*Hl+1,2*Hl+1)
    grid(x,y) zoom(-0.6,0.4, 0.2,0.2)
    contour(vx) zoom(-0.6,0.4, 0.2,0.2)
    contour(vy) zoom(-0.6,0.4, 0.2,0.2)
    contour(u)
    elevation(u,u0) from(-10*Hl,0) to (10*Hl,0) range (0,1)
    elevation(u,u0) from(0,-10*Hl) to (0,10*Hl) range (0,1)

PLOTS
  for time=0.1 by 0.1 to endtime
    grid(x,y) zoom(-Hl-1/2,-Hl-1/2, 2*Hl+1,2*Hl+1)
        report(distance(P,(0.2,0)))
    contour(u)
    contour(u-u0)  as "True Total Error"
    contour(space_error()) as "Estimated Step Error" painted
    elevation(u,u0)   from(-10*Hl,0) to (10*Hl,0) range (0,1)
    elevation(vx) from(-10*Hl,0) to (10*Hl,0) range (0,1)
    elevation(u,u0)   from(0,-10*Hl) to (0,10*Hl) range (0,1)
    elevation(vy) from(0,-10*Hl) to (0,10*Hl) range (0,1)

  History(u) at P,Q, (0.2,0)  as "Points a(P) and b(Q) move with the mesh, c(0.2,0) is
fixed in space"
  History(u,u0) at R,(-0.2,-0.2) as "both points are fixed in space"
  History(distance(P,R))  ! both are movable points, so the distance changes as the mesh
moves
                at P,R    ! name the points to get markers on the domain
  History(time_error())

END

5.2.16.6 2d_stretch_x

{  2D_STRETCH_X.PDE

  This example demonstrates moving meshes in 2D.

  A 1D Gaussian distribution is defined on a 2D mesh.
  The mesh is then stretched to twice its initial X size,
  while the Gaussian remains fixed in space.

  Elevation displays show that the Gaussian retains its correct 
  shape as it moves through the mesh.
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  Mesh motion is imposed by explicit positions of the endpoints.

}
TITLE "2D brick stretching in x"
 
VARIABLES
  u
  xm = move(x)
 
DEFINITIONS
  Hl = 1/2
  wid = 0.01
  gwid = 0.15
  u0 = exp(-x^2/gwid^2)
  lmove = Hl + t
  vx = dt(xm)
 
INITIAL VALUES
  u = u0
  dt(xm) = x/Hl
 
EULERIAN EQUATIONS
  U:   dt(u)=0
  Xm:  div(grad(vx)) = 0
 
BOUNDARIES
  REGION 1
    START(-Hl,0)                                line to (Hl,0)
    value(u)=0 value(xm)=lmove      line to (Hl,wid)
    natural(u)=0 nobc(xm)              line to (-Hl,wid)
    value(u)=0 value(xm)=-lmove    line to close
 
TIME 0 TO 0.5 by 0.01
 
MONITORS
  for time=0
    grid(x,10*y) as "Initial mesh"
    contour(vx)
 
  for cycle=1
    grid(x,10*y)
    contour(u)      zoom(-2*Hl,0, 4*Hl,2*wid)
    contour(vx)     zoom(-2*Hl,0, 4*Hl,2*wid)
    contour(dt(xm)) zoom(-2*Hl,0, 4*Hl,2*wid)
    elevation(u,u0) from(-10*Hl,wid/2)  to (10*Hl,wid/2) range (0,1)
    elevation(vx)   from(-10*Hl,wid/2)  to (10*Hl,wid/2) range (0,1)
    elevation(dt(xm)) from(-10*Hl,wid/2) to (10*Hl,wid/2) range (0,1)
 
PLOTS
  for time=0.1 by 0.1 to endtime
    grid(x,10*y)
    contour(u) zoom(-2*Hl,0, 4*Hl,2*wid)
    contour(vx) zoom(-2*Hl,0, 4*Hl,2*wid)
    contour(dt(xm)) zoom(-2*Hl,0, 4*Hl,2*wid)
    elevation(u,u0) from(-10*Hl,wid/2) to (10*Hl,wid/2) range (0,1)
END

5.2.16.7 2d_stretch_xy

{  2D_STRETCH_XY.PDE

  This example demonstrates moving meshes in 2D.
  A Gaussian distribution is defined on a 2D mesh.
  The mesh is  then stretched to twice its initial size,
  while the Gaussian remains fixed in space.

  Output plots show that the Gaussian has retained its shape as
  it moves through the mesh.

  Mesh motion is imposed by explicit positions of the endpoints.
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}

TITLE "stretching brick"

SELECT
  regrid=off

VARIABLES
  u
  xm = move(x)
  ym = move(y)

DEFINITIONS
  Hl = 1/2
  gwid = 0.15
  u0 = exp(-(x^2+y^2)/gwid^2)
  lmove = Hl + t
  ms = gwid^2/u0
  vx = dt(xm)
  vy = dt(ym)

INITIAL VALUES
  u = u0
  dt(xm) = x/Hl
  dt(ym) = y/Hl

EULERIAN EQUATIONS
  U:  dt(u)=0
  Xm:  div(grad(vx))=0
  Ym:  div(grad(vy))=0

BOUNDARIES
  REGION 1
    mesh_spacing = ms
    START(-Hl,-Hl)
    value(u)=0 nobc(xm) value(ym)=-lmove
      line to (Hl,-Hl)
    value(u)=0 value(xm)=lmove nobc(ym)
      line to (Hl,Hl)
    value(u)=0 nobc(xm) value(ym)=lmove
      line to (-Hl,Hl)
    value(u)=0 value(xm)=-lmove nobc(ym)
      line to close

TIME 0 TO 0.5 by 0.01! 10

MONITORS
  for cycle=1
    grid(x,y) zoom(-Hl-1/2,-Hl-1/2, 2*Hl+1,2*Hl+1)
    contour(u)
    elevation(u,u0) from(-10*Hl,0) to (10*Hl,0) range (0,1)
    elevation(u,u0) from(0,-10*Hl) to (0,10*Hl) range (0,1)

PLOTS
  for time=0.1 by 0.1 to endtime
    grid(x,y) zoom(-Hl-1/2,-Hl-1/2, 2*Hl+1,2*Hl+1)
    contour(u)
    contour(u-u0) as "True Total Error"
    contour(space_error()) as "Estimated Step Error"
    elevation(u,u0)   from(-10*Hl,0) to (10*Hl,0) range (0,1)
    elevation(vx) from(-10*Hl,0) to (10*Hl,0) range (0,1)
    elevation(u,u0)   from(0,-10*Hl) to (0,10*Hl) range (0,1)
    elevation(vy) from(0,-10*Hl) to (0,10*Hl) range (0,1)

END
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5.2.16.8 3d_blob_position

{ 3D_BLOB_POSITION.PDE

  This problem illustrates moving meshes in 3D.
  A spherical boundary shrinks and grows sinusoidally in time.
  The mesh coordinates are solved directly, without a mesh velocity variable.
 
  See 3D_BLOB_VELOCITY.PDE  for a version that uses mesh velocity variables.

}
TITLE 'Pulsating circle in 3D - position specification'
 
COORDINATES
  cartesian3
 
VARIABLES
  Phi    { the temperature }
  Xm = MOVE(x)  { surrogate X }
  Ym = MOVE(y)  { surrogate Y }
  Zm = MOVE(z)  { surrogate Z }
 
DEFINITIONS
  K = 1    { default conductivity }
  R0 = 0.75    { initial blob radius }
 
  zsphere = SPHERE ((0,0,0),R0)
  z1, z2
  Um = dt(Xm)
  Vm = dt(Ym)
  Wm = dt(Zm)
 
INITIAL VALUES
  Phi = (z+1)/2
 
EULERIAN EQUATIONS
  Phi:  Div(-k*grad(phi)) = 0
  Xm:  div(grad(Xm)) = 0
  Ym:  div(grad(Ym)) = 0
  Zm:  div(grad(Zm)) = 0
 
EXTRUSION
  SURFACE 'Bottom'          z = -1
  SURFACE 'Sphere Bottom'   z=z1
  SURFACE 'Sphere Top'      z=z2
  SURFACE 'Top'             z=1
 
BOUNDARIES
 SURFACE 1
    VALUE(Phi)=0 VELOCITY(Xm)=0 VELOCITY(Ym)=0 VELOCITY(Zm)=0
 SURFACE 4
    VALUE(Phi)=1 VELOCITY(Xm)=0 VELOCITY(Ym)=0 VELOCITY(Zm)=0
 
REGION 1 'box'
  z1=0   z2=0
  START(-1,-1)
    NATURAL(Phi)=0 VELOCITY(Xm)=0 VELOCITY(Ym)=0 VELOCITY(Zm)=0
  LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE
 
LIMITED REGION 2  'blob'  { the embedded blob }
  z1 = -zsphere
  z2 = zsphere
  layer 2 k = 0.001
  SURFACE 2
    VELOCITY(Xm) = -0.25*sin(t)*x/r
    VELOCITY(Ym) = -0.25*sin(t)*y/r
    VELOCITY(Zm) = -0.25*sin(t)*z/r
  SURFACE 3
    VELOCITY(Xm) = -0.25*sin(t)*x/r
    VELOCITY(Ym) = -0.25*sin(t)*y/r
    VELOCITY(Zm) = -0.25*sin(t)*z/r
  START 'ring' (R0,0)
  ARC(CENTER=0,0) ANGLE=360 TO CLOSE
 
TIME 0 TO 2*pi by pi/20
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MONITORS
  FOR cycle=1
    GRID(x,y,z) ON 'blob' ON LAYER 2
    CONTOUR(phi) ON y=0
PLOTS
  FOR T = 0 BY pi/20 TO 2*pi
    GRID(x,y,z) ON 'blob' ON LAYER 2 FRAME(-R0,-R0,-R0, 2*R0,2*R0,2*R0)
    CONTOUR(Phi)  notags nominmax ON y=0
    VECTOR(-k*grad(Phi)) ON y=0
    CONTOUR(magnitude(Um,Vm,Wm)) ON y=0
    VECTOR(Um,Wm) ON y=0 FIXED RANGE(0,0.25)
    ELEVATION(Phi) FROM (0,0,-1) TO (0,0,1)
    ELEVATION(magnitude(Um,Vm,Wm)) FROM (0,0,-1) TO (0,0,1)
 
END

5.2.16.9 3d_blob_velocity

{ 3D_BLOB_VELOCITY.PDE

  This problem illustrates moving meshes in 3D.
  A spherical boundary shrinks and grows sinusoidally in time.
  The mesh coordinates are solved by reference to a mesh velocity variable.

  See 3D_BLOB_POSITION.PDE  for a version that uses no mesh velocity variables.

}
TITLE 'Pulsating circle in 3D - velocity specification'

COORDINATES
  cartesian3

VARIABLES
  Phi    { the temperature }
  Xm = MOVE(x)  { surrogate X }
  Ym = MOVE(y)  { surrogate Y }
  Zm = MOVE(z)  { surrogate Z }
  Um(0.1)   { mesh x-velocity }
  Vm(0.1)    { mesh y-velocity }
  Wm(0.1)    { mesh z-velocity }

DEFINITIONS
  K = 1    { default conductivity }
  R0 = 0.75    { initial blob radius }

  zsphere = SPHERE ((0,0,0),R0)
  z1, z2

INITIAL VALUES
  Phi = (z+1)/2

EULERIAN EQUATIONS
  Phi:  Div(-k*grad(phi)) = 0
  Xm:  dt(Xm) = Um
  Ym:  dt(Ym) = Vm
  Zm:  dt(Zm) = Wm
  Um:  div(grad(Um)) = 0
  Vm:  div(grad(Vm)) = 0
  Wm:  div(grad(Wm)) = 0

EXTRUSION
  SURFACE 'Bottom'          z = -1
  SURFACE 'Sphere Bottom'   z=z1
  SURFACE 'Sphere Top'      z=z2
  SURFACE 'Top'             z=1

BOUNDARIES
 SURFACE 1
    VALUE(Phi)=0 VELOCITY(Xm)=0 VELOCITY(Ym)=0 VELOCITY(Zm)=0
    VALUE(Um)=0 VALUE(Vm)=0 VALUE(Wm)=0
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 SURFACE 4
    VALUE(Phi)=1 VELOCITY(Xm)=0 VELOCITY(Ym)=0 VELOCITY(Zm)=0
    VALUE(Um)=0 VALUE(Vm)=0 VALUE(Wm)=0

REGION 1 'box'
  z1=0   z2=0
  START(-1,-1)
    NATURAL(Phi)=0
    VELOCITY(Xm)=0 VELOCITY(Ym)=0 VELOCITY(Zm)=0
    VALUE(Um)=0 VALUE(Vm)=0 VALUE(Wm)=0
  LINE TO (1,-1) TO (1,1) TO (-1,1) TO CLOSE

LIMITED REGION 2  'blob'  { the embedded blob }
  z1 = -zsphere
  z2 = zsphere
  layer 2 k = 0.001
  SURFACE 2
    VELOCITY(Xm) = Um  VELOCITY(Ym) = Vm  VELOCITY(Zm) = Wm
    VALUE(Um) = -0.25*sin(t)*x/r
    VALUE(Vm) = -0.25*sin(t)*y/r
    VALUE(Wm) = -0.25*sin(t)*z/r
  SURFACE 3
    VELOCITY(Xm) = Um  VELOCITY(Ym) = Vm  VELOCITY(Zm) = Wm
    VALUE(Um) = -0.25*sin(t)*x/r
    VALUE(Vm) = -0.25*sin(t)*y/r
    VALUE(Wm) = -0.25*sin(t)*z/r
  START 'ring' (R0,0)
  ARC(CENTER=0,0) ANGLE=360 TO CLOSE

TIME 0 TO 2*pi

MONITORS
  FOR cycle=1
    GRID(x,y,z) ON 'blob' ON LAYER 2
    CONTOUR(phi) ON y=0
PLOTS
  FOR T = 0 BY pi/20 TO 2*pi
    GRID(x,y,z) ON 'blob' ON LAYER 2
    CONTOUR(Phi)  notags nominmax ON y=0
    VECTOR(-k*grad(Phi)) ON y=0
    CONTOUR(magnitude(Um,Vm,Wm)) ON y=0
    VECTOR(Um,Wm) ON y=0 FIXED RANGE(0,0.25)
    ELEVATION(Phi) FROM (0,0,-1) TO (0,0,1)
    ELEVATION(magnitude(Um,Vm,Wm)) FROM (0,0,-1) TO (0,0,1)

END

5.2.17 ODE

5.2.17.1 linearode

{ LINEARODE.PDE  
  
  This example shows the application of FlexPDE to the solution of a linear 
  first-order differential equation. 
  
  We select the simple example   
     dH/dt = a - b*H 
  
  This equation has the exact solution   
     H(t) = H(0)*exp(-b*t) + (a/b)*(1-exp(-b*t)) 
  
  The existence of an exact solution allows us to analyze the errors 
  in the FlexPDE solution. 
 
  Since FlexPDE requires a spatial domain, we solve the system over  
  a simple box with minimum mesh size. 
  
}  
   
title  
  "FIRST ORDER ORDINARY DIFFERENTIAL EQUATION"  
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select  
  { Since no spatial information is required, use the minimum grid }  
  ngrid=1                   
  errlim = 1e-4  
   
variables  
  { declare Height to be the system variable }  
  Height(threshold=1)       
   
definitions                 
  { define the equation parameters }  
  a = 2                     
  b = 0.1  
  H0 = 100  
  { define the exact solution: }  
  Hexact = H0*exp(-b*t) + (a/b)*(1-exp(-b*t))  
   
initial values  
  Height = H0  
   
equations  
  Height : dt(Height)  = a - b*Height    { The ODE }  
   
boundaries  
  region 1  
  start (0,0)  
  line to (1,0) to (1,1) to (0,1) to close  
   
time 0 to 100  
   
plots  
  for time = 0,1,10 by 10 to 100  
  { Plot the solution: }  
  history(Height) at (0.5,0.5)  
  { Plot the error check: }  
  history((Height-Hexact)/Hexact) at (0.5,0.5) as "Relative Error"  
   
end  
  

5.2.17.2 nonlinode

{ NONLINODE.PDE  
   
  This example shows the application of FlexPDE to the solution of a 
  non-linear first-order differential equation. 
  
  A liquid flows into the top of a reactor vessel through an unrestricted 
  pipe and exits from the bottom through a choke value.  This problem is 
  discussed in detail in Silebi and Schiesser. 
  
  This is a problem in viscous flow:   
     dH/dt = a - b*sqrt(H) 
  
  The analytic solution satisfies the relation   
     sqrt(H0) + (a/b)ln[a-b*sqrt(H0)] 
      - sqrt(H) - (a/b)ln[a-b*sqrt(H)] = (b/2)*t 
  
  which can be used as an accuracy check. 
 
  Since FlexPDE requires a spatial domain, we solve the equation on  
  a simple box with minimum mesh size. 
  
}  
   
title  
  "NONLINEAR FIRST ORDER ORDINARY DIFFERENTIAL EQUATION"  
   
select  
  { Since there is no spatial information required, use the minimum grid size }  
  ngrid=1                 
   
variables  
  { declare Height to be the system variable }  
  Height(threshold=1)     
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definitions  
  { define the equation parameters }  
  a = 2                   
  b = 0.1  
  H0 = 100  
  { define the accuracy check }  
  T0 = sqrt(H0) + (a/b)*ln(a-b*sqrt(H0))  
  Tcheck = sqrt(Height) + (a/b)*ln(a-b*sqrt(Height))  
   
initial values  
  Height = H0  
   
equations   { The ODE }  
  Height : dt(Height)  = a - b*sqrt(Height)   
   
boundaries  
  { define a fictitious spatial domain }  
  region 1                
    start (0,0)  
    line to (1,0) to (1,1) to (0,1) to close  
   
{ define the time range }  
time 0 to 1000            
   
plots  
  for t=0, 1, 10 by 10 to endtime  
    { Plot the solution: }  
    history(Height) at (0.5,0.5)  
    { Plot the accuracy check: }  
    history((T0 - Tcheck - (b/2)*t)/((b/2)*t)) at (0.5,0.5)  
                as "Relative Error"  
   
end  
  

5.2.17.3 second_order_tim e

{  SECOND_ORDER_TIME.PDE   
 
  This example shows the integration of Bessel's Equation as a test of the 
  time integration capabilities of FlexPDE. 
  
  Bessel's Equation for order zero can be written as 
    t^2*dtt(w) + t*dt(w) + t^2*w = 0 
  
  Dividing by t^2 and avoiding the pole at t=0, we can write 
    dtt(w) + dt(w)/t + w = 0 
  
  FlexPDE cannot directly integrate second order time equations, so we define an 
  auxiliary variable v=dt(w) and write a coupled pair of equations 
    dt(v) + v/t + w = 0 
    dt(w) = v 
  
  We use a dummy spatial grid of two cells and solve the equation at each node. 
  
  You can try varying the value given for ERRLIM  to see how it behaves. 
  
 }  
   
title "Integration of Bessel's Equation"  
   
select  
    ngrid=1  
    errlim=1e-4  { increase accuracy to prevent accumulation of errors }  
   
Variables  
    v (threshold=0.1)  
    w (threshold=0.1)  
   
definitions  
    L = sqrt(2)  
    t0 = 0.001    { Start integration at t=0.001 }  
   
Initial values    { Initialize to known values at t=t0 }  
    w = 1-2.25*(t0/3)^2  
    v = -0.5*t0 + 0.5625*t0*(t0/3)^2  
   

186
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equations  
    v:  dt(v) +v/t + w = 0  
    w:  dt(w) =  v  
   
boundaries  
    region 1  
        start(-L,-L) line to (L,-L) to (L,L) to (-L,L) to close  
   
time 0.001 to 4*pi    { Exclude t=0 }  
   
plots  
    for t=0.01 by 0.01 to 0.1 by 0.1 to 1 by 1 to endtime  
      history(w,bessj(0,t)) at (0,0)  as "W(t) and BESSJ0(t)"  
      history(w-bessj(0,t)) at (0,0)  as "Absolute Error"  
      history(v,-bessj(1,t)) at (0,0)  as "V(t) and dt(BESSJ0(t))"  
      history(v+bessj(1,t)) at (0,0)  as "Slope Error"  
      history(deltat)  
   
end  
  

5.2.18 Optimization

5.2.18.1 criticality

{   CRITICALITY.PDE

    This problem demonstrates the use of FlexPDE in the solution of optimization
problems.

    FlexPDE implements the Nelder-Mead "amoeba" algorithm to minimize  or maximize  an
objective function.
    This is not the method of greatest speed, but it is very flexible, and allows FlexPDE
to perform
    optimization searches in a wide range of problem environments.

    A simple model of nuclear criticality can be made using a Fick's-Law diffusion
equation for single-velocity neutrons.
    In this model, the criticality relation can be stated as
        Div(D*grad(N)) -sigmar*N + (1/k)*nper*mix*sigmaf*N = 0,
    where
        N = neutron density
        beta = Fick's Law proportionality factor 
        D = beta/sigmat
        k = 1/lambda = "criticality eigenvalue"
        mix = fractional content of fissionable material in the source region
        nper = number of neutrons produced at each absorption
        sigmat = transport cross-section  = 1/(transport mean free path)
        sigmar = removal cross-section
        sigmaf = fission cross section

     The system becomes critical when lambda = 1.
}

title 'Nuclear Criticality'

variables
    N    { neutron Density }

select
    modes=1     { calculate only the smallest eigenvalue }
    cell_limit=2000

definitions
    source          { name the material parameters, values will be declared by region }
    sigmat          { transport cross-section }
    sigmar          { removal cross-section }
    sigmaf          { fission cross-section }

    beta = 1/3      { Fick's Law proportionality factor }
    nper = 2        { number of neutrons produced per fission }
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    convergence = (lambda-1)^2     { optimization parameter: a function with a smooth
minimum at lambda=1 }

{ Here is the optimization request:
  Modify "mix" until the eigenvalue "lambda" is 1.0
  "mix" starts at 0.05, and the initial range of "mix" samples is 0.001
  Iteration continues until "convergence" is less than OPTERRLIM (default 2e-6) or "mix"
is bracketed to less than OPTERRLIM*mix. }
minimize(convergence) vs mix (0.05,0.001)  

equations   { The neutron density equation: }
    N : div(beta/sigmat*grad(N)) + source  - sigmar*N +  lambda*mix*nper*sigmaf*N = 0

boundaries

    region 1    { the bounding region is tenuous }
      source=0  sigmar=1    sigmat=2   sigmaf=0
      start(0,0)
      natural(N)= 0
      line to (10,0)
      line to (10,10) to (0,10)
      line to close

    region 2    { this region has fission }
      source=0  sigmar=0.1    sigmat=2   sigmaf=1
      start(2,2)
      line to (8,2) to (8,8) to (2,8) to close

monitors
    contour(N)  as "Neutron Density"
    history(lambda,mix, convergence) report(convergence) report(lambda) report(mix)

plots
    grid(x,y)
    contour(N) as 'Neutron Density'  report(mix) report(lambda) report(mix)
    surface(N) as 'Neutron Density'
    vector(-beta/sigmat*grad(N)) as 'Neutron Flux'
    contour(mix*sigmaf*nper*N)  as "Fission Source"
    contour(sigmar*N) as "Neutron Absorption"

    history (lambda,mix,convergence) report(convergence) report(lambda) report(mix)
    history (lambda) vs mix

end

5.2.18.2 criticality _size

{   CRITICALITY_SIZE.PDE 
 
    This problem demonstrates the use of FlexPDE in the solution of optimization
problems.

    FlexPDE implements the Nelder-Mead "amoeba" algorithm to minimize  or maximize  an
objective function.
    This is not the method of greatest speed, but it is very flexible, and allows FlexPDE
to perform
    optimization searches in a wide range of problem environments.

    A simple model of nuclear criticality can be made using a Fick's-Law diffusion
equation for single-velocity neutrons.
    In this model, the criticality relation can be stated as
        Div(D*grad(N)) -sigmar*N + (1/k)*nper*sigmaf*N = 0,
    where
        N = neutron density
        beta = Fick's Law proportionality factor 
        D = beta/sigmat
        k = 1/lambda = "criticality eigenvalue"
        mix = fractional content of fissionable material in the source region
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        nper = number of neutrons produced at each absorption
        sigmat = transport cross-section  = 1/(transport mean free path)
        sigmar = removal cross-section
        sigmaf = fission cross section

    In this probem, we use the "mix" parameter discovered in CRITICALITY.PDE  and solve
for the critical size of the assembly.

    This should return us 5.0, the size used in CRITICALITY.PDE.
}
 
title 'Nuclear Criticality'
 
variables
    N    { neutron Density }

select
    modes=1     { calculate only the smallest eigenvalue }
    cell_limit=2000
 
definitions
    source          { name the material parameters, values will be declared by region }
    sigmat          { transport cross-section }
    sigmar          { removal cross-section }
    sigmaf          { fission cross-section }
    beta = 1/3      { Fick's Law proportionality factor }
    nper = 2        { number of neutrons produced per fission }
    convergence = (lambda-1)^2     { optimization parameter: a function with a smooth
minimum at lambda=1 }
    Hw       { the outer halfwidth of the structure }
    box = 3*Hw/5    { the halfwith of the reactive inclusion }
    mix = 0.086052  { as reported by CRITICALITY.PDE }

! Here is the optimization request:  
! Modify the halfwidth "Hw" until the eigenvalue "lambda" is 1.0
! "Hw" starts at 10, and the initial range of "Hw" samples is 1.0
! Iteration continues until "convergence" is less than OPTERRLIM (default 2e-6) or "Hw"
is bracketed to less than OPTERRLIM*Hw.
minimize(convergence) vs Hw (10,1) 

equations   { The neutron density equation: }
    N : div(beta/sigmat*grad(N)) + source  - sigmar*N +  lambda*mix*nper*sigmaf*N = 0
 
boundaries
 
    region 1    { the bounding region is absorbing }
      source=0  sigmar=1    sigmat=2   sigmaf=0
      start(-Hw,-Hw)
      natural(N)= 0 
      line to (Hw,-Hw)
      line to (Hw,Hw) to (-Hw,Hw)
      line to close
 
    region 2    { this region has fission }
      source=0  sigmar=0.1    sigmat=2   sigmaf=1
      start(-box, -box)
      line to (box, -box) to (box, box) to (-box, box) to close
 
monitors
    contour(N)  as "Neutron Density"
    history(lambda,Hw,convergence)
 
plots
    grid(x,y)
    contour(N) as 'Neutron Density'  report(Hw) report(lambda)
    surface(N) as 'Neutron Density'
    vector(-beta/sigmat*grad(N)) as 'Neutron Flux'
    contour(sigmaf*nper*N)  as "Fission Source"
    contour(sigmar*N) as "Neutron Absorption"
 
    history (lambda) 
    history(Hw) 
    history(convergence) 
    history (lambda) vs Hw 
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end

5.2.18.3 power_control

{  POWER_CONTROL.PDE

   This example shows the use of the MINIMIZE  optimization feature. It is
   analogous to the APPLICATIONS/CONTROL/CONTROL_STEADY.PDE  example.

   We wish to find the required power input to a heater, such that the resulting
   average temperature over the domain is a specified value.
}

TITLE "Optimization using MINIMIZE"

VARIABLES
  temp      { The temperature field }

DEFINITIONS
  setpoint=700      { the desired average temperature }
  skintemp=325      { fixed outer boundary temperature }
  k=1               { conductivity }
  heat=0            { the heat function for the temperature.
                      it is non-zero only in the heater region }

  tcontrol=integral(temp)/integral(1)   { the control function, average temperature }
  { tcontrol=val(temp,0,0)     -- an alternative control method, unused here }

  power     ! total power input 

INITIAL VALUES
  temp = setpoint

EQUATIONS
  temp:   div(-k*grad(temp))-heat = 0   { diffusion of temperature field }

{ Here is the optimization request:
  Modify "power" until the average temperature is equal to setpoint.
  "power" starts at 50, and the initial range of "power" samples is 20.
  "power" is constrained to be greater than 0 and less than 1000.
  Iteration continues until "abs(tcontrol-setpoint)" is less than OPTERRLIM (default 2e-
6)
  or "power" is bracketed to less than OPTERRLIM*power. }
MINIMIZE abs(tcontrol-setpoint) vs power(50, 20, 0, 1000)

BOUNDARIES

  REGION 'Insulation'
    k=0.1
    heat=0
    start(-4,-4)
      value(temp)=skintemp
    line to (4,-4) to (4,4) to (-4,4) to close

  REGION 'Heater'
    k=50
    heat=power 
    start(-1,-1) line to (1,-1) to (1,1) to (-1,1) to close

MONITORS
  contour(temp)
    report power
    report tcontrol
  History(abs(tcontrol-setpoint),power)

PLOTS
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  contour(temp)
    report power
    report power*integral(1,'heater') as "Total Power"
    report tcontrol as "Average Temp"
  elevation(temp) from(-4,0)  to (4,0)
  History(abs(tcontrol-setpoint),power)
  Summary 
      report power*integral(1,'heater') as "Total Power needed to establish an average
temperature of 700 "

END

5.2.18.4 size_control

{  SIZE_CONTROL.PDE

   This example shows the use of the MINIMIZE  optimization feature applied to geometric
size.

   We wish to find the correct size of a heater with fixed power input, such that the
resulting
   average temperature over the domain is a specified value.
}

TITLE "Optimization of geometry using MINIMIZE"

VARIABLES
  temp      { The temperature field }

DEFINITIONS
  setpoint=700      { the desired average temperature }
  skintemp=325      { fixed outer boundary temperature }
  k=1               { conductivity }
  heat=0            { the heat function for the temperature.
                      it is non-zero only in the heater region }

  tcontrol=integral(temp)/integral(1)   { the control function, average temperature }
  { tcontrol=val(temp,0,0)     -- an alternative control method, unused here }

  power = 550.5  ! total power (as reported by POWER_CONTROL)
  len

INITIAL VALUES
  temp = setpoint

EQUATIONS
  temp:   div(-k*grad(temp))-heat = 0   { diffusion of temperature field }

{ Here is the optimization request:
  Modify "len" until the average temperature is equal to setpoint.
  "len" starts at 1.5, and the initial range of "len" samples is 1.
  "len" is constrained to be greater than 0.1 and less than 4.
  Iteration continues until "abs(tcontrol-setpoint)" is less than OPTERRLIM (default 2e-
6)
  or "len" is bracketed to less than OPTERRLIM*len. }
MINIMIZE abs(tcontrol-setpoint) vs len(1.5, 1, 0.1, 4)

BOUNDARIES

  REGION 'Insulation'
    k=0.1
    heat=0
    start(-4,-4)
      value(temp)=skintemp
    line to (4,-4) to (4,4) to (-4,4) to close  !fixed outer size

  REGION 'Heater'
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    k=50
    heat=power/integral(1,'Heater')  ! convert total power to power density
    start(-len,-len) line to (len,-len) to (len,len) to (-len,len) to close

MONITORS
  contour(temp)
    report power
    report tcontrol
  History(abs(tcontrol-setpoint),len)

PLOTS
  contour(temp)
    report len
    report tcontrol as "Average Temp"
  elevation(temp) from(-4,0)  to (4,0)
  History(abs(tcontrol-setpoint),len)
  History(len)
  Summary report len as "Length needed to establish an average temperature of 700 "

END

5.2.19 Periodicity

5.2.19.1 3d_antiperiodic

{  3D_ANTIPERIODIC.PDE 
 
  This example shows the use of FlexPDE in a 3D problem with azimuthal 
  anti-periodicity. 
  (See the example ANTIPERIODIC.PDE  for notes on antiperiodic boundaries.) 
  
  In this problem we create a repeated 45-degree segment of a ring. 
 
}  
   
title '3D AZIMUTHAL ANTIPERIODIC TEST'  
   
coordinates cartesian3  
   
Variables  
     u  
   
definitions  
     k = 1  
     { angular size of the repeated segment: } 
     an = pi/4      
     { the sine and cosine for transformation } 
     crot = cos(an)   
     srot = sin(an)  
     H = 0  
     xc = 1.5  
     yc = 0.2  
     rc = 0.1  
   
equations  
     u : div(K*grad(u)) + H = 0  
   
extrusion z=0,0.4,0.6,1  
   
boundaries  
     region 1  
       { this line forms the remote boundary for the later periodic statement }  
       start(1,0) line to (2,0)  
   
       value(u) = 0  arc(center=0,0) to (2*crot,2*srot)  
   
       { The following line segment is periodic under an angular rotation. 
            The mapping expressions take each point on the line into a corresponding 
            point in the base line.  Note that although all the mapped y-coordinates 
            will be zero, we give the general expression so that the transformation 
            will be invertible. }  
       antiperiodic(x*crot+y*srot, -x*srot+y*crot)  
       line to (crot,srot)  
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       value(u)=0  
       arc(center= 0,0)  to close  
   
     limited region 2  
        layer 2 H = 1  
        start(xc-rc,0) line to (xc+rc,0) to (xc+rc,rc) to (xc-rc,rc) to close  
   
     limited region 3  
        layer 2 H = -1  
        start((xc-rc)*crot,(xc-rc)*srot)  
        line to ((xc+rc)*crot,(xc+rc)*srot)  
                to ((xc+rc)*crot+rc*srot,(xc+rc)*srot-rc*crot)  
                to ((xc-rc)*crot+rc*srot,(xc-rc)*srot-rc*crot) to close  
   
monitors  
     grid(x,y,z)  
     contour(u) on z=0.1  
     contour(u) on z=0.5  
     contour(u) on z=0.9  
   
plots  
     grid(x,y,z)  
     contour(u) on z=0.1        painted  
     contour(u) on z=0.5        painted  
     contour(u) on z=0.9        painted  
end  
  

5.2.19.2 3d_xperiodic

{  3D_XPERIODIC.PDE   
   
  This example shows the use of FlexPDE in 3D applications with periodic boundaries. 
  
  The PERIODIC  statement appears in the position of a boundary condition, but 
  the syntax is slightly different, and the requirements and implications are 
  more extensive. 
  
  The syntax is: 
        PERIODIC(X_mapping,Y_mapping) 
  The mapping expressions specify the arithmetic required to convert a point 
  (X,Y) in the immediate boundary to a point (X',Y') on a remote boundary. 
  The mapping expressions must result in each point on the immediate boundary 
  mapping to a point on the remote boundary.  Segment endpoints must map to 
  segment endpoints.  The transformation must be invertible; do not specify 
  constants as mapped coordinates, as this will create a singular transformation. 
  
  The periodic boundary statement terminates any boundary conditions in effect, 
  and instead imposes equality of all variables on the two boundaries.  It is 
  still possible to state a boundary condition on the remote boundary, 
  but in most cases this would be inappropriate. 
  
  The periodic statement affects only the next following LINE  or ARC  path. 
  These paths may contain more than one segment, but the next appearing 
  LINE or ARC statement terminates the periodic condition unless the periodic 
  statement is repeated. 
  
  In this problem, we have a heat equation with an off=center source in an irregular 
  figure.  The figure is periodic in X, with Y faces held at zero, and Z-faces
insulated. 
  
}  
   
title '3D X-PERIODIC BOUNDARY TEST'  
   
coordinates  
    cartesian3  
   
Variables  
    u  
   
definitions  
    k = 0.1  
    h=0  
    x0=0.5  y0=-0.2  
    x1=1.1  y1 = 0.2  
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equations  
    u : div(K*grad(u)) + h = 0  
   
extrusion z=0,0.4,0.6,1  
   
boundaries  
    region 1  
      start(-1,-1)  
      value(u)=0   line to (1,-1)   { Force U=0 on Y=-1 }       
   
      { The following arc is required to be a periodic image of an arc 
        two units to its left. (This image boundary has not yet been defined.) }  
      periodic(x-2,y) arc(center=-1,0) to (1,1)  
   
      value(u)=0   line to (-1,1)       { Force U=0 on Y=1 }  
   
      { The following arc provides the required image boundary for the previous 
                periodic statement }  
      nobc(u)   { turn off the value BC }  
      arc(center= -3,0)  to close  
   
    { an off-center heat source in layer 2 provides the asymmetric conditions to 
        demonstrate the periodicity of the solution }  
    limited region 2  
      layer 2 h=10 k=10  
      start(x0,y0) line to (x1,y0) to (x1,y1) to (x0,y1) to close  
   
monitors  
    contour(u) on z=0  
    contour(u) on z=0.5  
    contour(u) on z=1  
    contour(u) on y=0  
   
plots  
    contour(u) on z=0   painted  
    contour(u) on z=0.5 painted  
    contour(u) on z=1   painted  
    contour(u) on y=0   painted  
   
end  
  

5.2.19.3 3d_zperiodic

{  3D_ZPERIODIC.PDE 
   
  This example shows the use of FlexPDE in 3D applications with periodic 
  boundaries in the Z-direction. 
  
  For Z-periodicity, we merely precede  the EXTRUSION  statement by the 
  qualifier PERIODIC .  The top and bottom surfaces are assumed to match, 
  and values are made equal on the two surfaces. 
  
  In this problem we have a heat equation in an irregular figure. 
  An off-center source heats the body, while all the vertical surfaces are 
  held at U=0. 
 
}  
   
title '3D Z-PERIODIC BOUNDARY TEST'  
   
coordinates  
    cartesian3  
   
Variables  
     u  
   
definitions  
    k = 0.1  
    h=0  
    x0=0.3  y0=-0.2  
    x1=0.7  y1 = 0.2  
   
equations  
    u : div(K*grad(u)) + h = 0  
   
periodic extrusion z=0, 0.8, 1  
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boundaries  
    Region 1  
      start(-1,-1)  
        value(u)=0  
      line to (1,-1)  
      arc(center=-1,0) to (1,1)  
      line to (-1,1)  
      arc(center=-3,0) to close  
   

    { an off-center heat source in layer 2 provides the asymmetric 
        conditions to demonstrate the periodicity of the solution }  
    limited region 2  
      layer 2 h=10 k=10  
      surface 1 { include insert patch in surface 1 so surfaces match }  
      start(x0,y0) line to (x1,y0) to (x1,y1) to (x0,y1) to close  
   
monitors  
    contour(u) on y=0  
   
plots  
    grid(x,z)  on y=0  
    contour(u) on y=0 painted  
end  
  

5.2.19.4 antiperiodic

{  ANTIPERIODIC.PDE   
   
  This example shows the use of FlexPDE in applications with antiperiodic 
   boundaries. 
  
  The ANTIPERIODIC  statement appears in the position of a boundary condition, but 
  the syntax is slightly different, and the requirements and implications are 
  more extensive. 
  
  The syntax is: 
        ANTIPERIODIC(X_mapping,Y_mapping) 
  The mapping expressions specify the arithmetic required to convert a point 
  (X,Y) in the immediate boundary to a point (X',Y') on a remote boundary. 
  The mapping expressions must result in each point on the immediate boundary 
  mapping to a point on the remote boundary.  Segment endpoints must map to 
  segment endpoints.  The transformation must be invertible; do not specify 
  constants as mapped coordinates, as this will create a singular transformation. 
  
  The antiperiodic boundary statement terminates any boundary conditions in effect, 
  and instead imposes equality of all variables on the two boundaries.  It is 
  still possible to state a boundary condition on the remote boundary, 
  but in most cases this would be inappropriate. 
  
  The antiperiodic statement affects only the next following LINE  or ARC  path. 
  These paths may contain more than one segment, but the next appearing 
  LINE or ARC statement terminates the periodic condition unless the periodic 
  statement is repeated. 
  
}  
   
title 'ANTI-PERIODIC BOUNDARY TEST'  
   
Variables  
     u  
   
definitions  
    k = 0.1  
    h=0  
   
equations  
    u : div(K*grad(u)) + h = 0  
   
boundaries  
    Region 1  
      start(-1,-1)  
        value(u)=0    line to (1,-1)  
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      { The following arc is required to be an antiperiodic image of an arc 
            two units to its left. (This image boundary has not yet been defined.) }  
      antiperiodic(x-2,y) arc(center=-1,0) to (1.2,-0.2)  
      antiperiodic(x-2,y) line to (1.2,0.2)  
      antiperiodic(x-2,y) arc(center=-1,0) to (1,1)  
   
      value(u)=0 line to (-1,1)  
   
      { The following arc provides the required image boundary for the previous 
            antiperiodic statement }  
      nobc(u)       { turn off the value BC }  
      arc(center= -3,0) to (-0.8,0.2) line to (-0.8,-0.2) arc(center=-3,0) to close  
   
    { an off-center heat source provides the asymmetric conditions to 
        demonstrate the antiperiodicity of the solution }  
    region 2  h=10 k=10  
      start(1.2,-0.2) line to (1.2,0.2) to (1,0.2) to (1,-0.2) to close  
   
    region 3  h=-10 k=10  
      start(-0.6,-0.2) line to (-0.6,0.2) to (-0.8,0.2) to (-0.8,-0.2) to close  
   
monitors  
     grid(x,y)  
     contour(u)  
   
plots  
     grid(x,y)  
     contour(u)  
end  
  

5.2.19.5 azim uthal_periodic

{  AZIMUTHAL_PERIODIC.PDE   
   
  This example shows the use of FlexPDE in a problem with azimuthal periodicity. 
  (See the example PERIODIC.PDE  for notes on periodic boundaries.) 
 
  In this problem we create a repeated 45-degree segment of a ring. 
}  
  
title 'AZIMUTHAL PERIODIC TEST'  
  
Variables  
    u  
  
definitions  
    k = 1  
    { angular size of the repeated segment: } 
    an = pi/4      
    { the sine and cosine for transformation } 
    crot = cos(an)   
    srot = sin(an)  
    H = 0  
    xc = 1.5  
    yc = 0.2  
    rc = 0.1  
  
equations  
    u : div(K*grad(u)) + H = 0  
  
boundaries  
    region 1  
       { this line forms the remote boundary for the later periodic statement }  
       start(1,0) line to (2,0)  
  
       value(u)=0  arc(center=0,0) to (2*crot,2*srot)  
  
       { The following line segment is periodic under an angular rotation. 
         The mapping expressions take each point on the line into a corresponding 
         point in the base line.  Note that although all the mapped y-coordinates 
         will be zero, we give the general expression so that the transformation 
         will be invertible. }  
       periodic(x*crot+y*srot, -x*srot+y*crot)  
       line to (crot,srot)  
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       value(u)=0  
       arc(center= 0,0)  to close  
  
    region 2  
        H = 1  
        start(xc-rc,yc) arc(center=xc,yc) angle=360  
  
monitors  
     grid(x,y)  
     contour(u)  
  
plots  
     grid(x,y) contour(u)  
  
end  
  

5.2.19.6 periodic+tim e

{ PERIODIC+TIME.PDE 
  
  This example is a time-dependent version of PERIODIC.PDE  
  
}  
   
title 'Time-dependent Periodic Boundary Test'  
   
variables  
     u(0.01)  
   
definitions  
    k = 0.1  
    h=0  
    x0=0.5  y0=-0.2  
    x1=1.1  y1=0.2  
   
equations  
    u : div(K*grad(u)) + h = dt(u)  
   
boundaries  
    region 1  
      start(-1,-1)  
      value(u)=0  line to (0.9,-1) to (1,-1)  
   
      { The following arc is required to be a periodic image of an arc 
        two units to its left. (This image boundary has not yet been defined.) }  
      periodic(x-2,y) arc(center=-1,0) to (1,1)  
   
      value(u)=0   line to (-1,1)  
   
      { The following arc provides the required image boundary for the previous 
        periodic statement }  
      nobc(u)   { turn off the value BC }  
      arc(center= -3,0)  to close  
   
    { an off-center heat source provides the asymmetric conditions to 
      demonstrate the periodicity of the solution }  
    region 2  h=10 k=10  
      start(x0,y0) line to (x1,y0) to (x1,y1) to (x0,y1) to close  
   
time 0 to 10  
   
monitors  
    for cycle=1  
      grid(x,y)  
      contour(u)  
   
plots  
    for cycle=10  
      grid(x,y)  
      contour(u)  
   
end  
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5.2.19.7 periodic

{ PERIODIC.PDE   
   
  This example shows the use of FlexPDE in applications with periodic boundaries. 
  
  The PERIODIC  statement appears in the position of a boundary condition, but 
  the syntax is slightly different, and the requirements and implications are 
  more extensive. 
  
  The syntax is: 
        PERIODIC(X_mapping,Y_mapping) 
  The mapping expressions specify the arithmetic required to convert a point 
  (X,Y) in the immediate boundary to a point (X',Y') on a remote boundary. 
  The mapping expressions must result in each point on the immediate boundary 
  mapping to a point on the remote boundary.  Segment endpoints must map to 
  segment endpoints.  The transformation must be invertible; do not specify 
  constants as mapped coordinates, as this will create a singular transformation. 
  
  The periodic boundary statement terminates any boundary conditions in effect, 
  and instead imposes equality of all variables on the two boundaries.  It is 
  still possible to state a boundary condition on the remote boundary, 
  but in most cases this would be inappropriate. 
  
  The periodic statement affects only the next following LINE  or ARC  path. 
  These paths may contain more than one segment, but the next appearing 
  LINE or ARC statement terminates the periodic condition unless the periodic 
  statement is repeated. 
  
}  
   
title 'PERIODIC BOUNDARY TEST'  
   
variables  
     u  
   
definitions  
    k = 0.1  
    h=0  
    x0=0.5  y0=-0.2  
    x1=1.1  y1=0.2  
   
equations  
    u : div(K*grad(u)) + h = 0  
   
boundaries  
    region 1  
      start(-1,-1)  
      value(u)=0    line to (0.9,-1) to (1,-1)  
   
      { The following arc is required to be a periodic image of an arc 
        two units to its left. (This image boundary has not yet been defined.) }  
      periodic(x-2,y) arc(center=-1,0) to (1,1)  
   
      value(u)=0   line to (-1,1)  
   
      { The following arc provides the required image boundary for the previous 
        periodic statement }  
      nobc(u)   { turn off the value BC }  
      arc(center= -3,0)  to close  
   
    { an off-center heat source provides the asymmetric conditions to 
      demonstrate the periodicity of the solution }  
    region 2  h=10 k=10  
      start(x0,y0) line to (x1,y0) to (x1,y1) to (x0,y1) to close  
   
monitors  
     grid(x,y)  
     contour(u)  
   
plots  
     grid(x,y)  
     contour(u)  
  
end  
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5.2.19.8 two-way _periodic

{ TWO-WAY_PERIODIC.PDE 
 
  This example shows the use of FlexPDE in applications with two-way periodic boundaries.

  Starting in version 7, two-way periodcity is fully supported at a single point.
  Prior to version 7, this was not supported and a small segment with no
  periodicity needed to be inserted near the two-way periodic point.
}  

title 'TWO-WAY PERIODIC BOUNDARY TEST'  
   
variables  
     u  
   
definitions  
    k = 1    
    h=0  
    x0=0.4   x1=0.9  { right box x-coordinates }  
    x2=-0.5  x3=0.0  { left box x-coordinates }  
    y0=-0.7 y1 = -0.3  {y-coordinates for both
boxes }  
   
equations  
    u : div(K*grad(u)) + h = 0  
   
boundaries  
    region 1  
   
      { Periodic bottom boundary }  
      start(-1,-1)  
      periodic(x,y+2)  line to (1,-1)  
   
      { Periodic right boundary }  
      periodic(x-2,y) arc(center=-1,0) to (1,1)  
   
      { Image of periodic bottom boundary }
      line to  (-1,1)
   
      { Image of periodic right boundary }  
      arc(center= -3,0)  to close  
   
      { off-center hot box }  
      start(x0,y0)  
      value(u)=1    line to (x1,y0) to (x1,y1) to (x0,y1) to close  
   
      { off-center cold box }  
      start(x2,y0)   
      value(u)=-1   line to (x3,y0) to (x3,y1) to (x2,y1) to close  
   
monitors  
     grid(x,y)  
     contour(u)  
   
plots  
     grid(x,y)  
     contour(u)  
end  
  

5.2.20 Plotting

5.2.20.1 3d_ploton

{ 3D_PLOTON.PDE 
 
  This problem shows some of the possible 'ON'  qualifiers for 3D plots. 
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}  
   
title '3D Test -- Plot Qualifiers'  
   
coordinates  
    cartesian3  
   
Variables  
    u  
   
definitions  
    k = 0.1  
    heat = 4  
   
equations  
    U:     div(K*grad(u)) + heat   = 0  
   
extrusion  
    surface z = 0  
    surface z = 0.8-0.3*(x^2+y^2)  
    surface z = 1.0-0.3*(x^2+y^2)    

boundaries  
    region 1 'outer'  
        layer 2 k = 1  
        start(-1,-1)  
            value(u) = 0  
        line to (1,-1) to (1,1) to (-1,1) to close  
    region 2 'plug'  
        layer 2 k = 1  
        start 'dot' (0.5,0.5) arc(center=0,0) angle=360  
   
plots  
     grid(x,y,z) on region 1 as "Only Region 1, both layers"  
     grid(x,y,z) on region 'plug' on layer 2  as "Region 2 Layer 2"  
     grid(x,y,z) on region 'plug' on layers 1,2 paintregions as "Region 2, both layers"  
     grid(y,z)  on x=0 on 'plug'    as "Cut plane on region 2"  
     contour(u) on x=0.51    on layer 2  as "Solution on X-cut in layer 2"    
     contour(u) on z=0.51   on  region 2  as "Solution on Z-cut in region 2"  
     contour(u) on surface 2  on region 2          as "Solution on paraboloidal layer
interface"  
     vector(grad(u)) on surface 2 on 'outer'  as "Flux on layer interface in region 1"  
   
end  
  

5.2.20.2 export_test

{ EXPORT_TEST.PDE  
 
    This sample demonstrates the use of EXPORT  selectors in PLOT  output. 
}  
  
  
title "Simple Heatflow"

Variables
    Temp                        { Identify "Temp" as the system variable }

definitions
    K = 1                       { declare and define the conductivity }
    source = 4                  { declare and define the source }
    Texact = 1-x^2-y^2          { for convenience, define the exact solution }

initial values
    Temp = 0                    { unimportant in linear steady-state problems }

equations
    Temp:   div(K*grad(Temp)) + source = 0   { define the heatflow equation }

boundaries                      { define the problem domain }
    Region 1                    { ... only one region }
        start "BDRY" (-1,-1)    { specify the starting point }
        value(Temp)=Texact      { specify Dirichlet boundary at exact solution }
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        line to (1,-1)          { walk the boundary }
             to (1,1)
             to (-1,1)
             to close           { bring boundary back to starting point }

monitors
    contour(Temp)               { show the Temperature during solution }

plots                           { write these hardcopy files at completion }
    contour(Temp)      export   as "Contour Export"
    contour(Temp)      export(20)   as "Contour Export(20)"
    contour(Temp)      export traces   as "Trace Print"
    vector(-dx(Temp),-dy(Temp)) as "Heat Flow" export
    elevation(temp) from (-1,-1) to (1,1) export as "Elevation-export"
    elevation(temp) from (-1,-1) to (1,1) export(300) as "Elevation-export(300)"
    elevation(temp) on "BDRY" export as "Bdry-export"

end

5.2.20.3 plot_on_grid

{ PLOT_ON_GRID.PDE 
       
  This is a variation of BENTBAR.PDE  that makes use
of
  the capability to plot contours on a deformed grid. 
 
  The syntax of the plot command is  

CONTOUR(data) ON GRID(Xposition,Yposition)  
 
}  
  
title "Contour plots on a deformed grid"  
  
select  
    cubic       { Use Cubic Basis }  
  
variables  
    U           { X-displacement }  
    V           { Y-displacement }  
  

definitions  
    L = 1               { Bar length }  
    hL = L/2  
    W = 0.1             { Bar thickness }  
    hW = W/2  
    eps = 0.01*L  
    I = 2*hW^3/3        { Moment of inertia }  
  
    nu = 0.3            { Poisson's Ratio }  
    E  = 2.0e11         { Young's Modulus for Steel (N/M^2) }  
                        { plane stress coefficients }  
    G  = E/(1-nu^2)  
    C11 = G  
    C12 = G*nu  
    C22 = G  
    C33 = G*(1-nu)/2  
  
    amplitude=GLOBALMAX(abs(v)) { for grid-plot scaling }  
    mag=1/amplitude  
  
    force = -250         { total loading force in Newtons (~10 pound force) }  
    dist = 0.5*force*(hW^2-y^2)/I       { Distributed load }  
  
    Sx = (C11*dx(U) + C12*dy(V))        { Stresses }  
    Sy = (C12*dx(U) + C22*dy(V))  
    Txy = C33*(dy(U) + dx(V))  
  
    { Timoshenko's analytic solution:  }  
    Vexact = (force/(6*E*I))*((L-x)^2*(2*L+x) + 3*nu*x*y^2)  
    Uexact = (force/(6*E*I))*(3*y*(L^2-x^2) +(2+nu)*y^3 -6*(1+nu)*hW^2*y)  
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    Sxexact = -force*x*y/I  
    Txyexact = -0.5*force*(hW^2-y^2)/I  
  
initial values  
    U = 0  
    V = 0  
  
equations             { the displacement equations }  
    U:  dx(Sx) + dy(Txy) = 0  
    V:  dx(Txy) + dy(Sy) = 0  
  
boundaries  
    region 1  
      start (0,-hW)  
  
      load(U)=0         { free boundary on bottom, no normal stress }  
      load(V)=0  
        line to (L,-hW)  
  
      value(U) = Uexact { clamp the right end }  
      mesh_spacing=hW/10  
        line to (L,0) point value(V) = 0  
        line to (L,hW)  
  
      load(U)=0         { free boundary on top, no normal stress }  
      load(V)=0  
      mesh_spacing=10  
        line to (0,hW)  
  
      load(U) = 0  
      load(V) = dist    { apply distributed load to Y-displacement equation }  
        line to close  
  
plots  
    grid(x+mag*U,y+mag*V)   as "deformation"   { show final deformed grid }  
      
 ! STANDARD PLOTS: 
 contour(U)   
    surface(U)   
  
    ! THE DEFORMED PLOTS: 
 contour(U) on grid(x+mag*U,y+mag*V)  
    surface(U) on grid(x+mag*U,y+mag*V)  
  
end 
  

5.2.20.4 plot_test

{ PLOT_TEST.PDE  
 
  This example shows the use of various options in plotted output. 
 
  The problem is the same as PLATE_CAPACITOR.PDE . 
 
}  
  
title 'Plate capacitor'  

variables  
     v  
  
definitions  
     Lx=2       Ly=1.5  
     delx=0.25*Ly     
     d=0.1*Ly        ddy=0.1*d  
     Ex=-dx(v)   Ey=-dy(v)  
     Eabs=sqrt(Ex^2+Ey^2)  
     eps0=8.854e-12  
     eps  
     DEx=eps*Ex         DEy=eps*Ey  
     Dabs=sqrt(DEx^2+DEy^2)  
     zero=1.e-15  
  
equations  
     V:     div(-eps*grad(v)) = 0  
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boundaries  
  region 1  
     eps=eps0  

     start(-Lx,-Ly) Load(v)=0  
     line to (Lx,-Ly) to (Lx,Ly) to (-LX,Ly) to close  
  
     start "Plate1" (-delx/2,-d/2)        value(v)=0  
     line to (delx/2,-d/2) to (delx/2,-d/2-ddy) to(-delx/2,-d/2-ddy)  
        to close  
  
     start "Plate2" (-delx/2,d/2+ddy)        value(v)=1  
     line to (delx/2,d/2+ddy) to (delx/2,d/2) to(-delx/2,d/2)  
        to close  
  
  region 2 { Dielectric }  
     eps = 7.0*eps0  
     start(-delx/2,-d/2)  
     line to (delx/2,-d/2) to (delx/2,d/2) to(-delx/2,d/2)  
        to close  
  
 
MONITORS
   contour(v)  
  
PLOTS
   ! Contour plots
   contour(v) as "Potential"
   contour(v) contours=50 as "More Contours"
   contour(v) contours=10 fixed range=(0.4,0.6)  as "Fixed Range"
   contour(v) levels=0, 0.1, 0.3, 0.5, 0.7, 0.9 as "Selected Levels"
   ! contour with stretching zoom
   contour(v) zoom(-Lx/2,-Ly/2,Lx,Ly) as "Zoomed Contour (stretched)"
   contour(v) on region 2 as "Region 2 Contour"
   contour(magnitude(grad(v))) log as "Field (Log divisions)"
        integrate
        report integral(magnitude(grad(v))) as "Integral Report"
   contour(magnitude(grad(v))) as "Field (NO Log divisions)"
   
   ! Surface Plots
   surface(magnitude(grad(v))) log as "Field (Log divisions)"
        integrate
        report integral(magnitude(grad(v))) as "Integral Report"
   surface(v) as "Surface(V)"
   surface(v) gray as "Surface(V) Gray"
   surface(v) gray mesh points=20 as "Surface(V) Gray Mesh"
   
   ! Vector plot  (with 3-argument square zoom) 
   vector(dx(v),dy(v)) zoom(-Ly/2,-Ly/2,Ly) as " Zoomed Field Vectors (square)"
   
   ! Elevations
   elevation(v, dy(v)*d) from (0,-Ly) to (0,Ly) points=1000 as "1000 Point Elevation"
integrate
   elevation(normal(grad(v))) on "Plate1" as "Elevation Plot on Boundary "    integrate
   elevation(magnitude(grad(v))) from (0,-0.9*Ly) to (0,0.9*Ly) log as "LOG Field"

   ! Grid plots
   grid(x,y) paintmaterials as "Mesh Plot"
   grid(x,y) paintmaterials nolines as "Materials Plot"
  
end  
  

5.2.21 Sequenced_Equations

5.2.21.1 equation_iteration

{  EQUATION_ITERATION.PDE

  This example is a modification of the LOWVISC.PDE problem to show the use
  of the START_ITERATION - END_ITERATION construct. The X and Y velocities
  (U and V) are calculated independently, but iterated until mutual convergence.
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  This is not a better way to solve this particular problem, but simply an exanple
  of the usage for the START_ITERATATION - END_ITERATION construct.

}

title 'Viscous flow in 2D channel, Re > 40'

variables
   u(0.1)
   v(0.01)
   p(1)
   psi

select
  ngrid=40

definitions
   Lx = 5       Ly = 1.5
   p0 = 2
   speed2 = u^2+v^2
   speed = sqrt(speed2)
   dens = 1
   visc = 0.04
   vxx = -(p0/(2*visc*(2*Lx)))*(Ly^2-y^2)  { open-channel x-velocity }

   rball=0.4
   cut = 0.1    { value for bevel at the corners of the obstruction }

   penalty = 100*visc/rball^2
   Re = globalmax(speed)*(Ly/2)/(visc/dens)

   w = zcomp(curl(u,v))  ! vorticity is the source for streamline equation

initial values
   u = 0.5*vxx  v = 0  p = p0*(Lx+x)/(2*Lx)

equations
   ! Iterate U and V until mutual convergence
   start_iteration
     u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))
     p:  div(grad(p)) = penalty*(dx(u)+dy(v))
   then
     v:  visc*div(grad(v)) - dy(p) = dens*(u*dx(v) + v*dy(v))
     p:  div(grad(p)) = penalty*(dx(u)+dy(v))
  end_iteration

  then
    psi:  div(grad(psi)) + w = 0  ! solve streamline equation separately from velocities

boundaries
   region 1
      start(-Lx,0)
      load(u) = 0   value(v) = 0  load(p) = 0   value(psi)=0
        line to (Lx/2-rball,0)

      value(u) = 0  value(v) = 0  load(p) = 0
      mesh_spacing=rball/10  ! dense mesh to resolve obstruction
        line to (Lx/2-rball,rball) bevel(cut)
             to (Lx/2+rball,rball) bevel(cut)
             to (Lx/2+rball,0)

      mesh_spacing=10*rball  ! cancel dense mesh requirement
      load(u) = 0  value(v) = 0  load(p) = 0
        line to (Lx,0)

      load(u) = 0  value(v) = 0  value(p) = p0  natural(psi)=0
        line to (Lx,Ly)

      value(u) = 0  value(v) = 0  load(p) = 0 natural(psi)=normal(-v,u)
        line to (-Lx,Ly)
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      load(u) = 0  value(v) = 0  value(p) = 0  natural(psi)=0
        line to close

monitors
   contour(speed)  report(Re)
   contour(psi) as "Streamlines"
   contour(max(psi,-0.003)) zoom(Lx/2-3*rball,0, 3*rball,3*rball)  as "Vortex
Streamlines"
   vector(u,v) as "flow"    zoom(Lx/2-3*rball,0, 3*rball,3*rball) norm

plots
   contour(u)  report(Re)
   contour(v)  report(Re)
   contour(speed) painted  report(Re)
   vector(u,v) as "flow"   report(Re)
   contour(p)  as "Pressure" painted
   contour(dx(u)+dy(v)) as "Continuity Error"
   elevation(u) from (-Lx,0) to (-Lx,Ly)
   elevation(u) from (0,0) to (0,Ly)
   elevation(u) from (Lx/2,0) to (Lx/2,Ly)
   elevation(u) from (Lx,0) to (Lx,Ly)
   contour(psi) as "Streamlines"
   contour(max(psi,-0.003)) zoom(Lx/2-3*rball,0, 3*rball,3*rball)  as "Vortex
Streamlines"
   vector(u,v) as "flow"    zoom(Lx/2-3*rball,0, 3*rball,3*rball) norm

   Transfer(u,v,p)   ! write flow solution as initial values for Coupled_contaminant.pde

end

5.2.21.2 initialeq

{  INITIALEQ.PDE

   This example illustrates use of the INITIAL EQUATIONS  section.
   It is s modification of the FLOAT_ZONE.PDE  example that first
   solves for a gaussian initial temperature distribution.
}

title "Float Zone"

coordinates xcylinder('Z','R')

variables
  temp (threshold=100)
  temp2(threshold=100)

definitions
  k = 0.85      {thermal conductivity}
  cp = 1        { heat capacity }
  long = 18
  H = 0.4       {free convection boundary coupling}
  Ta = 25       {ambient temperature}
  A = 4500      {amplitude}

  source = A*exp(-((z-1*t)/.5)^2)*(200/(t+199))

  tsource = time_integral(vol_integral(source))
  t1 = time_integral(1.0)

initial value
  temp = Ta
  temp2 = Ta

initial equations
  Temp:  div(k*grad(temp)) + A*exp(-(z-long/2)^2)= 0
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equations
  Temp:  div(k*grad(temp)) + source = cp*dt(temp)
  Temp2:  div(k*grad(temp2)) + source = cp*dt(temp2)

boundaries
  region 1
  start(0,0)
    natural(temp) = 0
    natural(temp2) = 0
  line to (long,0)
    value(temp) = Ta
    value(temp2) = Ta
  line to (long,1)
    natural(temp) = -H*(temp - Ta)
    natural(temp2) = -H*(temp2 - Ta)
  line to (0,1)
    value(temp) = Ta
    value(temp2) = Ta
  line to close

feature
  start(0.01*long,0) line to (0.01*long,1)

time -0.5 to 19

monitors
  for t = -0.5 by 0.5 to (long + 1)
  elevation(temp, temp2) from (0,1) to (long,1) range=(0,1800) as "Surface Temp"
  contour(temp)
  contour(dt(temp))
  contour(temp2)

plots
  for t = -0.5 by 0.5 to (long + 1)
  elevation(temp, temp2) from (0,0) to (long,0) range=(0,1800) as "Axis Temp"

histories
  history(temp,dt(temp)) at (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)
                   (9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0) (16,0)
                   (17,0) (18,0)
  history(temp2,dt(temp2)) at (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)
                   (9,0) (10,0) (11,0) (12,0) (13,0) (14,0) (15,0) (16,0)
                   (17,0) (18,0)
   history(t1) as "Tintegral(1)"
   history(tsource)  as "Tintegral(Source)"

end

5.2.21.3 sm oothing_discontinuities

{ SMOOTHING_DISCONTINUITIES.PDE  

  This problem is a variation of DIFFUSION.PDE .
It employs an approximation to smooth the effects of discontinuous initial conditions.
We specify a discontinuous initial condition, zero internally with a value of 1.0 on the
boundary.
The equation is  div(D*grad(u)) = dt(u).
A first-order backward finite-difference approximation to the time derivative is dt(u) ~
(u-u0)/deltat0.

This creates an implicit steady-state equation for the value at the end of the initial
time deltat0:

  div(D*grad(u)) = (u - u0)/deltat0.  
We use the INITIAL EQUATIONS  facility to solve this system before beginning the time
evolution.
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}

title 'Masked Diffusion'

variables
  u(threshold=0.1)     { fraction of external concentration }

definitions
  concs = 1.8e8             { surface concentration  atom/micron^3}
  D = 1.1e-2                { diffusivity micron^2/hr}
  conc = concs*u
  cexact1d = concs*erfc(x/(2*sqrt(D*t)))
  uexact1d = erfc(x/(2*sqrt(D*t)))       { masked surface flux multiplier }
  M = upulse(y-0.3,y-0.7)

  u0 = 0
  dt0 = 0.05

initial equations
  u: div(D*grad(u)) = (u - u0)/dt0   ! finite difference over time for a first step

equations
  u : div(D*grad(u)) = dt(u)

boundaries
  region 1
    start(0,0)
      natural(u) = 0
      line to (1,0) to (1,1) to (0,1)
      value(u) = M
      line to close

  feature               { a "gridding feature" to help localize the activity }
    start (0.02,0.3) line to (0.02,0.7)

time dt0 to 1 by 0.001

plots
  for t=dt0 0.1 by 0.05 to 0.2 by 0.1 to endtime
    contour(u)
    surface(u)
    elevation(u,uexact1d) from (0,0.5) to (1,0.5)
    elevation(u-uexact1d) from (0,0.5) to (1,0.5)

histories
  history(u) at (0.05,0.5) (0.1,0.5) (0.15,0.5) (0.2,0.5)

end

5.2.21.4 theneq+tim e

{ THENEQ+TIME.PDE 
     
    This example demonstrates the use of sequenced equations  in time-dependent
problems. 
 
    The variable U is given a source consistent with the desired solution of  
        U=A-(x^2+y^2) 
    The variable V has a source equal to -U.  The analytic solution to this equation is  
        V = A*(x^2+y^2)/4 - (x^4+y^4)/12 
    The variable V therefore depends strongly on U, but U is unaffected by V.   
 
    In this case, we can separate the equations and solve for V in a THEN clause. 
 
}  
title 'Sequenced equations in time-dependent systems'  
  
select ngrid=40  
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variables  
    u(0.01),v(0.01)  
  
definitions  
    k = 1  
    a=2  
    ! analytic solutions 
    u0 = (a-x^2-y^2)  
    v0 = (a*(x^2+y^2)/4-(x^4+y^4)/12)  
  
equations  
    u: div(K*grad(u)) + 4 = dt(u)  
then  
    v: div(K*grad(v)) - u = dt(v)  
  
boundaries  
    Region 1  
    start(-1,-1)  
      ! ramp the boundary values, so that the initial BV's are consistent with the
initial interior values. 
      value(u)=u0*Uramp(t, t-10)           
      value(v)=v0*Uramp(t, t-10)  
    line to (1,-1) to (1,1) to (-1,1) to close  
  
time 0 to 100  
  
plots  
    for cycle=10  
      contour(u)  paint  
      surface(u)  
      contour(v)  paint  
      surface(v)  
      elevation(u,div(K*grad(v))) from(-1,0) to (1,0)  
      history(u,v) at (0,0)  
  
end  
  

5.2.21.5 theneq

{ THENEQ.PDE 
 
    This example demonstrates the use of sequenced equations  in a steady-state
problem. 
    The equations are not coupled, and are solved individually. 
 
}  
title 'Sequenced Equations'  
  
select  
   errlim=1e-5  
   ngrid=50  
  
Variables  
   u,v,w  
  
definitions  
   k1 = 1  
   k2 = 2  
   k3 = 3  
   u0 = 1-x^2-y^2  
   v0 = 2-x^2-y^2  
   w0 = 3-x^2-y^2  
   su = 4*k1  
   sv = 4*k2  
   sw = 4*k3  
  
equations  
   u:     div(K1*grad(u)) +su = 0  
then  
   v:     div(K2*grad(v)) +sv = 0  
then  
   w:     div(K3*grad(w)) +sw = 0  
  
boundaries  
   Region 1  
      start(-1,-1)  
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      value(u)=u0         value(v)=v0         value(w)=w0  
      line to (1,-1) to (1,1) to  (-1,1) to close  
  
   plots  
      surface(u)  paint  
      surface(v)  paint  
      surface(w)  paint  
      elevation(u,v,w,su,sv,sw) from (-1,0) to (1,0)  
end  
  

5.2.22 Stop+Restart

5.2.22.1 restart_export

{  RESTART_EXPORT.PDE 
 
   This example demonstrates the RESTART  facilities of FlexPDE. 
   The problem is a copy of BUOYANT+TIME.PDE , with restart
   transfer file output every 10 units of problem time. 
    
   The associated script RESTART_IMPORT.PDE  reads one of these 
   transfer files to resume the computation from the time of the  
   file output. 
 
   Alternatively, the Finish Timestep item on the Stop menu  could be 
   used with the preference setting to automatically save a final
   transfer file.  This file could also be used in RESTART_IMPORT.PDE
   to resume the computation from the point of the interrupt.
}  

TITLE "Stop and Restart Test - Export"

VARIABLES
   temp(100)
   psi(0.001)
   w(1)

DEFINITIONS
   Lx = 1   Ly = 0.5
   Rad = 0.5*(Lx^2+Ly^2)/Ly
   Gy = 980

   sigma_top = 0.01     { surface heat loss coefficient }
   sigma_bowl =  1      { bowl heat loss coefficient }
   k =  0.0004          { thermal conductivity }

   alpha = 0.001        { thermal expansion coefficient }
   visc = 1

   heatin = min(10,t)
   t0 = 50

   rho0 = 1
   rho = rho0*(1 - alpha*temp)
   cp = 1

   u = dy(psi)
   v = -dx(psi)

   penalty = 5000

EQUATIONS
   temp: div(k*grad(temp)) = rho0*cp*(dt(temp) + u*dx(temp) + v*dy(temp))
   psi:  div(grad(psi)) + w = 0
   w:    dt(w) + u*dx(w) + v*dy(w) = visc*div(grad(w)) - Gy*dx(rho)

BOUNDARIES
   region 1
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    { on the arc of the bowl, set Psi=0, apply conduction loss to T,
        and apply penalty function to w to enforce no-slip condition. }
    start(0,0)
      natural(temp) = -sigma_bowl*temp
      value(psi) = 0
      natural(w)=penalty*tangential(u,v)
      arc (center=0,Rad) to (Lx,Ly)

      { on the top, continue the prior BC for Psi,
        but apply a heat input and loss to T.
        Apply natural=0 BC (no vorticity transport) for w }
      load(temp) = heatin*exp(-(10*x/Lx)^2) - sigma_top*temp
      natural(w)=0
      line to (0,Ly)

      { in the symmetry plane assert w=0, with a reflective BC for T }
      value(w)=0
      load(temp) = 0
      line to close

TIME 0 to 10

MONITORS
   for cycle=5  { watch what's happening }
   contour(temp) as "Temperature"
   contour(psi)  as "Stream Function"
   contour(w)    as "Vorticity"
   vector(curl(psi)) as "Flow Velocity" norm

PLOTS
   for t = 1 by 1 to 10 by 10 to endtime
   grid(x,y)
   contour(temp) as "Temperature"  painted
   contour(psi)  as "Stream Function"
   contour(w)    as "Vorticity"  painted
   vector(curl(psi)) as "Flow Velocity" norm
   contour(rho)  as "Density"  painted

   !>>>>> HERE IS THE RESTART TRANSFER COMMAND:
   for t=5 by 5 to endtime
       export restart

HISTORIES
  history(temp) at (0.1*Lx,Ly) (0.2*Lx,Ly) (0.5*Lx,Ly) (0.8*Lx,Ly)
         (0.7*Lx,0.5*Ly) (0.04*Lx,0.1*ly) as "Temperature"
  history(u) at (0.1*Lx,Ly) (0.2*Lx,Ly) (0.5*Lx,Ly) (0.8*Lx,Ly)
         (0.7*Lx,0.5*Ly) (0.04*Lx,0.2*Ly) as "X-velocity"
  history(v) at  (0.04*Lx,0.1*ly) as "Y-velocity"
  history(v) at  (0.04*Lx,0.1*ly) vs sqrt(t) as "Y-velocity"
   
END  
  

5.2.22.2 restart_im port

{  RESTART_IMPORT.PDE 
 
   This example reads the RESTART  transfer file created by
   RESTART_EXPORT.PDE  and resumes execution at the exported time. 
 
}  

TITLE 'Stop and Restart Test - Import'

VARIABLES
   temp(100)
   psi(0.001)
   w(1)

DEFINITIONS
   Lx = 1   Ly = 0.5
   Rad = 0.5*(Lx^2+Ly^2)/Ly
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   Gy = 980

   sigma_top = 0.01     { surface heat loss coefficient }
   sigma_bowl =  1      { bowl heat loss coefficient }
   k =  0.0004          { thermal conductivity }

   alpha = 0.001        { thermal expansion coefficient }
   visc = 1

   heatin = min(10,t)
   t0 = 50

   rho0 = 1
   rho = rho0*(1 - alpha*temp)
   cp = 1

   u = dy(psi)
   v = -dx(psi)

   penalty = 5000

  { Read in the file exported by restart_export.pde.
    Use the imported mesh and problem time. }

INITIAL VALUES
 restart("restart_export_output/restart_export_restart.xfr")

EQUATIONS
   temp: div(k*grad(temp)) = rho0*cp*(dt(temp) + u*dx(temp) + v*dy(temp))
   psi:  div(grad(psi)) + w = 0
   w:    dt(w) + u*dx(w) + v*dy(w) = visc*div(grad(w)) - Gy*dx(rho)

BOUNDARIES
   region 1

    { on the arc of the bowl, set Psi=0, apply conduction loss to T,
        and apply penalty function to w to enforce no-slip condition. }
    start(0,0)
      natural(temp) = -sigma_bowl*temp
      value(psi) = 0
      natural(w)=penalty*tangential(u,v)
      arc (center=0,Rad) to (Lx,Ly)

      { on the top, continue the prior BC for Psi,
        but apply a heat input and loss to T.
        Apply natural=0 BC (no vorticity transport) for w }
      load(temp) = heatin*exp(-(10*x/Lx)^2) - sigma_top*temp
      natural(w)=0
      line to (0,Ly)

      { in the symmetry plane assert w=0, with a reflective BC for T }
      value(w)=0
      load(temp) = 0
      line to close

TIME 0 to 100

MONITORS
   for cycle=5  { watch what's happening }
   contour(temp) as "Temperature"
   contour(psi)  as "Stream Function"
   contour(w)    as "Vorticity"
   vector(curl(psi)) as "Flow Velocity" norm

PLOTS
   for t = 1 by 1 to 10 by 10 to endtime
   grid(x,y)
   contour(temp) as "Temperature"  painted
   contour(psi)  as "Stream Function"
   contour(w)    as "Vorticity"  painted
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   vector(curl(psi)) as "Flow Velocity" norm
   contour(rho)  as "Density"  painted

HISTORIES
  history(temp) at (0.1*Lx,Ly) (0.2*Lx,Ly) (0.5*Lx,Ly) (0.8*Lx,Ly)
         (0.7*Lx,0.5*Ly) (0.04*Lx,0.1*ly) as "Temperature"
  history(u) at (0.1*Lx,Ly) (0.2*Lx,Ly) (0.5*Lx,Ly) (0.8*Lx,Ly)
         (0.7*Lx,0.5*Ly) (0.04*Lx,0.2*Ly) as "X-velocity"
  history(v) at  (0.04*Lx,0.1*ly) as "Y-velocity"
  history(v) at  (0.04*Lx,0.1*ly) vs sqrt(t) as "Y-velocity"
  history(psi) at (0.52,0.38)
   
END  
  

5.2.23 Variable_Types

5.2.23.1 array _variables

{ ARRAY_VARIABLES.PDE 
 
    This example demonstrates the use of ARRAY VARIABLES . 
    A set of heat equations is solved as a demonstration. 
 
}  
  
title 'ARRAY Variable test'

variables
    U=array[5]                  { an array of field variables }

global variables
    g(threshold=0.1) = array[5] { and an array of global variables }

definitions
    u0 = 1-x^2-y^2
    s = array(1,2,3,4,5) { each equation has a different source }

{ use initial equations to diffuse the otherwise discontinuous initial value caused by
value BC }
initial equations
    repeat i=1 to 5
        U[i]:   del2(u[i])  = 0
    endrepeat

equations
    repeat i=1 to 5
        U[i]:   del2(u[i]) +s[i] = dt(u[i])
        g[i]:   dt(g[i]) = i-g[i]
    endrepeat

boundaries
    Region 1
        start(-1,-1)
            repeat i=1 to 5   
                value(u[i])=u0  
            endrepeat
        line to (1,-1) to (1,1) to (-1,1) to close

time 0 to 10

plots
    for cycle=10
     contour(u_1)                  ! variables may be indexed with underscores
     repeat i=1 to 5
        contour(u[i])   as "U_"+$i    ! variables may be indexed with brackets
     endrepeat
     history(g)
     history(u)  at  (0,0) (1/4,1/4)(1/2,1/2)(3/4,3/4)
     vtk(u,g)
     table(u,g)
     transfer(u,g)
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end  
  

5.2.23.2 com plex_em w21

{ COMPLEX_EMW21.PDE 
 
  This problem is an image of "Backstrom_Books|Waves|Electrodynamics|emw21.pde"  
  rewritten in terms of complex  variables. 
 
}  
TITLE                           { emw21.pde }  
   'Plane Wave in a Conductor'        
SELECT                                
   errlim= 1e-3                 { Limit of relative error }   
  
VARIABLES  
   Ez = complex(Ezr,Ezi)        { Real and imaginary parts }  
  
DEFINITIONS                     { SI units throughout }  
   Lx= 1.0             Ly= 0.2  { Domain size }  
   eps0= 8.85e-12      eps      { Permittivity }  
   mu0= 4*pi*1e-7      mu       { Permeability }  
   sigma                        { Electric conductivity }  
   omega= 5e9                   { Angular frequency }  
   Ez_in= 1.0                   { Input field Ez }  
   Ep= magnitude(Ez)            { Modulus of Ez }  
   phase= carg(Ez)/pi*180       { Angle }  
  
EQUATIONS  
   Ez:  del2( Ez)+ mu*omega*complex(eps*omega, -sigma)*Ez= 0  
  
BOUNDARIES  
region 'conductor'      eps= eps0       mu= mu0     sigma= 1e-1   
   start 'outer' (0,0)  
   natural(Ez)= complex(0,0)    line to (Lx,0)  
   value(Ez)= complex(0,0)      line to (Lx,Ly)     { Conducting }  
   natural(Ez)= complex(0,0)    line to (0,Ly)  
   value(Ez)= complex(Ez_in,0)  line to close       { Input field }  
  
PLOTS  
   elevation( Ez, Ep) from (0,Ly/2) to (Lx,Ly/2)  
   elevation( phase) from (0,Ly/2) to (Lx,Ly/2)  
   elevation( Ez, Ep) on 'outer'  
   contour( Ezr)     contour( Ezi)            
END  
  

5.2.23.3 com plex_sinusoidal_heat

{ COMPLEX_SINUSOIDAL_HEAT.PDE 
 
  This example demonstrates the use of COMPLEX  variables and ARRAY  definitions 
  to compute the time-sinusoidal behavior of a rod in a box. 
 
  The heat equation is 
    div(k*grad(temp)) = cp*dt(temp) 
 
  If we assume that the sources and solutions are in steady oscillation at a frequency 
  omega, then we can write 
    temp(x,y,t) = phi(x,y)*exp(i*omega*t) = phi(x,y)*(cos(omega*t) + i*sin(omega*t)) 
 
  Substituting this into the heat equation and dividing the exp(i*omega*t) out of the 
  result leaves 
    div(k*grad(phi)) - i*omega*cp*phi = 0 
 
  The temperature temp(x,y,t) can be reconstructed at any time by expanding the above 
  definition. 
 
  In this example, we construct an array of sample times and the associated arrays 
  of sine and cosine factors.  These arrays are then used to display a time history of 
  temperature at various points in the domain. 
}   
  
TITLE 'Time Sinusoidal Heat flow around an Insulating blob '      
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VARIABLES  
    ! define the complex amplitude function phi and its real and imaginary components 
    phi=complex(phir,phii)  
  
DEFINITIONS  
    k=1   
    ts = array (0 by pi/20 to 2*pi) ! an array of sample times 
    fr = cos(ts)                ! sine and cosine arrays 
    fi = sin(ts)  
    ! define a function for evaluating a time array of temp(px,py,t) at a point 
    temp(px, py) = eval(phir,px,py)*fr + eval(phii,px,py)*fi  
  
EQUATIONS  
    phi:    Div(k*grad(phi)) - complex(0,1)*phi= 0  
  
BOUNDARIES     
  
  REGION 1  'box'     
      START(-1,-1)  
      VALUE(Phi)=complex(0,0)   LINE TO(1,-1)   { Phi=0 in base line }  
      NATURAL(Phi)=complex(0,0) LINE TO (1,1)   { normal derivative =0 on right side }  
      VALUE(Phi)=complex(1,0)   LINE TO (-1,1)  { Phi = 1 on top }  
      NATURAL(Phi)=complex(0,0) LINE TO CLOSE   { normal derivative =0 on left side }  
  
  REGION 2  'rod'   { the embedded circular rod }  
      k=0.01  
      START 'ring' (1/2,0)  
      ARC(CENTER=0,0) ANGLE=360  TO FINISH  
  
PLOTS  
    CONTOUR(Phir)       ! plot the real part of phi 
        REPORT(k)  REPORT(INTEGRAL(Phir, 'rod'))  
    CONTOUR(Phii)       ! plot the imaginary part of phi 
        REPORT(k)  REPORT(INTEGRAL(Phii, 'rod'))  
  
    ! reconstruct the temperature distribution at a few selected times 
    REPEAT tx=0 by pi/2 to 2*pi  
        SURFACE(phir*cos(tx)+phii*sin(tx)) as "Phi at t="+$[4]tx  
    ENDREPEAT  
  
    ! plot the time history at a few selected positions 
    ELEVATION(temp(0,0), temp(0,0.2), temp(0,0.4), temp(0,0.5)) vs ts  as "Histories"   
  
    VECTOR(-k*grad(Phir))   
        
    ! plot a lineout of phir and phii through the domain 
    ELEVATION(Phi) FROM (0,-1) to (0,1)   
    ! plot the real component of flux on the surface of the rod 
    ELEVATION(Normal(-k*grad(Phir))) ON 'ring'   
  
END  
  

5.2.23.4 com plex_variables

{ COMPLEX_VARIABLES.PDE 
 
  This example demonstrates the use of complex variables in FlexPDE. 
 
  Declaring a variable COMPLEX  causes the definition of two subsidiary variables, 
  either named by default or by use choice.  These variables represent the 
  real and imaginary parts of the complex variable. 
 
}  
  
title 'Complex variables test'  
  
variables  
    U = complex (Ur,Ui)   { creates variables (Ur,Ui) }  
  
definitions  
    u0 = 1-x^2-y^2  
    s = complex(4,x)  
  
equations  
    { create two coupled scalar equations, one for Ur and one for Ui }  
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    U: del2(U) + conj(U) + s = 0  
  
boundaries  
    Region 1  
      start(-1,-1)  
        value(Ur)=u0        { apply BC to Ur.  Ui defaults to natural(Ui)=0 }  
        line to (1,-1) to (1,1) to (-1,1) to close  
  
plots  
    contour(Ur,Ui)          { plot both Ur and Ui overlaid }  
    contour(Real(U),Imag(U))        { an equivalent representation }  
    contour(U)              { another equivalent representation }  
    vector(U)               { plot vectors with Ur as X component and Ui as Y component }
 
    elevation(U,s) from(-1,0) to (1,0)   { plot three traces: Ur, Ui and S }  
    vtk(U,s)                { test various export forms }  
    transfer(U,s)  
  
end  
  

5.2.23.5 com plex+tim e

{ COMPLEX+TIME.PDE 
 
  This example shows the use of complex  variables in time-dependent systems. 
 
  The equation that is solved is not intended to represent any real application. 
 
}  
  
title 'Complex transient equations'  
  
Variables  
    U(0.01) = complex (Ur,Ui)          { creates variables Ur and Ui  }  
  
definitions  
    u0 = 1-x^2-y^2  
    s = complex(4,x)  
  
equations  
    { create two scalar equations, one for Ur and one for Ui }  
    U:  del2(U) +s = dt(U)  
  
boundaries  
    Region 1  
        start(-1,-1)  
        natural(Ur)=u0-Ur  
          line to (1,-1) to (1,1) to (-1,1) to close  
  
time 0 to 1  
  
plots  
  for cycle=10  
       contour(Ur,Ui)  
       contour(Real(u),Imag(U))  
       contour(U)  
       vector(U)  
       elevation(u,s) from(-1,0) to (1,0)  
       history(u,s) at (0,0)  
  
end  
  

5.2.23.6 inactive_variables

{ INACTIVE_VARIABLES.PDE 
 
    This example demonstrates the use of variables absent in selected regions. 
 
    The problem is a modification of LOWVISC.PDE , in which the bottom half of the
channel 
    has been filled with a solid. 
 
    The fluid equations are declared INACTIVE  in the solid region, but a temperature 
    equation has been added that is active everywhere. 

114

401

126



FlexPDE 7 : Sample Problems643

 
    The bottom of the solid is held at temperature = 0, while the fluid has an incoming 
    temperature of 1. 
 
    We solve the equations in sequence: first the fluid equations, then the temperature. 
 
}  
  
title 'Variables inactive in regions'  
  
variables  
    u(0.1)  
    v(0.01)  
    p(0.1)  
    temp(0.1)  
  
definitions  
   Lx = 5       Ly = 1.5  
   Gx = 0       Gy = 0  
   u0 = 0                        { default initial u-velocity }  
   p0 = 0                        { default initial pressure }  
   pin=2                         { inlet pressure }  
   speed2 = u^2+v^2  
   speed = sqrt(speed2)  
   dens = 1  
   visc = 0.04  
   vxx = (p0/(2*visc*(2*Lx)))*y^2*(Ly-y)^2      { open-channel x-velocity }  
   k = 0.1                         { default thermal conductivity }  
  
   rball=0.5  
   cut = 0.1        { bevel the corners of the obstruction }  
  
   penalty = 100*visc/rball^2  
   Re = globalmax(speed)*(Ly/2)/(visc/dens)  
  
initial values  
   u = u0   v = 0  p = p0  
  
equations  
   u:  visc*div(grad(u)) - dx(p) = dens*(u*dx(u) + v*dy(u))  
   v:  visc*div(grad(v)) - dy(p) = dens*(u*dx(v) + v*dy(v))  
   p:  div(grad(p)) = penalty*(dx(u)+dy(v))  
then  
   temp:  div(k*grad(temp)) - u*dx(temp) - v*dy(temp) = 0  
  
Boundaries  
   { bound the entire region, placing temperature boundary conditions }  
   region 1  
     INACTIVE (u,v,p)       { Inactivate the fluid in this region }  
     start(-Lx,-Ly)  
        value(temp)=0       line to (Lx,-Ly)  
        natural(temp)=0     line to (Lx,0)  
        value(temp)=1       line to (Lx,Ly)   { inlet fluid temp = 1 }  
        natural(temp)=0     line to (-Lx,Ly)  
        natural(temp)=-k*dx(temp)   line to close { outlet diffusive temperature flux }  
  
   { overlay the fluid region onto the total domain, including obstruction,  
        and place fluid boundary conditions }  
   region 2  
      u0 = 0.5*vxx  P0=pin*x/(2*Lx)     { initial values in fluid region }  
      K = 0.01                          { fluid thermal conductivity }  
      start(-Lx,0)  
        value(u)=0  value(v) = 0  
      line to (Lx/2-rball,0)  
           to (Lx/2-rball,rball) bevel(cut)  
           to (Lx/2+rball,rball) bevel(cut)  
           to (Lx/2+rball,0)  
           to (Lx,0)  
        load(u) = 0  value(v) = 0  value(p) = pin  
      line to (Lx,Ly)  
        value(u) = 0  value(v) = 0  load(p) = 0  
      line to (-Lx,Ly)  
        load(u) = 0 value(v) = 0  value(p) = 0  
      line to close  
  
monitors  
   contour(speed)  
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   contour(u)  report(Re)  
   contour(v)  report(Re)  
   contour(p)  as "Pressure" painted  
   contour(temp)  
  
plots  
   contour(u)  report(Re)  
   contour(v)  report(Re)  
   contour(p)  as "Pressure" painted  
   contour(temp)  
   contour(speed) painted  report(Re)  
   vector(u,v) as "flow"   report(Re)  
   contour(dx(u)+dy(v)) as "Continuity Error"  
  
end  
  

5.2.23.7 vector_lowvisc

{  VECTOR_LOWVISC.PDE 
 
  This example is an implementation of LOWVISC.PDE  using vector variables . 
 
}  
  
title 'Viscous flow in 2D channel, Re > 40'  
  
select errlim = 0.005  
  
variables  
   vel(0.01) = vector(u,v)  
   p(1)  
  
definitions  
   Lx = 5       Ly = 1.5  
   Gx = 0       Gy = 0  
   p0 = 2  
   speed2 = u^2+v^2  
   speed = sqrt(speed2)  
   dens = 1  
   visc = 0.04  
   vxx = -(p0/(2*visc*(2*Lx)))*(Ly^2-y^2)      { open-channel x-velocity }  
  
   rball = 0.4  
   cut = 0.1        { value for bevel at the corners of the obstruction }  
  
   penalty = 100*visc/rball^2  
   Re = globalmax(speed)*(Ly/2)/(visc/dens)  
  
initial values  
   vel = vector(0.5*vxx ,0)  
   p = p0*(Lx+x)/(2*Lx)  
  
equations  
   vel:  visc*div(grad(vel)) - grad(p) = dens*dot(vel,grad(vel))  
   p:  div(grad(p)) = penalty*div(vel)  
  
Boundaries  
   region 1  
      start(-Lx,0)  
      load(u) = 0   value(v) = 0   load(p) = 0  
        line to (Lx/2-rball,0)  
  
      value(vel)=vector(0,0)  load(p)= 0  
        line to (Lx/2-rball,rball) bevel(cut)  
             to (Lx/2+rball,rball) bevel(cut)  
             to (Lx/2+rball,0)  
  
      load(u) = 0  value(v) = 0  load(p) = 0  
        line to (Lx,0)  
  
      load(u) = 0  value(v) = 0  value(p) = p0  
        line to (Lx,Ly)  
  
      value(vel)=vector(0,0)  load(p) = 0  
        line to (-Lx,Ly)  
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      load(u) = 0  value(v) = 0  value(p) = 0  
        line to close  
  
monitors  
   contour(speed)  
  
plots  
   contour(u)  report(Re)  
   contour(v)  report(Re)  
   contour(speed) painted  report(Re)  
   vector(u,v) as "flow"  report(Re)  
   contour(p) as "Pressure" painted  
   contour(dx(u)+dy(v)) as "Continuity Error"  
   elevation(u) from (-Lx,0) to (-Lx,Ly)  
   elevation(u) from (0,0) to (0,Ly)  
   elevation(u) from (Lx/2,0) to (Lx/2,Ly)  
   elevation(u) from (Lx,0) to (Lx,Ly)  
  
end  
  

5.2.23.8 vector_variables

{ VECTOR_VARIABLES.PDE  
      
    This example demonstrates the use of vector-valued variables . 
    The equations are not intended to represent any real application, 
    but merely to show some vector constructs. 
 
}  
  
title 'Vector Variables'  
  
variables  
    U = vector(Ux,Uy)   { declares component variables Ux and Uy }  
    V                   { a scalar variable to validate Uy }  
    
definitions  
    u0 = 1-x^2-y^2  
    u1 = 1+y+x^3  
    s = vector(4,-6*x)  
  
equations  
    U: div(grad(U)) +s = 0  
    V: del2(v) +ycomp(s) = 0  
  
boundaries  
    Region 1  
      start(-1,-1)  
        value(U)=vector(u0,u1)  
        value(v)=u1  
      line to (1,-1) to (1,1) to (-1,1) to close  
  
plots  
    contour(Ux)  
    contour(Uy,u1)  
    contour(v,u1)  
    contour(Ux,Uy)  
    vector(U)  
    elevation(u) from(-1,0) to (1,0)  
    vtk(u,s)  
    transfer(u,s)  
    table(u,s)  
  
end  
  

5.2.23.9 vector+tim e

{ VECTOR+TIME.PDE 
 
  This example demonstrates the use of Vector variables  in time-dependent problems. 
 
  A vector variable is controlled by a heat equation.  The X and Y components are given  
  source terms consistent with an arbitrarily chosen final result. 
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  This problem is not intended to represent any real application, but is constructed 
  merely to demonstrate the use of some features of vector variable support 
  in FlexPDE. 
 
}  
  
title 'Vector transient heatflow'  
  
Variables  
    { declare a vector variable with components Ux and Uy.   
        Each component is expected to have a variation large compared to 0.01 }  
    U(0.01) = vector(Ux,Uy)  
    { declare a scalar field variable to validate the y-component }  
    V(0.01)  
              
definitions  
     { Define the expected solutions for the components. }  
     u0 = (1-x^2-y^2)  
     u1 = (1+y+x^3)  
     { Define source terms that will result in the programmed solutions }  
     s = vector(4,-6*x)  
  
equations  
     U: del2(U) +s = dt(U)  
     v: del2(v) +ycomp(s) = dt(v)  
  
boundaries  
     Region 1  
        start 'outer' (-1,-1)  
            { Apply a time ramp to the value boundary conditions, so that the  
                initial boundary values agree with the initial field values. }  
            value(U)=vector(u0,u1)*uramp(t, t-1)  
            value(v)=u1*uramp(t, t-1)  
        line to (1,-1) to (1,1) to (-1,1) to close  
  
time 0 to 5  
  
plots  
     for cycle=10  
       { various uses of vector variables in plot statements: }  
       contour(Ux, u0)  
       contour(Uy, u1)  
       contour(v, u1)  
       contour(Ux, Uy)  
       contour(U)  
       vector(U)  
       elevation(U, v) from(-1,0) to (1,0)  
       history(U, v) at(0,0)  
  
       elevation(u1, Uy, v) on 'outer'  
       elevation(u0, Ux) on 'outer'  
       elevation(normal(grad(Ux)), normal(grad(u0))) on 'outer'  
       elevation(normal(grad(v)), normal(grad(Uy)), normal(grad(u1))) on 'outer'  
  
end  
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CONTACT     235, 239
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DELAY     186
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END     270

END_ITERATION     218
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Tutorial     58
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Guidelines for Problem Setup     49, 50

- H -
HALT     243
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NOTAGS     191, 251

Notation     51

NOTIFY_DONE     187

NOTIPS     192, 251

NRMATRIX     188

NRMINSTEP     187

NRSLOPE     187

Numbering and Naming Regions     234

Numeric    
Constants     1 59
Range     1 59
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PNG     252, 258

POINT     226
Components     207
Definitions     207
LOAD Boundary  Conditions     237
Mov able     207
VALUE Boundary  Conditions     237

POINTS     252

Post-processing     136

PostScript     247

Potential     287

PPM     252, 258

PRECONDITION     188

PREFER_SPEED     188, 275

PREFER_STABILITY     188, 275

Preferences    
Menu     6
Tabs     28

Preparing a Descriptor File     150

Previous     26

PRINT     252
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